Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza, multicentrická studie, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
I01 CX000227
CSRD VA - United States
32003B_156914
Swiss National Science Foundation - Switzerland
G0901310
Medical Research Council - United Kingdom
G0801418
Medical Research Council - United Kingdom
R01 MH116147
NIMH NIH HHS - United States
R01MH121246
NIH HHS - United States
U01 MH108150
NIMH NIH HHS - United States
I01CX000227
VA - United States
P41 EB015922
NIBIB NIH HHS - United States
091630
Wellcome Trust - United Kingdom
P41 EB027061
NIBIB NIH HHS - United States
064971
Wellcome Trust - United Kingdom
R01 MH118695
NIMH NIH HHS - United States
1S10OD017974-01
NIH HHS - United States
S10 OD017974
NIH HHS - United States
MR/L010305/1
Medical Research Council - United Kingdom
U54EB020403
NIH HHS - United States
R01 MH111671
NIMH NIH HHS - United States
NIHR200756
Department of Health - United Kingdom
P30 NS076408
NINDS NIH HHS - United States
R01 MH129742
NIMH NIH HHS - United States
R01 MH113619
NIMH NIH HHS - United States
P30 NS076408
NIH HHS - United States
T32 AG058507
NIA NIH HHS - United States
P41 EB015922
NIH HHS - United States
U54 EB020403
NIBIB NIH HHS - United States
R01 MH117601
NIMH NIH HHS - United States
T32AG058507
NIA NIH HHS - United States
R03 MH105808
NIH HHS - United States
085475/B/08/Z
Wellcome Trust - United Kingdom
R01 MH121246
NIMH NIH HHS - United States
Wellcome Trust - United Kingdom
103703
Wellcome Trust - United Kingdom
106469, 142255
CIHR - Canada
R01 MH116147
NIH HHS - United States
085475/Z/08/Z
Wellcome Trust - United Kingdom
R01 MH117601
NIH HHS - United States
R01 MH111671
NIH HHS - United States
R03 MH105808
NIMH NIH HHS - United States
R01 MH085667
NIMH NIH HHS - United States
R01 MH052857
NIMH NIH HHS - United States
R01 MH080912
NIMH NIH HHS - United States
PubMed
33027543
PubMed Central
PMC8675411
DOI
10.1002/hbm.25206
Knihovny.cz E-zdroje
- Klíčová slova
- bipolar disorder, education, intelligence, neuroimaging, relatives, schizophrenia,
- MeSH
- bipolární porucha komplikace diagnostické zobrazování patologie MeSH
- genetická predispozice k nemoci * MeSH
- inteligence fyziologie MeSH
- kognitivní dysfunkce diagnostické zobrazování patologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- neurozobrazování * MeSH
- rodina MeSH
- schizofrenie komplikace diagnostické zobrazování etiologie patologie MeSH
- stupeň vzdělání * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.
APHP Mondor University Hospitals Créteil France
Bipolar and Depressive Disorders Unit Hospital Clinic University of Barcelona Barcelona Spain
Boys Town National Research Hospital Omaha NE USA
Cardiff University Brain Research Imaging Centre Cardiff University Cardiff UK
Center for Neurobehavioral Genetics University of California Los Angeles California USA
Cigli State Hospital Department of Psychiatry Izmir Turkey
Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
Department of Neuroradiology Karolinska University Hospital Stockholm Sweden
Department of Neurosciences Health Sciences Institute Dokuz Eylül University Izmir Turkey
Department of Psychiatry 3rd Faculty of Medicine Charles University Prague Czech Republic
Department of Psychiatry and Behavioral Sciences University of Minnesota Minneapolis Minnesota USA
Department of Psychiatry and Behavioral Sciences University of New Mexico Albuquerque New Mexico USA
Department of Psychiatry and Psychology Mayo Clinic Rochester Minnesota USA
Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
Department of Psychiatry Diakonhjemmet Hospital Oslo Norway
Department of Psychiatry Faculty of Medicine Dokuz Eylül University Izmir Turkey
Department of Psychiatry Faculty of Medicine Izmir Katip Çelebi University Izmir Turkey
Department of Psychiatry Faculty of Medicine University of Geneva Geneva Switzerland
Department of Psychiatry Icahn School of Medicine at Mount Sinai New York New York USA
Department of Psychiatry Yale University School of Medicine New Haven Connecticut USA
Department of Psychology Bilkent University Ankara Turkey
Department of Psychology Faculty of Arts Dokuz Eylül University İzmir Turkey
Department of Psychology University of California California Los Angeles USA
Department of Psychology Yale University New Haven Connecticut USA
Division of Mental Health and Addiction Oslo University Hospital Oslo Norway
Division of Psychiatry Royal Edinburgh Hospital University of Edinburgh Edinburgh UK
FIDMAG Germanes Hospitalàries Research Foundation Barcelona Spain
Harvard Medical School Boston Massachusetts USA
INSERM U955 Team 15 Translational Psychiatry Créteil France
Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
Institute of Psychiatry Psychology and Neuroscience King's College London London UK
IRCCS Casa Sollievo della Sofferenza San Giovanni Rotondo Italy
Lieber Institute for Brain Development Johns Hopkins Medical Campus Baltimore Maryland USA
Minneapolis VA Health Care System Minneapolis Minnesota USA
MRC Centre for Neuropsychiatric Genetics and Genomics Cardiff University Cardiff UK
National Institute of Mental Health Klecany Czech Republic
Neuroscience Research Australia Sydney Australia
NeuroSpin neuroimaging platform Psychiatry Team UNIACT Lab CEA Saclay Gif Sur Yvette France
Olin Neuropsychiatry Research Center Institute of Living Hartford Hospital Hartford Connecticut USA
School of Medical Sciences University of New South Wales Sydney Australia
School of Medicine Universitat Internacional de Catalunya Barcelona Spain
School of Psychiatry University of New South Wales Sydney Australia
Section for Neuroscience Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
SoCAT LAB Department of Psychiatry School of Medicine Ege University Izmir Turkey
Zobrazit více v PubMed
Agnew‐Blais, J. , & Seidman, L. J. (2013). Neurocognition in youth and young adults under age 30 at familial risk for schizophrenia: A quantitative and qualitative review. Cognitive Neuropsychiatry, 18(1–2), 44–82. 10.1080/13546805.2012.676309 PubMed DOI PMC
Anttila, V. , Bulik‐Sullivan, B. , Finucane, H. K. , Walters, R. K. , Bras, J. , Duncan, L. , … Neale, B. M. (2018). Analysis of shared heritability in common disorders of the brain. Science, 360(6395), eaap8757. 10.1126/science.aap8757 PubMed DOI PMC
Arnone, D. , Cavanagh, J. , Gerber, D. , Lawrie, S. M. , Ebmeier, K. P. , & McIntosh, A. M. (2009). Magnetic resonance imaging studies in bipolar disorder and schizophrenia: Meta‐analysis. British Journal of Psychiatry, 195(3), 194–201. 10.1192/bjp.bp.108.059717 PubMed DOI
Benjamini, Y. , & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300. 10.2307/2346101 DOI
Bohlken, M. M. , Brouwer, R. M. , Mandl, R. C. W. , Kahn, R. S. , & Hulshoff Pol, H. E. (2016). Genetic variation in schizophrenia liability is shared with intellectual ability and brain structure. Schizophrenia Bulletin, 42(5), 1167–1175. 10.1093/schbul/sbw034 PubMed DOI PMC
Chamorro‐Premuzic, T. , & Furnham, A. (2003). Personality predicts academic performance: Evidence from two longitudinal university samples. Journal of Research in Personality, 37(4), 319–338. 10.1016/S0092-6566(02)00578-0 DOI
Crinion, J. T. , Lambon‐Ralph, M. A. , Warburton, E. A. , Howard, D. , & Wise, R. J. S. (2003). Temporal lobe regions engaged during normal speech comprehension. Brain, 126(Pt 5, 1193–1201. 10.1093/brain/awg104 PubMed DOI
de Zwarte, S. M. C. , Brouwer, R. M. , Agartz, I. , Alda, M. , Aleman, A. , Alpert, K. I. , … van Haren, N. E. M. (2019). The association between familial risk and brain abnormalities is disease‐specific: An ENIGMA–relatives study of schizophrenia and bipolar disorder. Biological Psychiatry, 86(7), 545–556. 10.1016/j.biopsych.2019.03.985 PubMed DOI PMC
de Zwarte, S. M. C. , Brouwer, R. M. , Tsouli, A. , Cahn, W. , Hillegers, M. H. J. , Hulshoff Pol, H. E. , … van Haren, N. E. M. (2019). Running in the family? Structural brain abnormalities and IQ in offspring, siblings, parents, and co‐twins of patients with schizophrenia. Schizophrenia Bulletin, 45(6), 1209–1217. 10.1093/schbul/sby182 PubMed DOI PMC
Deary, I. J. , Strand, S. , Smith, P. , & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13–21. 10.1016/j.intell.2006.02.001 DOI
Devlin, B. , Daniels, M. , & Roeder, K. (1997). The heritability of IQ. Nature, 388(6641), 468–471. 10.1038/41319 PubMed DOI
Dickson, H. , Laurens, K. R. , Cullen, A. E. , & Hodgins, S. (2012). Meta‐analyses of cognitive and motor function in youth aged 16 years and younger who subsequently develop schizophrenia. Psychological Medicine, 42(4), 743–755. 10.1017/S0033291711001693 PubMed DOI
Ellison‐Wright, I. , & Bullmore, E. (2010). Anatomy of bipolar disorder and schizophrenia: A meta‐analysis. Schizophrenia Research, 117(1), 1–12. 10.1016/j.schres.2009.12.022 PubMed DOI
Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. 10.1016/j.neuroimage.2012.01.021 PubMed DOI PMC
Fischl, B. , & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055. 10.1073/pnas.200033797 PubMed DOI PMC
Fischl, B. , Sereno, M. I. , & Dale, A. M. (1999). Cortical surface‐based analysis: II. Inflation, flattening, and a surface‐based coordinate system. NeuroImage, 9(2), 195–207. 10.1006/nimg.1998.0396 PubMed DOI
Francis, A. N. , Seidman, L. J. , Jabbar, G. A. , Mesholam‐Gately, R. , Thermenos, H. W. , Juelich, R. , … DeLisi, L. E. (2012). Alterations in brain structures underlying language function in young adults at high familial risk for schizophrenia. Schizophrenia Research, 141, 65–71. 10.1016/j.schres.2012.07.015 PubMed DOI PMC
Grasby, K. L. , Jahanshad, N. , Painter, J. N. , Colodro‐Conde, L. , Bralten, J. , Hibar, D. P. , … Medland, S. E. (2020). The genetic architecture of the human cerebral cortex. Science, 367(6484), eaay6690. 10.1126/science.aay6690 PubMed DOI PMC
Haijma, S. V. , Van Haren, N. , Cahn, W. , Koolschijn, P. C. M. P. , Hulshoff Pol, H. E. , & Kahn, R. S. (2013). Brain volumes in schizophrenia: A meta‐analysis in over 18 000 subjects. Schizophrenia Bulletin, 39(5), 1129–1138. 10.1093/schbul/sbs118 PubMed DOI PMC
Heath, A. C. , Berg, K. , Eaves, L. J. , Solaas, M. H. , Corey, L. A. , Sundet, J. , … Nance, W. E. (1985). Education policy and the heritability of educational attainment. Nature, 314(6013), 734–736. 10.1038/314734a0 PubMed DOI
Hibar, D. P. , Westlye, L. T. , Doan, N. T. , Jahanshad, N. , Cheung, J. W. , Ching, C. R. K. , … Andreassen, O. A. (2018). Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA bipolar disorder working group. Molecular Psychiatry, 23(4), 932–942. 10.1038/mp.2017.73 PubMed DOI PMC
Hibar, D. P. , Westlye, L. T. , van Erp, T. G. M. , Rasmussen, J. , Leonardo, C. D. , Faskowitz, J. , … Andreassen, O. A. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21(12), 1710–1716. 10.1038/mp.2015.227 PubMed DOI PMC
Hochberger, W. C. , Combs, T. , Reilly, J. L. , Bishop, J. R. , Keefe, R. S. E. , Clementz, B. A. , … Sweeney, J. A. (2018). Deviation from expected cognitive ability across psychotic disorders. Schizophrenia Research, 192, 300–307. 10.1016/j.schres.2017.05.019 PubMed DOI PMC
Hughes, C. , Kumari, V. , Das, M. , Zachariah, E. , Ettinger, U. , Sumich, A. , & Sharma, T. (2005). Cognitive functioning in siblings discordant for schizophrenia. Acta Psychiatrica Scandinavica, 111(3), 185–192. 10.1111/j.1600-0447.2004.00392.x PubMed DOI
Ivleva, E. I. , Clementz, B. A. , Dutcher, A. M. , Arnold, S. J. M. , Jeon‐Slaughter, H. , Aslan, S. , … Tamminga, C. A. (2017). Brain structure biomarkers in the psychosis biotypes: Findings from the bipolar‐schizophrenia network for intermediate phenotypes. Biological Psychiatry, 82(1), 26–39. 10.1016/j.biopsych.2016.08.030 PubMed DOI PMC
Kendler, K. S. , Ohlsson, H. , Sundquist, J. , & Sundquist, K. (2015). IQ and schizophrenia in a Swedish national sample: Their causal relationship and the interaction of IQ with genetic risk. American Journal of Psychiatry, 172(3), 259–265. 10.1176/appi.ajp.2014.14040516 PubMed DOI PMC
Khandaker, G. M. , Barnett, J. H. , White, I. R. , & Jones, P. B. (2011). A quantitative meta‐analysis of population‐based studies of premorbid intelligence and schizophrenia. Schizophrenia Research, 132(2–3), 220–227. 10.1016/j.schres.2011.06.017 PubMed DOI PMC
Kremen, W. S. , Faraone, S. V. , Seidman, L. J. , Pepple, J. R. , & Tsuang, M. T. (1998). Neuropsychological risk indicators for schizophrenia: A preliminary study of female relatives of schizophrenic and bipolar probands. Psychiatry Research, 79(3), 227–240. 10.1016/S0165-1781(98)00042-0 PubMed DOI
Lee, S. H. , Ripke, S. , Neale, B. M. , Faraone, S. V. , Purcell, S. M. , Perlis, R. H. , … Wray, N. R. (2013). Genetic relationship between five psychiatric disorders estimated from genome‐wide SNPs. Nature Genetics, 45(9), 984–994. 10.1038/ng.2711 PubMed DOI PMC
Lichtenstein, P. , Yip, B. H. , Björk, C. , Pawitan, Y. , Cannon, T. D. , Sullivan, P. F. , & Hultman, C. M. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population‐based study. Lancet, 373, 234–239. 10.1016/S0140-6736(09)60072-6 PubMed DOI PMC
MacCabe, J. H. , Lambe, M. P. , Cnattingius, S. , Sham, P. C. , David, A. S. , Reichenberg, A. , … Hultman, C. M. (2010). Excellent school performance at age 16 and risk of adult bipolar disorder: National cohort study. British Journal of Psychiatry, 196(2), 109–115. 10.1192/bjp.bp.108.060368 PubMed DOI
McDaniel, M. A. (2005). Big‐brained people are smarter: A meta‐analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33(4), 337–346. 10.1016/j.intell.2004.11.005 DOI
McDonald, C. , Bullmore, E. T. , Sham, P. C. , Chitnis, X. , Wickham, H. , Bramon, E. , & Murray, R. M. (2004). Association of genetic risks for schizophrenia and bipolar disorder with specific and generic brain structural endophenotypes. Archives of General Psychiatry, 61(10), 974–984. 10.1001/archpsyc.61.10.974 PubMed DOI
McIntosh, A. M. , Harrison, L. K. , Forrester, K. , Lawrie, S. M. , & Johnstone, E. C. (2005). Neuropsychological impairments in people with schizophrenia or bipolar disorder and their unaffected relatives. British Journal of Psychiatry, 186, 378–385. 10.1192/bjp.186.5.378 PubMed DOI
Niendam, T. A. , Bearden, C. E. , Rosso, I. M. , Sanchez, L. E. , Hadley, T. , Nuechterlein, K. H. , & Cannon, T. D. (2003). A prospective study of childhood neurocognitive functioning in schizophrenic patients and their siblings. American Journal of Psychiatry, 160(11), 2060–2062. 10.1176/appi.ajp.160.11.2060 PubMed DOI
Okada, N. , Fukunaga, M. , Yamashita, F. , Koshiyama, D. , Yamamori, H. , Ohi, K. , … Hashimoto, R. (2016). Abnormal asymmetries in subcortical brain volume in schizophrenia. Molecular Psychiatry, 21(10), 1460–1466. 10.1038/mp.2015.209 PubMed DOI PMC
Okbay, A. , Beauchamp, J. P. , Fontana, M. A. , Lee, J. J. , Pers, T. H. , Rietveld, C. A. , … J, D. (2016). Genome‐wide association study identifies 74 loci associated with educational attainment. Nature, 533(7604), 539–542. 10.1038/nature17671 PubMed DOI PMC
Parellada, M. , Gomez‐Vallejo, S. , Burdeus, M. , & Arango, C. (2017). Developmental differences between schizophrenia and bipolar disorder. Schizophrenia Bulletin, 43(6), 1176–1189. 10.1093/schbul/sbx126 PubMed DOI PMC
Pinheiro, J. C. , & Bates, D. M. (2000). Mixed‐effects models in S and S‐PLUS, New York, NY: Springer. 10.1007/b98882. DOI
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241(4862), 170–176. 10.1126/science.3291116 PubMed DOI
Reichenberg, A. , Weiser, M. , Rapp, M. A. , Rabinowitz, J. , Caspi, A. , Schmeidler, J. , … Davidson, M. (2005). Elaboration on premorbid intellectual performance in schizophrenia: Premorbid intellectual decline and risk for schizophrenia. Archives of General Psychiatry, 62(12), 1297–1304. 10.1001/archpsyc.62.12.1297 PubMed DOI
Saur, D. , Kreher, B. W. , Schnell, S. , Kümmerera, D. , Kellmeyera, P. , Vrya, M. S. , … Weiller, C. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 18035–18040. 10.1073/pnas.0805234105 PubMed DOI PMC
Sitskoorn, M. M. , Aleman, A. , Ebisch, S. J. H. , Appels, M. C. M. , & Kahn, R. S. (2004). Cognitive deficits in relatives of patients with schizophrenia: A meta‐analysis. Schizophrenia Research, 71(2–3), 285–295. 10.1016/j.schres.2004.03.007 PubMed DOI
Smith, D. J. , Anderson, J. , Zammit, S. , Meyer, T. D. , Pell, J. P. , & Mackay, D. (2015). Childhood IQ and risk of bipolar disorder in adulthood: Prospective birth cohort study. BJPsych Open, 1(1), 74–80. 10.1192/bjpo.bp.115.000455 PubMed DOI PMC
Sniekers, S. , Stringer, S. , Watanabe, K. , Jansen, P. R. , Coleman, J. R. I. , Krapohl, E. , … Posthuma, D. (2017). Genome‐wide association meta‐analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nature Genetics, 49(7), 1107–1112. 10.1038/ng.3869 PubMed DOI PMC
Strenze, T. (2007). Intelligence and socioeconomic success: A meta‐analytic review of longitudinal research. Intelligence, 35(5), 401–426. 10.1016/j.intell.2006.09.004 DOI
Strike, L. T. , Hansell, N. K. , Couvy‐Duchesne, B. , Thompson, P. M. , De Zubicaray, G. I. , McMahon, K. L. , & Wright, M. J. (2019). Genetic complexity of cortical structure: Differences in genetic and environmental factors influencing cortical surface area and thickness. Cerebral Cortex, 29(3), 952–962. 10.1093/cercor/bhy002 PubMed DOI PMC
Tambs, K. , Sundet, J. M. , Magnus, P. , & Berg, K. (1989). Genetic and environmental contributions to the covariance between occupational status, educational attainment, and IQ: A study of twins. Behavior Genetics, 19(2), 209–222. 10.1007/BF01065905 PubMed DOI
Tiihonen, J. , Haukka, J. , Henriksson, M. , Cannon, M. , Kieseppä, T. , Laaksonen, I. , … Lönnqvist, J. (2005). Premorbid intellectual functioning in bipolar disorder and schizophrenia: Results from a cohort study of male conscripts. American Journal of Psychiatry, 162(10), 1904–1910. 10.1176/appi.ajp.162.10.1904 PubMed DOI
Toulopoulou, T. , van Haren, N. , Zhang, X. , Sham, P. C. , Cherny, S. S. , Campbell, D. D. , … Kahn, R. S. (2015). Reciprocal causation models of cognitive vs volumetric cerebral intermediate phenotypes for schizophrenia in a pan‐European twin cohort. Molecular Psychiatry, 20(11), 1386–1396. 10.1038/mp.2014.152 PubMed DOI
van Erp, T. G. M. , Hibar, D. P. , Rasmussen, J. M. , Glahn, D. C. , Pearlson, G. D. , Andreassen, O. A. , … Turner, J. A. (2016). Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecular Psychiatry, 21(4), 547–553. 10.1038/mp.2015.63 PubMed DOI PMC
van Erp, T. G. M. , Walton, E. , Hibar, D. P. , Schmaal, L. , Jiang, W. , Glahn, D. C. , … Turner, J. A. (2018). Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 controls via the ENIGMA consortium. Biological Psychiatry, 84(9), 644–654. 10.1016/j.biopsych.2018.04.023 PubMed DOI PMC
van Haren, N. E. M. , Setiaman, N. , Koevoets, M. G. J. C. , Baalbergen, H. , Kahn, R. S. , & Hillegers, M. H. J. (2020). Brain structure, IQ, and psychopathology in young offspring of patients with schizophrenia or bipolar disorder. European Psychiatry, 63(1), e5. 10.1192/j.eurpsy.2019.19 PubMed DOI PMC
Van Haren, N. E. M. , Van Dam, D. S. , & Stellato, R. K. (2019). Change in IQ in schizophrenia patients and their siblings: A controlled longitudinal study. Psychological Medicine, 49(15), 2573–2581. 10.1017/S0033291718003537 PubMed DOI
Van Lutterveld, R. , Van Den Heuvel, M. P. , Diederen, K. M. J. , De Weijer, A. D. , Begemann, M. J. H. , Brouwer, R. M. , … Sommer, I. E. (2014). Cortical thickness in individuals with non‐clinical and clinical psychotic symptoms. Brain, 137(Pt 10, 2664–2669. 10.1093/brain/awu167 PubMed DOI
Van Rooij, D. , Anagnostou, E. , Arango, C. , Auzias, G. , Behrmann, M. , Busatto, G. F. , … Buitelaar, J. K. (2018). Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: Results from the ENIGMA ASD working group. American Journal of Psychiatry, 175(4), 359–369. 10.1176/appi.ajp.2017.17010100 PubMed DOI PMC
Vonk, R. , Van Der Schot, A. C. , Van Baal, G. C. M. , Van Oel, C. J. , Nolen, W. A. , & Kahn, R. S. (2012). Premorbid school performance in twins concordant and discordant for bipolar disorder. Journal of Affective Disorders, 136(3), 294–303. 10.1016/j.jad.2011.11.034 PubMed DOI
Vreeker, A. , Boks, M. P. M. , Abramovic, L. , Verkooijen, S. , van Bergen, A. H. , Hillegers, M. H. J. , … Ophoff, R. A. (2016). High educational performance is a distinctive feature of bipolar disorder: A study on cognition in bipolar disorder, schizophrenia patients, relatives and controls. Psychological Medicine, 46(4), 807–818. 10.1017/S0033291715002299 PubMed DOI PMC
Woodberry, K. A. , Giuliano, A. J. , & Seidman, L. J. (2008). Premorbid IQ in schizophrenia: A meta‐analytic review. American Journal of Psychiatry, 165(5), 579–587. 10.1176/appi.ajp.2008.07081242 PubMed DOI
Zammit, S. , Allebeck, P. , David, A. S. , Dalman, C. , Hemmingsson, T. , Lundberg, I. , & Lewis, G. (2004). A longitudinal study of premorbid IQ score and risk of developing schizophrenia, bipolar disorder, severe depression, and other nonaffective psychoses. Archives of General Psychiatry, 61(4), 354–360. 10.1001/archpsyc.61.4.354 PubMed DOI