Impact of Endoluminal Radiofrequency Ablation on Immunity in Pancreatic Cancer and Cholangiocarcinoma
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-30281A
Czech Grant Research Council
PubMed
35740353
PubMed Central
PMC9219740
DOI
10.3390/biomedicines10061331
PII: biomedicines10061331
Knihovny.cz E-zdroje
- Klíčová slova
- antitumor immunity, cholangiocarcinoma, pancreatic ductal adenocarcinoma, radiofrequency ablation,
- Publikační typ
- časopisecké články MeSH
Radiofrequency ablation (RFA) is a mini-invasive loco-regional ablation technique that is increasingly being used as a palliative treatment for pancreatic cancer and cholangiocarcinoma. Ablation-triggered immune system stimulation has been proposed as a mechanism behind the systemic effects of RFA. The aim of our study was to investigate the immune response to endoluminal biliary RFA. Peripheral blood samples were collected from patients with pancreatic cancer and cholangiocarcinoma randomised to receive endoluminal biliary radiofrequency ablation + stent (19 patients) or stent only (21 patients). We observed an early increase in IL-6 levels and a delayed increase in CXCL1, CXCL5, and CXCL11 levels as well as an increase in CD8+ and NK cells. However, these changes were not specific to RFA treatment. Explicitly in response to RFA, we observed a delayed increase in serum CXCL1 levels and an early decrease in the number of anti-inflammatory CD206+ blood monocytes. Our study provides the first evidence of endoluminal biliary RFA-based regulation of the systemic immune response in patients with pancreatic cancer and cholangiocarcinoma. These changes were characterised by a general inflammatory response. RFA-specific activation of the adaptive immune system was not confirmed.
Zobrazit více v PubMed
Park W., Chawla A., O’Reilly E.M. Pancreatic Cancer: A Review. JAMA. 2021;326:851–862. doi: 10.1001/jama.2021.13027. PubMed DOI PMC
European Association for the Study of the Liver EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018;69:182–236. doi: 10.1016/j.jhep.2018.03.019. PubMed DOI
Jarosova J., Macinga P., Hujova A., Kral J., Urban O., Spicak J., Hucl T. Endoscopic radiofrequency ablation for malignant biliary obstruction. World J. Gastrointest. Oncol. 2021;13:1383–1396. doi: 10.4251/wjgo.v13.i10.1383. PubMed DOI PMC
Frigerio I., Paiella S., Barbi E., Bianco R., Boz G., Butturini G., Cantore M., Cardarelli N., Mirko D., Fiorentini G., et al. Open radiofrequency ablation as upfront treatment for locally advanced pancreatic cancer: Requiem from a randomized controlled trial. Pancreatology. 2021;21:1342–1348. doi: 10.1016/j.pan.2021.06.005. PubMed DOI
Girelli R., Frigerio I., Giardino A., Regi P., Gobbo S., Malleo G., Salvia R., Bassi C. Results of 100 pancreatic radiofrequency ablations in the context of a multimodal strategy for stage III ductal adenocarcinoma. Langenbeck’s Arch. Surg. 2013;398:63–69. doi: 10.1007/s00423-012-1011-z. PubMed DOI
Gao D.J., Yang J.F., Ma S.R., Wu J., Wang T.T., Jin H.B., Xia M.X., Zhang Y.C., Shen H.Z., Ye X., et al. Endoscopic radiofrequency ablation plus plastic stent placement versus stent placement alone for unresectable extrahepatic biliary cancer: A multicenter randomized controlled trial. Gastrointest. Endosc. 2021;94:91–100.e2. doi: 10.1016/j.gie.2020.12.016. PubMed DOI
Kang H., Chung M.J., Cho I.R., Jo J.H., Lee H.S., Park J.Y., Park S.W., Song S.Y., Bang S. Efficacy and safety of palliative endobiliary radiofrequency ablation using a novel temperature-controlled catheter for malignant biliary stricture: A single-center prospective randomized phase II TRIAL. Surg. Endosc. 2021;35:63–73. doi: 10.1007/s00464-020-07689-z. PubMed DOI
Sofi A.A., Khan M.A., Das A., Sachdev M., Khuder S., Nawras A., Lee W. Radiofrequency ablation combined with biliary stent placement versus stent placement alone for malignant biliary strictures: A systematic review and meta-analysis. Gastrointest. Endosc. 2018;87:944–951.e1. doi: 10.1016/j.gie.2017.10.029. PubMed DOI
Yang J., Wang J., Zhou H., Wang Y., Huang H., Jin H., Lou Q., Shah R.J., Zhang X. Endoscopic radiofrequency ablation plus a novel oral 5-fluorouracil compound versus radiofrequency ablation alone for unresectable extrahepatic cholangiocarcinoma. Gastrointest. Endosc. 2020;92:1204–1212.e01. doi: 10.1016/j.gie.2020.04.075. PubMed DOI
Yang J., Wang J., Zhou H., Zhou Y., Wang Y., Jin H., Lou Q., Zhang X. Efficacy and safety of endoscopic radiofrequency ablation for unresectable extrahepatic cholangiocarcinoma: A randomized trial. Endoscopy. 2018;50:751–760. doi: 10.1055/s-0043-124870. PubMed DOI
Chu K.F., Dupuy D.E. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat. Rev. Cancer. 2014;14:199–208. doi: 10.1038/nrc3672. PubMed DOI
den Brok M.H., Sutmuller R.P., van der Voort R., Bennink E.J., Figdor C.G., Ruers T.J., Adema G.J. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res. 2004;64:4024–4029. doi: 10.1158/0008-5472.CAN-03-3949. PubMed DOI
Wissniowski T.T., Hansler J., Neureiter D., Frieser M., Schaber S., Esslinger B., Voll R., Strobel D., Hahn E.G., Schuppan D. Activation of tumor-specific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits. Cancer Res. 2003;63:6496–6500. PubMed
Giardino A., Innamorati G., Ugel S., Perbellini O., Girelli R., Frigerio I., Regi P., Scopelliti F., Butturini G., Paiella S., et al. Immunomodulation after radiofrequency ablation of locally advanced pancreatic cancer by monitoring the immune response in 10 patients. Pancreatology. 2017;17:962–966. doi: 10.1016/j.pan.2017.09.008. PubMed DOI
Mehta A., Oklu R., Sheth R.A. Thermal Ablative Therapies and Immune Checkpoint Modulation: Can Locoregional Approaches Effect a Systemic Response? Gastroenterol. Res. Pract. 2016;2016:9251375. doi: 10.1155/2016/9251375. PubMed DOI PMC
Haen S.P., Gouttefangeas C., Schmidt D., Boss A., Clasen S., von Herbay A., Kosan B., Aebert H., Pereira P.L., Rammensee H.G. Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation. Cell Stress Chaperones. 2011;16:495–504. doi: 10.1007/s12192-011-0261-y. PubMed DOI PMC
Dromi S.A., Walsh M.P., Herby S., Traughber B., Xie J., Sharma K.V., Sekhar K.P., Luk A., Liewehr D.J., Dreher M.R., et al. Radiofrequency ablation induces antigen-presenting cell infiltration and amplification of weak tumor-induced immunity. Radiology. 2009;251:58–66. doi: 10.1148/radiol.2511072175. PubMed DOI PMC
Mizukoshi E., Yamashita T., Arai K., Sunagozaka H., Ueda T., Arihara F., Kagaya T., Yamashita T., Fushimi K., Kaneko S. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology. 2013;57:1448–1457. doi: 10.1002/hep.26153. PubMed DOI
Qi X., Yang M., Ma L., Sauer M., Avella D., Kaifi J.T., Bryan J., Cheng K., Staveley-O’Carroll K.F., Kimchi E.T., et al. Synergizing sunitinib and radiofrequency ablation to treat hepatocellular cancer by triggering the antitumor immune response. J. Immunother. Cancer. 2020;8:e001038. doi: 10.1136/jitc-2020-001038. PubMed DOI PMC
Kim H., Park B.K., Kim C.K. Spontaneous regression of pulmonary and adrenal metastases following percutaneous radiofrequency ablation of a recurrent renal cell carcinoma. Korean J. Radiol. 2008;9:470–472. doi: 10.3348/kjr.2008.9.5.470. PubMed DOI PMC
Zerbini A., Pilli M., Penna A., Pelosi G., Schianchi C., Molinari A., Schivazappa S., Zibera C., Fagnoni F.F., Ferrari C., et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res. 2006;66:1139–1146. doi: 10.1158/0008-5472.CAN-05-2244. PubMed DOI
Cerami E., Gao J., Dogrusoz U., Gross B.E., Sumer S.O., Aksoy B.A., Jacobsen A., Byrne C.J., Heuer M.L., Larsson E., et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–404. doi: 10.1158/2159-8290.CD-12-0095. PubMed DOI PMC
Li T., Fu J., Zeng Z., Cohen D., Li J., Chen Q., Li B., Liu X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–W514. doi: 10.1093/nar/gkaa407. PubMed DOI PMC
Hansler J., Neureiter D., Strobel D., Muller W., Mutter D., Bernatik T., Hahn E.G., Becker D. Cellular and vascular reactions in the liver to radio-frequency thermo-ablation with wet needle applicators. Study on juvenile domestic pigs. Eur. Surg. Res. 2002;34:357–363. doi: 10.1159/000064000. PubMed DOI
Mole R.H. Whole body irradiation; radiobiology or medicine? Br. J. Radiol. 1953;26:234–241. doi: 10.1259/0007-1285-26-305-234. PubMed DOI
Sanchez-Ortiz R.F., Tannir N., Ahrar K., Wood C.G. Spontaneous regression of pulmonary metastases from renal cell carcinoma after radio frequency ablation of primary tumor: An in situ tumor vaccine? J. Urol. 2003;170:178–179. doi: 10.1097/01.ju.0000070823.38336.7b. PubMed DOI
Fietta A.M., Morosini M., Passadore I., Cascina A., Draghi P., Dore R., Rossi S., Pozzi E., Meloni F. Systemic inflammatory response and downmodulation of peripheral CD25+Foxp3+ T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung cancer. Hum. Immunol. 2009;70:477–486. doi: 10.1016/j.humimm.2009.03.012. PubMed DOI
Rozenblum N., Zeira E., Bulvik B., Gourevitch S., Yotvat H., Galun E., Goldberg S.N. Radiofrequency Ablation: Inflammatory Changes in the Periablative Zone Can Induce Global Organ Effects, Including Liver Regeneration. Radiology. 2015;276:416–425. doi: 10.1148/radiol.15141918. PubMed DOI
Takaki H., Cornelis F., Kako Y., Kobayashi K., Kamikonya N., Yamakado K. Thermal ablation and immunomodulation: From preclinical experiments to clinical trials. Diagn. Interv. Imaging. 2017;98:651–659. doi: 10.1016/j.diii.2017.04.008. PubMed DOI
Fisher D.T., Appenheimer M.M., Evans S.S. The two faces of IL-6 in the tumor microenvironment. Semin. Immunol. 2014;26:38–47. doi: 10.1016/j.smim.2014.01.008. PubMed DOI PMC
Mao Z., Zhang J., Shi Y., Li W., Shi H., Ji R., Mao F., Qian H., Xu W., Zhang X. CXCL5 promotes gastric cancer metastasis by inducing epithelial-mesenchymal transition and activating neutrophils. Oncogenesis. 2020;9:63. doi: 10.1038/s41389-020-00249-z. PubMed DOI PMC
Wang N., Liu W., Zheng Y., Wang S., Yang B., Li M., Song J., Zhang F., Zhang X., Wang Q., et al. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-kappaB/SOX4 signaling. Cell Death Dis. 2018;9:880. doi: 10.1038/s41419-018-0876-3. PubMed DOI PMC
Hinz S., Tepel J., Roder C., Kalthoff H., Becker T. Profile of serum factors and disseminated tumor cells before and after radiofrequency ablation compared to resection of colorectal liver metastases—A pilot study. Anticancer Res. 2015;35:2961–2967. PubMed
Yang C., Yu H., Chen R., Tao K., Jian L., Peng M., Li X., Liu M., Liu S. CXCL1 stimulates migration and invasion in ERnegative breast cancer cells via activation of the ERK/MMP2/9 signaling axis. Int. J. Oncol. 2019;55:684–696. doi: 10.3892/ijo.2019.4840. PubMed DOI PMC
Yu S., Yi M., Xu L., Qin S., Li A., Wu K. CXCL1 as an Unfavorable Prognosis Factor Negatively Regulated by DACH1 in Non-small Cell Lung Cancer. Front. Oncol. 2019;9:1515. doi: 10.3389/fonc.2019.01515. PubMed DOI PMC
Balkwill F., Coussens L.M. Cancer: An inflammatory link. Nature. 2004;431:405–406. doi: 10.1038/431405a. PubMed DOI
Bolitho C., Hahn M.A., Baxter R.C., Marsh D.J. The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocr. Relat. Cancer. 2010;17:929–940. doi: 10.1677/ERC-10-0107. PubMed DOI
Kroeze S.G., van Melick H.H., Nijkamp M.W., Kruse F.K., Kruijssen L.W., van Diest P.J., Bosch J.L., Jans J.J. Incomplete thermal ablation stimulates proliferation of residual renal carcinoma cells in a translational murine model. BJU Int. 2012;110:E281–E286. doi: 10.1111/j.1464-410X.2012.11261.x. PubMed DOI
Schueller G., Kettenbach J., Sedivy R., Stift A., Friedl J., Gnant M., Lammer J. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int. J. Oncol. 2004;24:609–613. doi: 10.3892/ijo.24.3.609. PubMed DOI
Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: Chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 2002;20:395–425. doi: 10.1146/annurev.immunol.20.100301.064801. PubMed DOI
Gao S., Pu N., Yin H., Li J., Chen Q., Yang M., Lou W., Chen Y., Zhou G., Li C., et al. Radiofrequency ablation in combination with an mTOR inhibitor restrains pancreatic cancer growth induced by intrinsic HSP70. Ther. Adv. Med. Oncol. 2020;12:1758835920953728. doi: 10.1177/1758835920953728. PubMed DOI PMC
Takada Y., Kurata M., Ohkohchi N. Rapid and aggressive recurrence accompanied by portal tumor thrombus after radiofrequency ablation for hepatocellular carcinoma. Int. J. Clin. Oncol. 2003;8:332–335. doi: 10.1007/s10147-003-0328-6. PubMed DOI
Ruzzenente A., Manzoni G.D., Molfetta M., Pachera S., Genco B., Donataccio M., Guglielmi A. Rapid progression of hepatocellular carcinoma after Radiofrequency Ablation. World J. Gastroenterol. 2004;10:1137–1140. doi: 10.3748/wjg.v10.i8.1137. PubMed DOI PMC
Shi L., Wang J., Ding N., Zhang Y., Zhu Y., Dong S., Wang X., Peng C., Zhou C., Zhou L., et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat. Commun. 2019;10:5421. doi: 10.1038/s41467-019-13204-3. PubMed DOI PMC
Wu H., Li S.S., Zhou M., Jiang A.N., He Y., Wang S., Yang W., Liu H. Palliative Radiofrequency Ablation Accelerates the Residual Tumor Progression Through Increasing Tumor-Infiltrating MDSCs and Reducing T-Cell-Mediated Anti-Tumor Immune Responses in Animal Model. Front. Oncol. 2020;10:1308. doi: 10.3389/fonc.2020.01308. PubMed DOI PMC
Svachova V., Krupickova L., Novotny M., Fialova M., Mezerova K., Cecrdlova E., Lanska V., Slavcev A., Viklicky O., Viklicky O., et al. Changes in phenotypic patterns of blood monocytes after kidney transplantation and during acute rejection. Physiol. Res. 2021;70:709–721. doi: 10.33549/physiolres.934700. PubMed DOI PMC
Fogar P., Sperti C., Basso D., Sanzari M.C., Greco E., Davoli C., Navaglia F., Zambon C.F., Pasquali C., Venza E., et al. Decreased total lymphocyte counts in pancreatic cancer: An index of adverse outcome. Pancreas. 2006;32:22–28. doi: 10.1097/01.mpa.0000188305.90290.50. PubMed DOI
Templeton A.J., McNamara M.G., Seruga B., Vera-Badillo F.E., Aneja P., Ocana A., Leibowitz-Amit R., Sonpavde G., Knox J.J., Tran B., et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014;106:dju124. doi: 10.1093/jnci/dju124. PubMed DOI
Hiam-Galvez K.J., Allen B.M., Spitzer M.H. Systemic immunity in cancer. Nat. Rev. Cancer. 2021;21:345–359. doi: 10.1038/s41568-021-00347-z. PubMed DOI PMC
da Costa A.C., Sodergren M., Jayant K., Santa Cruz F., Spalding D., Pai M., Habib N. Radiofrequency combined with immunomodulation for hepatocellular carcinoma: State of the art and innovations. World J. Gastroenterol. 2020;26:2040–2048. doi: 10.3748/wjg.v26.i17.2040. PubMed DOI PMC
Reccia I., Kumar J., Habib N., Sodergren M. The use of radiofrequency ablation in pancreatic cancer in the midst of the dawn of immuno-oncology. Med. Oncol. 2018;35:151. doi: 10.1007/s12032-018-1209-1. PubMed DOI
Lemdani K., Mignet N., Boudy V., Seguin J., Oujagir E., Bawa O., Peschaud F., Emile J.F., Capron C., Malafosse R. Local immunomodulation combined to radiofrequency ablation results in a complete cure of local and distant colorectal carcinoma. Oncoimmunology. 2019;8:1550342. doi: 10.1080/2162402X.2018.1550342. PubMed DOI PMC
Kim E.J., Cho J.H., Kim Y.J., Lee T.H., Kim J.M., Jeong S., Kim Y.S. Intraductal temperature-controlled radiofrequency ablation in malignant hilar obstruction: A preliminary study in animals and initial human experience. Endosc. Int. Open. 2019;7:E1293–E1300. doi: 10.1055/a-0970-9005. PubMed DOI PMC