The Highest Density of Phosphorylated Histone H1 Appeared in Prophase and Prometaphase in Parallel with Reduced H3K9me3, and HDAC1 Depletion Increased H1.2/H1.3 and H1.4 Serine 38 Phosphorylation

. 2022 May 27 ; 12 (6) : . [epub] 20220527

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35743829

Grantová podpora
68081707 Czech Academy of Sciences

BACKGROUND: Variants of linker histone H1 are tissue-specific and are responsible for chromatin compaction accompanying cell differentiation, mitotic chromosome condensation, and apoptosis. Heterochromatinization, as the main feature of these processes, is also associated with pronounced trimethylation of histones H3 at the lysine 9 position (H3K9me3). METHODS: By confocal microscopy, we analyzed cell cycle-dependent levels and distribution of phosphorylated histone H1 (H1ph) and H3K9me3. By mass spectrometry, we studied post-translational modifications of linker histones. RESULTS: Phosphorylated histone H1, similarly to H3K9me3, has a comparable level in the G1, S, and G2 phases of the cell cycle. A high density of phosphorylated H1 was inside nucleoli of mouse embryonic stem cells (ESCs). H1ph was also abundant in prophase and prometaphase, while H1ph was absent in anaphase and telophase. H3K9me3 surrounded chromosomal DNA in telophase. This histone modification was barely detectable in the early phases of mitosis. Mass spectrometry revealed several ESC-specific phosphorylation sites of H1. HDAC1 depletion did not change H1 acetylation but potentiated phosphorylation of H1.2/H1.3 and H1.4 at serine 38 positions. CONCLUSIONS: Differences in the level and distribution of H1ph and H3K9me3 were revealed during mitotic phases. ESC-specific phosphorylation sites were identified in a linker histone.

Zobrazit více v PubMed

Thoma F., Koller T., Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 1979;83:403–427. doi: 10.1083/jcb.83.2.403. PubMed DOI PMC

Ramakrishnan V., Finch J.T., Graziano V., Lee P.L., Sweet R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature. 1993;362:219–223. doi: 10.1038/362219a0. PubMed DOI

Garcia B.A., Busby S.A., Barber C.M., Shabanowitz J., Allis C.D., Hunt D.F. Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry. J. Proteome Res. 2004;3:1219–1227. doi: 10.1021/pr0498887. PubMed DOI

Happel N., Doenecke D. Histone H1 and its isoforms: Contribution to chromatin structure and function. Gene. 2009;431:1–12. doi: 10.1016/j.gene.2008.11.003. PubMed DOI

Millan-Arino L., Islam A.B., Izquierdo-Bouldstridge A., Mayor R., Terme J.M., Luque N., Sancho M., Lopez-Bigas N., Jordan A. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2. Nucleic Acids Res. 2014;42:4474–4493. doi: 10.1093/nar/gku079. PubMed DOI PMC

Li J.Y., Patterson M., Mikkola H.K., Lowry W.E., Kurdistani S.K. Dynamic distribution of linker histone H1.5 in cellular differentiation. PLoS Genet. 2012;8:e1002879. doi: 10.1371/journal.pgen.1002879. PubMed DOI PMC

Izzo A., Schneider R. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. Biochim. Biophys. Acta. 2016;1859:486–495. doi: 10.1016/j.bbagrm.2015.09.003. PubMed DOI

Gurley L.R., Valdez J.G., Buchanan J.S. Characterization of the mitotic specific phosphorylation site of histone H1. Absence of a consensus sequence for the p34cdc2/cyclin B kinase. J. Biol. Chem. 1995;270:27653–27660. doi: 10.1074/jbc.270.46.27653. PubMed DOI

Talasz H., Helliger W., Puschendorf B., Lindner H. In vivo phosphorylation of histone H1 variants during the cell cycle. Biochemistry. 1996;35:1761–1767. doi: 10.1021/bi951914e. PubMed DOI

Kratzmeier M., Albig W., Hanecke K., Doenecke D. Rapid dephosphorylation of H1 histones after apoptosis induction. J. Biol. Chem. 2000;275:30478–30486. doi: 10.1074/jbc.M003956200. PubMed DOI

Kim K., Jeong K.W., Kim H., Choi J., Lu W., Stallcup M.R., An W. Functional interplay between p53 acetylation and H1.2 phosphorylation in p53-regulated transcription. Oncogene. 2012;31:4290–4301. doi: 10.1038/onc.2011.605. PubMed DOI PMC

Chubb J.E., Rea S. Core and linker histone modifications involved in the DNA damage response. Subcell. Biochem. 2010;50:17–42. doi: 10.1007/978-90-481-3471-7_2. PubMed DOI

Ohe Y., Hayashi H., Iwai K. Human spleen histone H1. Isolation and amino acid sequence of a main variant, H1b. J. Biochem. 1986;100:359–368. doi: 10.1093/oxfordjournals.jbchem.a121722. PubMed DOI

Kuzmichev A., Jenuwein T., Tempst P., Reinberg D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell. 2004;14:183–193. doi: 10.1016/S1097-2765(04)00185-6. PubMed DOI

Terme J.M., Millan-Arino L., Mayor R., Luque N., Izquierdo-Bouldstridge A., Bustillos A., Sampaio C., Canes J., Font I., Sima N., et al. Dynamics and dispensability of variant-specific histone H1 Lys-26/Ser-27 and Thr-165 post-translational modifications. FEBS Lett. 2014;588:2353–2362. doi: 10.1016/j.febslet.2014.05.035. PubMed DOI

Kamieniarz K., Izzo A., Dundr M., Tropberger P., Ozretic L., Kirfel J., Scheer E., Tropel P., Wisniewski J.R., Tora L., et al. A dual role of linker histone H1.4 Lys 34 acetylation in transcriptional activation. Genes Dev. 2012;26:797–802. doi: 10.1101/gad.182014.111. PubMed DOI PMC

Doetschman T.C., Eistetter H., Katz M., Schmidt W., Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 1985;87:27–45. doi: 10.1242/dev.87.1.27. PubMed DOI

Zupkovitz G., Grausenburger R., Brunmeir R., Senese S., Tischler J., Jurkin J., Rembold M., Meunier D., Egger G., Lagger S., et al. The cyclin-dependent kinase inhibitor p21 is a crucial target for histone deacetylase 1 as a regulator of cellular proliferation. Mol. Cell. Biol. 2010;30:1171–1181. doi: 10.1128/MCB.01500-09. PubMed DOI PMC

Vecera J., Bartova E., Krejci J., Legartova S., Komurkova D., Ruda-Kucerova J., Stark T., Drazanova E., Kasparek T., Sulcova A., et al. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals. J. Cell. Physiol. 2018;233:530–548. doi: 10.1002/jcp.25914. PubMed DOI PMC

Sakaue-Sawano A., Ohtawa K., Hama H., Kawano M., Ogawa M., Miyawaki A. Tracing the silhouette of individual cells in S/G2/M phases with fluorescence. Chem. Biol. 2008;15:1243–1248. doi: 10.1016/j.chembiol.2008.10.015. PubMed DOI

Bartova E., Pachernik J., Harnicarova A., Kovarik A., Kovarikova M., Hofmanova J., Skalnikova M., Kozubek M., Kozubek S. Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J. Cell Sci. 2005;118:5035–5046. doi: 10.1242/jcs.02621. PubMed DOI

Cincarova L., Lochmanova G., Novakova K., Sultesova P., Konecna H., Fajkusova L., Fajkus J., Zdrahal Z. A combined approach for the study of histone deacetylase inhibitors. Mol. Biosyst. 2012;8:2937–2945. doi: 10.1039/c2mb25136a. PubMed DOI

Perez-Riverol Y., Bai J., Bandla C., Garcia-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D.J., Prakash A., Frericks-Zipper A., Eisenacher M., et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC

Di Liegro C.M., Schiera G., Di Liegro I. H1.0 Linker Histone as an Epigenetic Regulator of Cell Proliferation and Differentiation. Genes. 2018;9:310. doi: 10.3390/genes9060310. PubMed DOI PMC

Okuwaki M., Abe M., Hisaoka M., Nagata K. Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X. Mol. Cell. Biol. 2016;36:2681–2696. doi: 10.1128/MCB.00200-16. PubMed DOI PMC

Zheng Y., John S., Pesavento J.J., Schultz-Norton J.R., Schiltz R.L., Baek S., Nardulli A.M., Hager G.L., Kelleher N.L., Mizzen C.A. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II. J. Cell. Biol. 2010;189:407–415. doi: 10.1083/jcb.201001148. PubMed DOI PMC

Jin D.J., Martin C.M., Sun Z., Cagliero C., Zhou Y.N. Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells. Crit. Rev. Biochem. Mol. Biol. 2017;52:96–106. doi: 10.1080/10409238.2016.1269717. PubMed DOI PMC

Sarg B., Helliger W., Talasz H., Forg B., Lindner H.H. Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: Identification of a novel phosphorylation site on histone H1. J. Biol. Chem. 2006;281:6573–6580. doi: 10.1074/jbc.M508957200. PubMed DOI

Green A., Sarg B., Green H., Lonn A., Lindner H.H., Rundquist I. Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells. Epigenet. Chromatin. 2011;4:15. doi: 10.1186/1756-8935-4-15. PubMed DOI PMC

Talasz H., Sarg B., Lindner H.H. Site-specifically phosphorylated forms of H1.5 and H1.2 localized at distinct regions of the nucleus are related to different processes during the cell cycle. Chromosoma. 2009;118:693–709. doi: 10.1007/s00412-009-0228-2. PubMed DOI

Starkova T.Y., Polyanichko A.M., Artamonova T.O., Khodorkovskii M.A., Kostyleva E.I., Chikhirzhina E.V., Tomilin A.N. Post-translational modifications of linker histone H1 variants in mammals. Phys. Biol. 2017;14:016005. doi: 10.1088/1478-3975/aa551a. PubMed DOI

van Noort V., Seebacher J., Bader S., Mohammed S., Vonkova I., Betts M.J., Kuhner S., Kumar R., Maier T., O’Flaherty M., et al. Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium. Mol. Syst. Biol. 2012;8:571. doi: 10.1038/msb.2012.4. PubMed DOI PMC

Uhart M., Bustos D.M. Human 14-3-3 paralogs differences uncovered by cross-talk of phosphorylation and lysine acetylation. PLoS ONE. 2013;8:e55703. doi: 10.1371/journal.pone.0055703. PubMed DOI PMC

Happel N., Warneboldt J., Hanecke K., Haller F., Doenecke D. H1 subtype expression during cell proliferation and growth arrest. Cell Cycle. 2009;8:2226–2232. doi: 10.4161/cc.8.14.8982. PubMed DOI

Sadoni N., Langer S., Fauth C., Bernardi G., Cremer T., Turner B.M., Zink D. Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J. Cell. Biol. 1999;146:1211–1226. doi: 10.1083/jcb.146.6.1211. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace