Comparison of traditional and DNA metabarcoding samples for monitoring tropical soil arthropods (Formicidae, Collembola and Isoptera)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
669609
European Research Council - International
PubMed
35750774
PubMed Central
PMC9232565
DOI
10.1038/s41598-022-14915-2
PII: 10.1038/s41598-022-14915-2
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- členovci * genetika MeSH
- DNA genetika MeSH
- Formicidae * genetika MeSH
- Isoptera * genetika MeSH
- půda MeSH
- taxonomické DNA čárové kódování metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- půda MeSH
The soil fauna of the tropics remains one of the least known components of the biosphere. Long-term monitoring of this fauna is hampered by the lack of taxonomic expertise and funding. These obstacles may potentially be lifted with DNA metabarcoding. To validate this approach, we studied the ants, springtails and termites of 100 paired soil samples from Barro Colorado Island, Panama. The fauna was extracted with Berlese-Tullgren funnels and then either sorted with traditional taxonomy and known, individual DNA barcodes ("traditional samples") or processed with metabarcoding ("metabarcoding samples"). We detected 49 ant, 37 springtail and 34 termite species with 3.46 million reads of the COI gene, at a mean sequence length of 233 bp. Traditional identification yielded 80, 111 and 15 species of ants, springtails and termites, respectively; 98%, 37% and 100% of these species had a Barcode Index Number (BIN) allowing for direct comparison with metabarcoding. Ants were best surveyed through traditional methods, termites were better detected by metabarcoding, and springtails were equally well detected by both techniques. Species richness was underestimated, and faunal composition was different in metabarcoding samples, mostly because 37% of ant species were not detected. The prevalence of species in metabarcoding samples increased with their abundance in traditional samples, and seasonal shifts in species prevalence and faunal composition were similar between traditional and metabarcoding samples. Probable false positive and negative species records were reasonably low (13-18% of common species). We conclude that metabarcoding of samples extracted with Berlese-Tullgren funnels appear suitable for the long-term monitoring of termites and springtails in tropical rainforests. For ants, metabarcoding schemes should be complemented by additional samples of alates from Malaise or light traps.
Agriculture and Environment Department Harper Adams University Newport TF10 8NB Shropshire UK
CEFE University of Montpellier CNRS EPHE IRD University Paul Valéry Montpellier 3 Montpellier France
Departamento de Biología Escuela Politécnica Nacional Quito Ecuador
Department of Biology University of Massachusetts Boston 100 Morrissey Blvd Boston MA 02125 USA
Department of Biotechnology Acharya Nagarjuna University Guntur Andhra Pradesh 522 510 India
Department of Ecology Faculty of Science Charles University Vinicna 7 128 44 Prague Czech Republic
Department of Ecology Swedish University of Agricultural Sciences P O Box 7044 750 07 Uppsala Sweden
Department of Integrative Biology University of Guelph Guelph ON N1G2W1 Canada
Faculty of Science University of South Bohemia 370 05 Ceske Budejovice Czech Republic
ForestGEO Smithsonian Tropical Research Institute Apartado 0843 03092 Balboa Ancon Panamá Panama
Fort Lauderdale Research and Education Center 3205 College Avenue Davie FL 33314 USA
Maestría de Entomología Universidad de Panamá 080814 Panama City Republic of Panama
Zobrazit více v PubMed
Lavelle P, et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006;42:S3–S15. doi: 10.1016/j.ejsobi.2006.10.002. DOI
André HM, Noti MI, Lebrun P. The soil fauna: The other last biotic frontier. Biodiv. Conserv. 1994;3:45–56. doi: 10.1007/BF00115332. DOI
Decaëns T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 2010;19:287–302. doi: 10.1111/j.1466-8238.2009.00517.x. PubMed DOI PMC
IPCC.
Cardinale BJ, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486:59–67. doi: 10.1038/nature11148. PubMed DOI
Kardol P, Reynolds WN, Norby RJ, Classen AT. Climate change effects on soil microarthropod abundance and community structure. Appl. Soil Ecol. 2011;47:37–44. doi: 10.1016/j.apsoil.2010.11.001. DOI
Kaspari M, Clay NA, Lucas J, Yanoviak SP, Kay A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 2015;21:1092–1102. doi: 10.1111/gcb.12750. PubMed DOI
Baird DJ, Hajibabaei M. Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 2012;21:2039–2044. doi: 10.1111/j.1365-294X.2012.05519.x. PubMed DOI
Leray M, Knowlton N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. PNAS. 2015;112:2076–2081. doi: 10.1073/pnas.1424997112. PubMed DOI PMC
Beng KC, et al. The utility of DNA metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Sci. Rep. 2016;6:1–13. doi: 10.1038/srep24965. PubMed DOI PMC
Zhang K, et al. Plant diversity accurately predicts insect diversity in two tropical landscapes. Mol. Ecol. 2016;25:4407–4419. doi: 10.1111/mec.13770. PubMed DOI
Hebert PD, Cywinska A, Ball SL, Dewaard JR. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B. 2003;270:313–321. doi: 10.1098/rspb.2002.2218. PubMed DOI PMC
Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PD. DNA barcodes distinguish species of tropical Lepidoptera. PNAS. 2006;103:968–971. doi: 10.1073/pnas.0510466103. PubMed DOI PMC
Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE. 2013;8:e66213. doi: 10.1371/journal.pone.0066213. PubMed DOI PMC
Shendure J, Ji H. Next-generation DNA sequencing. Nat. Biotechnol. 2008;26:1135–1145. doi: 10.1038/nbt1486. PubMed DOI
Porter TM, Hajibabaei M. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Mol. Ecol. 2018;27:313–338. doi: 10.1111/mec.14478. PubMed DOI
Tang M, et al. High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods Ecol. Evol. 2015;6:1034–1043. doi: 10.1111/2041-210X.12416. PubMed DOI PMC
Arribas P, Andújar C, Hopkins K, Shepherd M, Vogler AP. Metabarcoding and mitochondrial metagenomics of endogean arthropods to unveil the mesofauna of the soil. Methods Ecol. Evol. 2016;7:1071–1081. doi: 10.1111/2041-210X.12557. DOI
Arribas P, Andújar C, Salces-Castellano A, Emerson BC, Vogler AP. The limited spatial scale of dispersal in soil arthropods revealed with whole-community haplotype-level metabarcoding. Mol. Ecol. 2021;30:48–61. doi: 10.1111/mec.15591. PubMed DOI
Oliverio AM, Gan H, Wickings K, Fierer N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 2018;125:37–43. doi: 10.1016/j.soilbio.2018.06.026. DOI
Zinger L, et al. Body size determines soil community assembly in a tropical forest. Mol. Ecol. 2019;28:528–543. doi: 10.1111/mec.14919. PubMed DOI
McGee KM, Porter TM, Wright M, Hajibabaei M. Drivers of tropical soil invertebrate community composition and richness across tropical secondary forests using DNA metasystematics. Sci. Rep. 2020;10:18429. doi: 10.1038/s41598-020-75452-4. PubMed DOI PMC
Hajibabaei M, Spall JL, Shokralla S, van Konynenburg S. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol. 2012;12:28. doi: 10.1186/1472-6785-12-28. PubMed DOI PMC
Gibson J, et al. Simultaneous assessment of the macrobiome and microbiome in a bulk sample of tropical arthropods through DNA metasystematics. PNAS. 2014;111:8007–8012. doi: 10.1073/pnas.1406468111. PubMed DOI PMC
Lamb PD, et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 2019;28:420–430. doi: 10.1111/mec.14920. PubMed DOI PMC
Piñol J, Senar MA, Symondson WO. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 2019;28:407–419. doi: 10.1111/mec.14776. PubMed DOI
Creedy TJ, Ng WS, Vogler AP. Toward accurate species-level metabarcoding of arthropod communities from the tropical forest canopy. Ecol. Evol. 2019;9:3105–3116. doi: 10.1002/ece3.4839. PubMed DOI PMC
Lach, L., Parr, C., Abbott, K.
Palacios-Vargas, J. G. & Castaño-Meneses, G. Seasonality and community composition of springtails in Mexican forest. In
Bignell, D. E. & Eggleton, P. Termites in ecosystems. In
Anderson-Teixeira KJ, et al. CTFS-Forest GEO: A worldwide network monitoring forests in an era of global change. Glob. Change Biol. 2015;21:528–549. doi: 10.1111/gcb.12712. PubMed DOI
Lamarre GP, et al. Monitoring tropical insects in the 21st century. Adv. Ecol. Res. 2020;62:295–330. doi: 10.1016/bs.aecr.2020.01.004. DOI
Basset Y, et al. Enemy-free space and the distribution of ants, springtails and termites in the soil of one tropical rainforest. Eur. J. Soil Biol. 2020;99:103193. doi: 10.1016/j.ejsobi.2020.103193. DOI
Agosti, D., Majer, J. D., Alonso, L. E. & Schultz, T. R.
Bourguignon T, Leponce M, Roisin Y. Insights into the termite assemblage of a neotropical rainforest from the spatio-temporal distribution of flying alates. Insect. Conserv. Divers. 2009;2:153–162. doi: 10.1111/j.1752-4598.2009.00055.x. DOI
Yu DW, et al. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 2012;3:613–623. doi: 10.1111/j.2041-210X.2012.00198.x. DOI
Gaston KJ, Lawton JH. Patterns in the distribution and abundance of insect populations. Nature. 1988;331:709–712. doi: 10.1038/331709a0. DOI
Liu M, Clarke LJ, Baker SC, Jordan GJ, Burridge CP. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 2019;45:373–385. doi: 10.1111/een.12831. DOI
Zinger L, et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 2019;28:1857–1862. doi: 10.1111/mec.15060. PubMed DOI
Ficetola GF, et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Res. 2015;15:543–556. doi: 10.1111/1755-0998.12338. PubMed DOI
Porter TM, Hajibabaei M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-22505-4. PubMed DOI PMC
Marquina D, Esparza-Salas R, Roslin T, Ronquist F. Establishing arthropod community composition using metabarcoding: Surprising inconsistencies between soil samples and preservative ethanol and homogenate from Malaise trap catches. Mol. Ecol. Res. 2019;19:1516–1530. doi: 10.1111/1755-0998.13071. PubMed DOI PMC
Porter TM, et al. Variations in terrestrial arthropod DNA metabarcoding methods recovers robust beta diversity but variable richness and site indicators. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-54532-0. PubMed DOI PMC
Basset Y, et al. Cross-continental comparisons of butterfly assemblages in tropical rainforests: Implications for biological monitoring. Insect. Conserv. Divers. 2013;6:223–233. doi: 10.1111/j.1752-4598.2012.00205.x. DOI
Ryder Wilkie KT, Mertl AL, Traniello JFA. Biodiversity below ground: Probing the subterranean ant fauna of Amazonia. Naturwissenschaften. 2007;94:725–731. doi: 10.1007/s00114-007-0250-2. PubMed DOI
André HM, Ducarme X, Lebrun P. Soil biodiversity: Myth, reality or conning? Oikos. 2002;96:3–24. doi: 10.1034/j.1600-0706.2002.11216.x. DOI
Wilson, J. J. DNA barcodes for insects. In PubMed
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994;3:294–299. PubMed
Gibson JF, et al. Large-scale biomonitoring of remote and threatened ecosystems via high-throughput sequencing. PLoS ONE. 2015;10:e0138432. doi: 10.1371/journal.pone.0138432. PubMed DOI PMC
Hajibabaei M, Porter TM, Wright M, Rudar J. COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems. PLoS One. 2019;14:e0220953. doi: 10.1371/journal.pone.0220953. PubMed DOI PMC
Bush A, et al. DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. PNAS. 2020;117:8539–8545. doi: 10.1073/pnas.1918741117. PubMed DOI PMC
Calderón-Sanou I, et al. From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices? J. Biogeogr. 2020;47:193–206. doi: 10.1111/jbi.13681. DOI
Schloss PD. Reintroducing mothur: 10 years later. Appl. Env. Microbiol. 2020;86:e02343-19. doi: 10.1128/AEM.02343-19. PubMed DOI PMC
Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Boyer F, et al. Obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Res. 2016;16:176–182. doi: 10.1111/1755-0998.12428. PubMed DOI
Ratnasingham S. mBRAVE: The multiplex barcode research and visualization environment. Biodivers. Inf. Sci. Stand. 2019;3:e37986. doi: 10.3897/biss.3.37986. DOI
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi: 10.7717/peerj.2584. PubMed DOI PMC
Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI
Gaston, K. J.
Kaspari M. Litter ant patchiness at the 1–m2 scale: Disturbance dynamics in three Neotropical forests. Oecologia. 1996;107:265–273. doi: 10.1007/BF00327911. PubMed DOI
Hsieh TC, Ma KH, Chao A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers) Methods Ecol. Evol. 2016;7:1451–1456. doi: 10.1111/2041-210X.12613. DOI
Foster ZSL, Sharpton TJ, Grünwald NJ. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 2017;13:e1005404. doi: 10.1371/journal.pcbi.1005404. PubMed DOI PMC
Oksanen, J.
Hyams, D. G. CurveExpert Professional. A Comprehensive Data Analysis Software System for Windows, Mac, and Linux. Version 1.2.2. www.curveexpert.net (2011). Accessed 1 Jan 2022.
Deagle BE, et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Mol. Ecol. 2019;28:391–406. doi: 10.1111/mec.14734. PubMed DOI PMC
Ficetola GF, et al. An In Silico approach for the evaluation of DNA barcodes. BMC Genom. 2010;11:434. doi: 10.1186/1471-2164-11-434. PubMed DOI PMC
Auer L, Mariadassou M, O'Donohue M, Klopp C, Hernandez-Raquet G. Analysis of large 16S rRNA Illumina data sets: Impact of singleton read filtering on microbial community description. Mol. Ecol. Res. 2017;17:e122–e132. doi: 10.1111/1755-0998.12700. PubMed DOI
Novotný V, Basset Y. Rare species in communities of tropical insect herbivores: Pondering the mystery of singletons. Oikos. 2000;89:564–572. doi: 10.1034/j.1600-0706.2000.890316.x. DOI
Seifert B, Goropashnaya AV. Ideal phenotypes and mismatching haplotypes-errors of mtDNA treeing in ants (Hymenoptera: Formicidae) detected by standardized morphometry. Org. Divers. Evol. 2004;4:295–305. doi: 10.1016/j.ode.2004.04.005. DOI
Gotzek D, Clarke J, Shoemaker D. Mitochondrial genome evolution in fire ants (Hymenoptera: Formicidae) BMC Evol. Biol. 2010;10:300. doi: 10.1186/1471-2148-10-300. PubMed DOI PMC
Meza-Lázaro RN, Poteaux C, Bayona-Vásquez NJ, Branstetter MG, Zaldívar-Riverón A. Extensive mitochondrial heteroplasmy in the neotropical ants of the Ectatomma ruidum complex (Formicidae: Ectatomminae) Mit. DNA Part A. 2018;29:1203–1214. doi: 10.1080/24701394.2018.1431228. PubMed DOI
Saitoh S, et al. A quantitative protocol for DNA metabarcoding of springtails (Collembola) Genome. 2016;59:705–723. doi: 10.1139/gen-2015-0228. PubMed DOI
Elbrecht V, et al. Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ. 2019;7:e7745. doi: 10.7717/peerj.7745. PubMed DOI PMC
Schenk J, Geisen S, Kleinbölting N, Traunspurger W. Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth. Metabarcoding Metagenom. 2019;3:e46704. doi: 10.3897/mbmg.3.46704. DOI
Elbrecht V, Leese F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—Sequence relationships with an innovative metabarcoding protocol. PLoS One. 2015;10:e0130324. doi: 10.1371/journal.pone.0130324. PubMed DOI PMC
Bista I, et al. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol. Ecol. Res. 2018;18:1020–1034. doi: 10.1111/1755-0998.12888. PubMed DOI
Ji Y, et al. SPIKEPIPE: A metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol. Ecol. Res. 2020;20:256–267. doi: 10.1111/1755-0998.13057. PubMed DOI
Steiner FM, et al. Tetramorium tsushimae, a new invasive ant in North America. Biol. Invasions. 2006;8:117–123. doi: 10.1007/s10530-004-1249-7. DOI
Wetterer JK. Worldwide spread of the penny ant, Tetramorium bicarinatum (Hymenoptera: Formicidae) Sociobiology. 2009;54:811–830.
Roisin Y, et al. Vertical stratification of the termite assemblage in a neotropical forest. Oecologia. 2006;149:301–311. doi: 10.1007/s00442-006-0449-5. PubMed DOI
Basset Y, et al. Methodological considerations for monitoring soil/litter arthropods in tropical rainforests using DNA metabarcoding, with a special emphasis on ants, springtails and termites. Metabarcoding Metagenom. 2020;4:151–163. doi: 10.3897/mbmg.4.58572. DOI