A new fibrillization mechanism of β-lactoglobulin in glycine solutions

. 2022 Sep 01 ; 216 () : 414-425. [epub] 20220706

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35803407

Grantová podpora
RM1 GM135136 NIGMS NIH HHS - United States

Even though amyloid aggregates were discovered many years ago the mechanism of their formation is still a mystery. Because of their connection to many of untreatable neurodegenerative diseases the motivation for finding a common aggregation path is high. We report a new high heat induced fibrillization path of a model protein β-lactoglobulin (BLG) when incubated in glycine instead of water at pH 2. By combining atomic force microscopy (AFM), transmission emission microscopy (TEM), dynamic light scattering (DLS) and circular dichroism (CD) we predict that the basic building blocks of fibrils made in glycine are not peptides, but rather spheroid oligomers of different height that form by stacking of ring-like structures. Spheroid oligomers linearly align to form fibrils by opening up and combining. We suspect that glycine acts as an hydrolysation inhibitor which consequently promotes a different fibrillization path. By combining the known data on fibrillization in water with our experimental conclusions we come up with a new fibrillization scheme for BLG. We show that by changing the fibrillization conditions just by small changes in buffer composition can dramatically change the aggregation pathway and the effect of buffer shouldn't be neglected. Fibrils seen in our study are also gaining more and more attention because of their pore-like structure and a possible cytotoxic mechanism by forming pernicious ion-channels. By preparing them in a simple model system as BLG we opened a new way to study their formation.

Zobrazit více v PubMed

Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, Eisenberg D, Structure of the cross-β spine of amyloid-like fibrils, Nature 435 (7043) (2005) 773–778, 10.1038/nature03680. URL doi:10.1038/nature03680. PubMed DOI PMC

Schleeger M, Deckert-Gaudig T, Deckert V, Velikov KP, Koenderink G, Bonn M, vandenAkker CC, Amyloids: from molecular structure to mechanical properties, URL, Polymer 54 (10) (2013) 2473–2488, 10.1016/j.polymer.2013.02.029, https://www.sciencedirect.com/science/article/pii/S0032386113001638. DOI

Sasaki N, Saitoh Y, Sharma RK, Furusawa K, Determination of the elastic modulus of β-lactoglobulin amyloid fibrils by measuring the debye-Waller factor, Int. J. Biol. Macromol 92 (2016) 240–245. https://www.sciencedirect.com/science/article/pii/S0141813016307267. PubMed

Sulatsky MI, Sulatskaya AI, Stepanenko OV, Povarova OI, Kuznetsova IM, Turoverov KK, Denaturant effect on amyloid fibrils: declasterization, depolymerization, denaturation and reassembly, Int. J. Biol. Macromol 150 (2020) 681–694. https://www.sciencedirect.com/science/article/pii/S0141813019400809. PubMed

Dugger BN, Dickson DW, Pathology of neurodegenerative diseases, Cold Spring Harb. Perspect. Biol 9 (7) (2017), a028035, 10.1101/cshperspect.a028035. https://pubmed.ncbi.nlm.nih.gov/28062563. PubMed DOI PMC

Stefani M, Structural features and cytotoxicity of amyloid oligomers: implications in alzheimer’s disease and other diseases with amyloid deposits, Prog. Neurobiol 99 (3) (2012) 226–245, 10.1016/j.pneurobio.2012.03.002. https://www.sciencedirect.com/science/article/pii/S0301008212000342. PubMed DOI

Salahuddin P, Fatima MT, Uversky VN, Khan RH, Islam Z, Furkan M, The role of amyloids in alzheimer’s and parkinson’s diseases, Int. J. Biol. Macromol 190 (2021) 44–55. https://www.sciencedirect.com/science/article/pii/S0141813021018729. PubMed

Chatani E, Yamamoto N, Recent progress on understanding the mechanisms of amyloid nucleation, Biophys. Rev 10 (2) (2018) 527–534, 10.1007/S12551-017-0353-8. https://pubmed.ncbi.nlm.nih.gov/29214606. PubMed DOI PMC

Gan L, Cookson MR, Petrucelli L, La Spada AR, Converging pathways in neurodegeneration, from genetics to mechanisms, Nat. Neurosci 21 (10) (2018) 1300–1309, 10.1038/s41593-018-0237-7. https://pubmed.ncbi.nlm.nih.gov/30258237. PubMed DOI PMC

Dickey CA, Patterson C, Dickson D, Petrucelli L, Brain chip: removing the culprits in neurodegenerative disease, Trends Mol. Med 13 (1) (2007) 32–38, 10.1016/j.molmed.2006.11.003. https://www.sciencedirect.com/science/article/pii/S1471491406002607. PubMed DOI

Davis AA, Leyns CEG, Holtzman DM, Intercellular spread of protein aggregates in neurodegenerative disease, Annu. Rev. Cell Dev. Biol 34 (2018) 545–568, 10.1146/annurev-cellbio-100617-062636. https://pubmed.ncbi.nlm.nih.gov/30044648. PubMed DOI PMC

Lashuel HA, Lansbury PT, Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins? Q. Rev. Biophys 39 (2) (2006) 167–201, 10.1017/S0033583506004422. https://www.cambridge.org/core/article/are-amyloid-diseases-caused-by-pro. PubMed DOI

Chiti F, Dobson CM, Protein misfolding, functional amyloid, and human disease, Annu. Rev. Biochem 75 (1) (2006) 333–366, 10.1146/annurev.biochem.75.101304.123901. URL doi:10.1146/annurev.biochem.75.101304.123901. PubMed DOI

Goldschmidt L, Teng PK, Riek R, Eisenberg D, Identifying the amylome, proteins capable of forming amyloid-like fibrils, Proc. Natl. Acad. Sci. U. S. A 107 (8) (2010) 3487–3492, 10.1073/pnas.0915166107, https://pubmed.ncbi.nlm.nih.gov/20133726, https://pubmed.ncbi.nlm.nih.gov/20133726. PubMed DOI PMC

Broersen K, Milk processing affects structure, bioavailability and immunogenicity of β-lactoglobulin, URL, Foods (Basel, Switzerland) 9 (7) (2020) 874, 10.3390/foods9070874, https://pubmed.ncbi.nlm.nih.gov/32635246. PubMed DOI PMC

Cao Y, Mezzenga R, Food protein amyloid fibrils: origin, structure, formation, characterization, applications and health implications, Adv. Colloid Interf. Sci 269 (2019) 334–356. https://www.sciencedirect.com/science/article/pii/S0001868619301058. PubMed

Loveday SM, Anema SG, Singh H, β-lactoglobulin nanofibrils: the long and the short of it, Int. Dairy J 67 (2017) 35–45. https://www.sciencedirect.com/science/article/pii/S0958694616303107.

Jung J-M, Mezzenga R, Liquid crystalline phase behavior of protein fibers in water: experiments versus theory, Langmuir 26 (1) (2010) 504–514, 10.1021/la9021432. URL doi:10.1021/la9021432. PubMed DOI

Mezzenga R, Jung J-M, Adamcik J, Effects of charge double layer and colloidal aggregation on the isotropicnematic transition of protein fibers in water, Langmuir 26 (13) (2010) 10401–10405, 10.1021/lal01636r. URL doi:10.1021/lal01636r. PubMed DOI

Bolisetty S, Adamcik J, Mezzenga R, Snapshots of fibrillation and aggregation kinetics in multistranded amyloid β-lactoglobulin fibrils, Soft Matter 7 (2011) 493–499, 10.1039/C0SM00502A, doi: 10.1039/C0SM00502A. DOI

Adamcik J, Jung J-M, Flakowski J, De Los Rios P, Dietler G, Mezzenga R, Understanding amyloid aggregation by statistical analysis of atomic force microscopy images, Nat. Nanotechnol 5 (6) (2010) 423–428, 10.1038/nnano.2010.59. URL doi:10.1038/nnano.2010.59. PubMed DOI

Adamcik J, Mezzenga R, Adjustable twisting periodic pitch of amyloid fibrils, Soft Matter 7 (11) (2011) 5437–5443, 10.1039/ClSM05382E. URL doi: 10.1039/ClSM05382E. DOI

Lara C, Adamcik J, Jordens S, Mezzenga R, General self-assembly mechanism converting hydrolyzed globular proteins into giant multi-stranded amyloid ribbons, Biomacromolecules 12 (5) (2011) 1868–1875, 10.1021/bm200216u. URL doi:10.1021/bm200216u. PubMed DOI

Adamcik J, Mezzenga R, Proteins fibrils from a polymer physics perspective, Macromolecules 45 (3) (2012) 1137–1150, 10.1021/ma202157h. URL doi:10.1021/ma202157h. DOI

Loveday SM, Wang XL, Rao MA, Anema SG, Singh H, β-lactoglobulin nanofibrils: effect of temperature on fibril formation kinetics, fibril morphology and the rheological properties of fibril dispersions, Food Hydrocoil. 27 (1) (2012) 242–249. https://www.sciencedirect.com/science/article/pii/S0268005X11001858.

Dave AC, Loveday SM, Anema SG, Loo TS, Norris GE, Jameson GB, Singh H, β-lactoglobulin self-assembly: structural changes in early stages and disulfide bonding in fibrils, J. Agric. Food Chem 61 (32) (2013) 7817–7828, 10.1021/jf401084f. URL doi:10.1021/jf401084f. PubMed DOI

Adamcik J, Mezzenga R, Amyloid polymorphism in the protein folding and aggregation energy landscape, Angew. Chem. Int. Ed 57 (28) (2018) 8370–8382, 10.1002/anie.201713416. URL doi:10.1002/anie.201713416. PubMed DOI

Serfert Y, Lamprecht C, Tan C-P, Keppler JK, Appel E, Rossier-Miranda FJ, Schroen K, Boom RM, Gorb S, Selhuber-Unkel C, Drusch S, Schwarz K, Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability thereof, J. Food Eng 143 (2014) 53–61. https://www.sciencedirect.com/science/article/pii/S0260877414002672.

Keppler JK, Heyn TR, Meissner PM, Schrader K, Schwarz K, Protein oxidation during temperature-induced amyloid aggregation of beta-lactoglobulin, Food Chem. 289 (2019) 223–231. https://www.sciencedirect.com/science/article/pii/S0308814619304467. PubMed

Heyn TR, Garamus VM, Neumann HR, Uttinger MJ, Guckeisen T, Heuer M, Selhuber-Unkel C, Peukert W, Keppler JK, Influence of the polydispersity of ph 2 and ph 3.5 beta-lactoglobulin amyloid fibril solutions on analytical methods, Eur. Polym. J 120 (2019), 109211. https://www.sciencedirect.com/science/article/pii/S0014305719310584.

Heyn TR, Mayer J, Neumann HR, Selhuber-Unkel C, Kwade A, Schwarz K, Keppler JK, The threshold of amyloid aggregation of beta-lactoglobulin: relevant factor combinations, J. Food Eng 283 (2020), 110005. https://www.sciencedirect.com/science/article/pii/S0260877420301035.

Engel MFM, Velikov KP, Bonn M, vandenAkker CC, Koenderink GH, Morphology and persistence length of amyloid fibrils are correlated to peptide molecular structure, J. Am. Chem. Soc 133 (45) (2011) 18030–18033, 10.1021/ja206513r. URL doi:10.1021/ja206513r. PubMed DOI

VandenAkker CC, Schleeger M, Bruinen AL, Deckert-Gaudig T, Velikov KP, Heeren RMA, Deckert V, Bonn M, Koenderink GH, Multimodal spectroscopic study of amyloid fibril polymorphism, J. Phys. Chem. B 120 (34) (2016) 8809–8817, 10.1021/acs.jpcb.6b05339. URL doi:10.1021/acs.jpcb.6b05339. PubMed DOI

Ye X, Hedenqvist MS, Langton M, Lendel C, On the role of peptide hydrolysis for fibrillation kinetics and amyloid fibril morphology, RSC Adv. 8 (13) (2018) 6915–6924, 10.1039/C7RA10981D. URL doi:10.1039/C7RA10981D. PubMed DOI PMC

Loveday SM, Wang XL, Rao MA, Anema SG, Singh H, Effect of ph, nacl, cacl2 and temperature on self-assembly of β-lactoglobulin into nanofibrils: a central composite design study, J. Agric. Food Chem 59 (15) (2011) 8467–8474, 10.1021/jf201870z. URL doi:10.1021/jf201870z. PubMed DOI

Gosal WS, Clark AH, Ross-Murphy SB, Fibrillar β-lactoglobulin gels: part 1. Fibril formation and structure, Biomacromolecules 5 (6) (2004) 2408–2419, 10.1021/bm049659d. URL doi:10.1021/bm049659d. PubMed DOI

Jordens S, Adamcik J, Amar-Yuli I, Mezzenga R, Disassembly and reassembly of amyloid fibrils in water-ethanol mixtures, Biomacromolecules 12 (1) (2011) 187–193, 10.1021/bml01119t. URL doi:10.1021/bml01119t. PubMed DOI

Pal S, Maity S, Sardar S, Chakraborty J, Haider UC, Insight into the co-solvent induced conformational changes and aggregation of bovine β-lactoglobulin, Int. J. Biol. Macromol 84 (2016) 121–134. https://www.sciencedirect.com/science/article/pii/S0141813015301483. PubMed

Hamada D, Dobson CM, A kinetic study of beta-lactoglobulin amyloid fibril formation promoted by urea, Protein Sci. 11 (10) (2002) 2417–2426, 10.1110/ps.0217702. https://pubmed.ncbi.nlm.nih.gov/12237463. PubMed DOI PMC

Ma B, You X, Lu F, Inhibitory effects of β-ionone on amyloid fibril formation of β-lactoglobulin, Int. J. Biol. Macromol 64 (2014) 162–167. https://www.sciencedirect.com/science/article/pii/S0141813013006521. PubMed

Akkermans C, Venema P, van der Goot AJ, Gruppen H, Bakx EJ, Boom RM, van der Linden E, Peptides are building blocks of heat-induced fibrillar protein aggregates of β-lactoglobulin formed at ph 2, Biomacromolecules 9 (5) (2008) 1474–1479, 10.1021/bm7014224. URL doi:10.1021/bm7014224. PubMed DOI

Gowda V, Biler M, Filippov A, Mantonico MV, Ornithopoulou E, Linares M, Antzutkin ON, Lendel C, Structural characterisation of amyloid-like fibrils formed by an amyloidogenic peptide segment of β-lactoglobulin, RSC Adv. 11 (45) (2021) 27868–27879, 10.1039/D1RA03575D. URL doi:10.1039/D1RA03575D. PubMed DOI PMC

Cimmperman P, Baranauskiene L, Jachimoviciute S, Jachno J, Torresan J, Michailoviene V, Matuliene J, Sereikaite J, Bumelis V, Matulis D, A quantitative model of thermal stabilization and destabilization of proteins by ligands, URL, Biophys. J 95 (7) (2008) 3222–3231, 10.1529/biophysj.108.134973, https://pubmed.ncbi.nlm.nih.gov/18599640. PubMed DOI PMC

Mittal S, Singh LR, Denatured state structural property determines protein stabilization by macromolecular crowding: a thermodynamic and structural approach, PLOS ONE 8 (11) (2013), e78936, 10.1371/journal.pone.0078936. URL doi:10.1371/journal.pone.0078936. PubMed DOI PMC

Abriata LA, Spiga E, Peraro MD, Molecular effects of concentrated solutes on protein hydration, dynamics, and electrostatics, Biophys. J 111 (4) (2016) 743–755, 10.1016/j.bpj.2016.07.011. https://pubmed.ncbi.nlm.nih.gov/27558718. PubMed DOI PMC

Chi EY, Krishnan S, Randolph TW, Carpenter JF, Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation, Pharm. Res 20 (9) (2003) 1325–1336, 10.1023/A:1025771421906. URL doi:10.1023/A:1025771421906. PubMed DOI

Nicoud L, Owczarz M, Arosio P, Morbidelli M, A multiscale view of therapeutic protein aggregation: a colloid science perspective, Biotechnol. J 10 (3) (2015) 367–378, 10.1002/biot.201400858. URL doi:10.1002/biot.201400858. PubMed DOI

Salis A, Ninham BW, Models and mechanisms of hofmeister effects in electrolyte solutions, and colloid and protein systems revisited, Chem. Soc. Rev 43 (21) (2014) 7358–7377, 10.1039/C4CS00144C. URL doi:10.1039/C4CS00144C. PubMed DOI

Okur HI, Hladílková J, Rembert KB, Cho Y, Heyda J, Dzubiella J, Cremer PS, Jungwirth P, Beyond the hofmeister series: ion-specific effects on proteins and their biological functions, J. Phys. Chem. B 121 (9) (2017) 1997–2014, 10.1021/acs.jpcb.6b10797. URL doi:10.1021/acs.jpcb.6b10797. PubMed DOI

Brudar S, Hribar-Lee B, Effect of buffer on protein stability in aqueous solutions: a simple protein aggregation model, J. Phys. Chem. B 125 (10) (2021) 2504–2512, 10.1021/acs.jpcb.0c10339. URL doi:10.1021/acs.jpeb.0c10339. PubMed DOI PMC

Mohammadi S, Khajeh K, Taghdir M, Ranjbar B, An experimental investigation on the influence of various buffer concentrations, osmolytes and gold nanoparticles on lysozyme: spectroscopic and calorimetric study, Int. J. Biol. Macromol 172 (2021) 162–169. https://www.sciencedirect.com/science/article/pii/S0141813020353897. PubMed

Welch KD, Davis T, Aust SD, Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators, Arch. Biochem. Biophys 397 (2) (2002) 360–369. https://www.sciencedirect.com/science/article/pii/S0003986101926943. PubMed

Salinas BA, Sathish HA, Shah AU, Carpenter JF, Randolph TW, Buffer-dependent fragmentation of a humanized full-length monoclonal antibody, J. Pharm. Sci 99 (7) (2010) 2962–2974. https://www.sciencedirect.com/science/article/pii/S0022354915325557. PubMed PMC

Garvey M, Tepper K, Haupt C, Knüpfer U, Klement K, Meinhardt J, Horn U, Balbach J, Fändrich M, Phosphate and hepes buffers potently affect the fibrillation and oligomerization mechanism of alzheimer’s aβ peptide, URL, Biochem. Biophys. Res. Commun 409 (3) (2011) 385–388, https://www.sciencedirect.com/science/article/pii/S0006291X11007509. PubMed

Demuro A, Smith M, Parker I, Single-channel ca(2+) imaging implicates aβ1-42 amyloid pores in alzheimer’s disease pathology, J. Cell Biol 195 (3) (2011) 515–524, 10.1083/jcb.201104133. https://pubmed.ncbi.nlm.nih.gov/22024165. PubMed DOI PMC

Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lai R, Amyloid ion channels: a common structural link for protein-misfolding disease, Proc. Natl. Acad. Sci. U. S. A 102 (30) (2005) 10427, 10.1073/pnas.0502066102. http://www.pnas.org/content/102/30/10427.abstract. PubMed DOI PMC

Nečas D, Klapetek P, Gwyddion: an open-source software for spm data analysis, Open Phys. 10 (1) (2012) 181–188, 10.2478/s11534-011-0096-2. URL doi:10.2478/s11534-011-0096-2. DOI

Usov I, Mezzenga R, Fiberapp: an open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous Objects, Macromolecules 48 (5) (2015) 1269–1280, 10.1021/ma502264c. URL doi:10.1021/ma502264c. DOI

Oboroceanu D, Wang L, Brodkorb A, Magner E, Auty MAE, Characterization of β-lactoglobulin fibrillar assembly using atomic force microscopy, polyacrylamide gel electrophoresis, and in situ fourier transform infrared spectroscopy, J. Agric. Food Chem 58 (6) (2010) 3667–3673, 10.1021/jf9042908. URL doi:10.1021/jf9042908. PubMed DOI

Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT, α-synuclein, especially the parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils, J. Mol. Biol 322 (5) (2002) 1089–1102. https://www.sciencedirect.com/science/article/pii/S0022283602007350. PubMed

Pires RH, Karsai Á, Saraiva MJ, Damas AM, Keller-Mayer MSZ, Distinct annular oligomers captured along the assembly and disassembly pathways of transthyretin amyloid protofibrils, PLOS ONE 7 (9) (2012), e44992, 10.1371/journal.pone.0044992. URL doi:10.1371/journal.pone.0044992. PubMed DOI PMC

Vendrely C, Valadié H, Bednarova L, Cardin L, Pasdeloup M, Cappadoro J, Bednar J, Rinaudo M, Jamin M, Assembly of the full-length recombinant mouse prion protein i. Formation of soluble oligomers, Biochim. Biophys. Acta Gen. Subj 1724 (3) (2005) 355–366. https://www.sciencedirect.com/science/article/pii/S0304416505001601. PubMed

Banerjee S, Sun Z, Hayden EY, Teplow DB, Lyubchenko YL, Nanoscale dynamics of amyloid β-42 oligomers as revealed by high-speed atomic force microscopy, ACS Nano 11 (12) (2017) 12202–12209, 10.1021/acsnano.7b05434. URL doi: 10.1021/acsnano.7b05434. PubMed DOI PMC

Prajapati KP, Panigrahi A, Purohit S, Ansari M, Dubey K, Behera RK, Anand BG, Kar K, Osmoprotectant coated thermostable gold nanoparticles efficiently restrict temperature-induced amyloid aggregation of insulin, J. Phys. Chem. Lett 12 (7) (2021) 1803–1813, 10.1021/acs.jpclett.0c03492. URL doi:10.1021/acs.jpclett.0c03492. PubMed DOI

Al-Shabib NA, Khan JM, Malik A, Sen P, Alsenaidy MA, Husain FM, Alsenaidy AM, Khan RH, Choudhry H, Zamzami MA, Khan MI, Shahzad SA, A quercetin-based flavanoid (rutin) reverses amyloid fibrillation in β-lactoglobulin at ph2.0 and 358k, URL, Spectrochim. Acta A Mol. Biomol. Spectrosc 214 (2019) 40–48, https://www.sciencedirect.com/science/article/. PubMed

Hoffmann MAM, van Mil PJJM, Heat-induced aggregation of β-lactoglobulin: role of the free thiol group and disulfide bonds, J. Agric. Food Chem 45 (8) (1997) 2942–2948, 10.1021/jf960789q. URL doi:10.1021/jf960789q. DOI

Zúñiga RN, Tolkach A, Kulozik U, Aguilera JM, Kinetics of formation and physicochemical characterization of thermally-induced β- lactoglobulin aggregates, J. Food Sci 75 (5) (2010) E261–E268, 10.1111/j.1750-3841.2010.01617.x. URL doi:10.1111/j.1750-3841.2010.01617.x. PubMed DOI

Wall S, Oh J-Y, Diers A, Landar A, Oxidative modification of proteins: an emerging mechanism of cell signaling, Front. Physiol 3 (2012) 369, 10.3389/fphys.2012.00369. URL doi:10.3389/fphys.2012.00369. PubMed DOI PMC

Matsui R, Ferran B, Oh A, Croteau D, Shao D, Han J, Pimentel D, Bachschmid M, Redox regulation via glutaredoxin-1 and protein s-glutathionylation, Antioxid. Redox Signal 32 (Dec 2019), 10.1089/ars.2019.7963. URL doi:10.1089/ars.2019.7963. PubMed DOI PMC

Hoppenreijs LJG, Fitzner L, Ruhmlieb T, Heyn TR, Schild K, van der Goot A-J, Boom RM, Steffen-Heins A, Schwarz K, Keppler JK, Engineering amyloid and amyloid-like morphologies of β-lactoglobulin, Food Hydrocoil. 124 (2022), 107301. https://www.sciencedirect.com/science/article/pii/S0268005X21007177.

Arakawa T, Timasheff SN, Abnormal solubility behavior of beta-lactoglobulin: salting-in by glycine and sodium chloride, Biochemistry 26 (16) (1987) 5147–5153, 10.1021/bi00390a038. URL doi:10.1021/bi00390a038. PubMed DOI

Hu B, Hu J, Han L, Cao J, Nishinari K, Yang J, Fang Y, Li D, Conformational transition and gelation of º-carrageenan in electrostatic complexation with β-lactoglobulin aggregates, Food Hydrocoil. 118 (2021), 106764. https://www.sciencedirect.com/science/article/pii/S0268005X21001806.

Hiroki K, Takahiro W-N, Takayuki U, Momoko O, Liwen Z, Noriyuki K, Yousuke K, Toshio A, Hideki T, Dynamics of oligomer and amyloid fibril formation by yeast prion sup35 observed by high-speed atomic force microscopy, Proc. Natl. Acad. Sci 117 (14) (2020) 7831–7836, 10.1073/pnas.1916452117. URL doi:10.1073/pnas.l916452117. PubMed DOI PMC

Sharma RK, Furusawa K, Fukui A, Sasaki N, Effects of a flow field on amyloid fibrillogenesis in a β-lactoglobulin solution, Int. J. Biol. Macromol 70 (2014) 490–497. https://www.sciencedirect.com/science/article/pii/S0141813014004176. PubMed

Ng SK, Nyam KL, Nehdi IA, Chong GH, Lai OM, Tan CP, Impact of stirring speed on β-lactoglobulin fibril formation, Food Sci. Biotechnol 25 (1) (2016) 15–21, 10.1007/sl0068-016-0093-8. URL doi:10.1007/sl0068-016-0093-8. PubMed DOI PMC

Chen D, Pinho LS, Federici E, Zuo X, Ilavsky J, Kuzmenko I, Yang Z, Jones OG, Campanella O, Heat accelerates degradation of β-lactoglobulin fibrils at neutral ph, Food Hydrocoll. 124 (2022), 107291. https://www.sciencedirect.com/science/article/pii/S0268005X21007074.

Lin C-Y, Wang T-H, How S-C, Bednarikova Z, Fedunova D, Gazova Z, Wu JW, Wang SS-S, Investigating the effect of sugar-terminated nanoparticles on amyloid fibrillogenesis of β-lactoglobulin, Int. J. Biol. Macromol 165 (2020) 291–307. https://www.sciencedirect.com/science/article/pii/S0141813020344639. PubMed

Galzitskaya OV, Selivanova OM, Rosetta stone for amyloid fibrils: the key role of ring-like oligomers in amyloidogenesis, J. Alzheimers Dis 59 (3) (2017) 785–795, 10.3233/JAD-170230. URL doi:10.3233/JAD-170230. PubMed DOI

Selivanova OM, Surin AK, Marchenkov VV, Dzhus UF, Grigorashvili EI, Suvorina MY, Glyakina AV, Dovidchenko NV, Galzitskaya OV, The mechanism underlying amyloid polymorphism is opened for alzheimer’s disease amyloid-β peptide, J. Alzheimers Dis 54 (2) (2016) 821–830, 10.3233/JAD-160405. URL doi:10.3233/JAD-160405. PubMed DOI

Selivanova OM, Glyakina AV, Gorbunova EY, Mustaeva LG, Suvorina MY, Grigorashvili EI, Nikulin AD, Dovidchenko NV, Rekstina VV, Kalebina TS, Surin AK, Galzitskaya OV, Structural model of amyloid fibrils for amyloidogenic peptide from bgl2p–glucantransferase of s. cerevisiae cell wall and its modifying analog. new morphology of amyloid fibrils, URL, Biochim. Biophys. Acta, Proteins Proteomics 1864 (11) (2016) 1489–1499, https://www.sciencedirect.com/science/article/pii/S1570963916301509. PubMed

Selivanova OM, Surin AK, Ryzhykau YL, Glyakina AV, Suvorina MY, Kuklin AI, Rogachevsky VV, Galzitskaya OV, To be fibrils or to be nanofilms? Oligomers are building blocks for fibril and nanofilm formation of fragments of aβ peptide, Langmuir 34 (6) (2018) 2332–2343, 10.1021/acs.langmuir.7b03393. URL doi:10.1021/acs.langmuir.7b03393. PubMed DOI

Selivanova OM, Grishin SY, Glyakina AV, Sadgyan AS, Ushakova NI, Galzitskaya OV, Analysis of insulin analogs and the strategy of their further development, Biochem. Mosc 83 (1) (2018) S146–S162, 10.1134/S0006297918140122. URL doi:10.1134/S0006297918140122. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...