Determination of Critical Power Using Different Possible Approaches among Endurance Athletes: A Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35805242
PubMed Central
PMC9265641
DOI
10.3390/ijerph19137589
PII: ijerph19137589
Knihovny.cz E-zdroje
- Klíčová slova
- critical work, endurance athletes, methods, performance analysis,
- MeSH
- dospělí MeSH
- fyzická vytrvalost * MeSH
- lidé MeSH
- sportovci * MeSH
- únava MeSH
- zátěžový test metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Critical power represents an important parameter of aerobic function and is the highest average effort that can be sustained for a period of time without fatigue. Critical power is determined mainly in the laboratory. Many different approaches have been applied in testing methods, and it is a difficult task to determine which testing protocol it the most suitable. This review aims to evaluate all possible tests on bicycle ergometers or bicycles used to estimate critical power and to compare them. A literature search was conducted in four databases (PubMed, Scopus, SPORTDiscus, and Web of Science) published from 2012 to 2022 and followed the PRISMA guidelines to process the review. Twenty-one articles met the eligibility criteria: records with trained or experienced endurance athletes (adults > 18), bicycle ergometer, a description of the testing protocol, and comparison of the tests. We found that the most widely used tests were the 3-min all-out tests set in a linear mode and the traditional protocol time to exhaustion. Some other alternatives could have been used but were not as regular. To summarize, the testing methods offered two main approaches in the laboratory (time to exhaustion test andthe 3-min all-out test with different protocols) and approach in the field, which is not yet completely standardized.
Zobrazit více v PubMed
Galán-Rioja M.Á., González-Mohíno F., Poole D.C., González-Ravé J.M. Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis. Sports Med. 2020;50:1771–1783. doi: 10.1007/s40279-020-01314-8. PubMed DOI
Jones A.M., Vanhatalo A., Burnley M., Morton R.H., Poole D.C. Critical Power: Implications for Determination of V˙O2max and Exercise Tolerance. Med. Sci. Sports Exerc. 2010;42:1876–1890. doi: 10.1249/MSS.0b013e3181d9cf7f. PubMed DOI
Vanhatalo A., Jones A.M., Burnley M. Application of Critical Power in Sport. Int. J. Sports Physiol. Perform. 2011;6:128–136. doi: 10.1123/ijspp.6.1.128. PubMed DOI
Poole D.C., Burnley M., Vanhatalo A., Rossiter H.B., Jones A.M. Critical Power: An Important Fatigue Threshold in Exercise Physiology. Med. Sci. Sports Exerc. 2016;48:2320–2334. doi: 10.1249/MSS.0000000000000939. PubMed DOI PMC
Jones A.M., Vanhatalo A. The ‘Critical Power’ Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise. Sports Med. 2017;47:65–78. doi: 10.1007/s40279-017-0688-0. PubMed DOI PMC
Jones A.M., Grassi B., Christensen P.M., Krustrup P., Bangsbo J., Poole D.C. Slow Component of V˙O2 Kinetics: Mechanistic Bases and Practical Applications. Med. Sci. Sports Exerc. 2011;43:2046–2062. doi: 10.1249/MSS.0b013e31821fcfc1. PubMed DOI
Burnley M., Jones A.M. Oxygen Uptake Kinetics as a Determinant of Sports Performance. Eur. J. Sport Sci. 2007;7:63–79. doi: 10.1080/17461390701456148. DOI
Black M.I., Durant J., Jones A.M., Vanhatalo A. Critical Power Derived from a 3-Min All-out Test Predicts 16.1-Km Road Time-Trial Performance. Eur. J. Sport Sci. 2014;14:217–223. doi: 10.1080/17461391.2013.810306. PubMed DOI
Magalang U.J., Grant B.J. Determination of Gas Exchange Threshold by Nonparametric Regression. Am. J. Respir. Crit. Care Med. 1995;151:98–106. doi: 10.1164/ajrccm.151.1.7812580. PubMed DOI
Pettitt R.W. Applying the Critical Speed Concept to Racing Strategy and Interval Training Prescription. Int. J. Sports Physiol. Perform. 2016;11:842–847. doi: 10.1123/ijspp.2016-0001. PubMed DOI
Lipski E.S., Spindler D.J., Hesselink M.K.C., Myers T.D., Sanders D. Differences in Performance Assessments Conducted Indoors and Outdoors in Professional Cyclists. Int. J. Sports Physiol. Perform. 2022:1–7. doi: 10.1123/ijspp.2021-0341. PubMed DOI
Leo P., Spragg J., Podlogar T., Lawley J.S., Mujika I. Power Profiling and the Power-Duration Relationship in Cycling: A Narrative Review. Eur. J. Appl. Physiol. 2022;122:301–316. doi: 10.1007/s00421-021-04833-y. PubMed DOI PMC
Bergstrom H.C., Housh T.J., Zuniga J.M., Camic C.L., Traylor D.A., Schmidt R.J., Johnson G.O. A New Single Work Bout Test to Estimate Critical Power and Anaerobic Work Capacity. J. Strength Cond. Res. 2012;26:656–663. doi: 10.1519/JSC.0b013e31822b7304. PubMed DOI
Bergstrom H.C., Housh T.J., Zuniga J.M., Traylor D.A., Lewis R.W., Camic C.L., Schmidt R.J., Johnson G.O. Differences Among Estimates of Critical Power and Anaerobic Work Capacity Derived from Five Mathematical Models and the Three-Minute All-Out Test. J. Strength Cond. Res. 2014;28:592–600. doi: 10.1519/JSC.0b013e31829b576d. PubMed DOI
Clark I.E., Gartner H.E., Williams J.L., Pettitt R.W. Validity of the 3-Minute All-Out Exercise Test on the CompuTrainer. J. Strength Cond. Res. 2016;30:825–829. doi: 10.1519/JSC.0000000000001169. PubMed DOI
Clark I.E., Murray S.R., Pettitt R.W. Alternative Procedures for the Three-Minute All-Out Exercise Test. J. Strength Cond. Res. 2012;27:2104–2112. doi: 10.1519/JSC.0b013e3182785041. PubMed DOI
Constantini K., Sabapathy S., Cross T.J. A Single-Session Testing Protocol to Determine Critical Power and W′. Eur. J. Appl. Physiol. 2014;114:1153–1161. doi: 10.1007/s00421-014-2827-8. PubMed DOI
Dicks N.D., Jamnick N.A., Murray S.R., Pettitt R.W. Load Determination for the 3-Minute All-Out Exercise Test for Cycle Ergometry. Int. J. Sports Physiol. Perform. 2016;11:197–203. doi: 10.1123/ijspp.2015-0116. PubMed DOI
Karsten B., Jobson S., Hopker J., Jimenez A., Beedie C. High Agreement between Laboratory and Field Estimates of Critical Power in Cycling. Int. J. Sports Med. 2013;35:298–303. doi: 10.1055/s-0033-1349844. PubMed DOI
Karsten B., Jobson S., Hopker J., Passfield L., Beedie C. The 3-Min Test Does Not Provide a Valid Measure of Critical Power Using the SRM Isokinetic Mode. Int. J. Sports Med. 2013;35:304–309. doi: 10.1055/s-0033-1349093. PubMed DOI
Maturana M.F., Fontana F.Y., Pogliaghi S., Passfield L., Murias J.M. Critical Power: How Different Protocols and Models Affect Its Determination. J. Sci. Med. Sport. 2018;21:742–747. doi: 10.1016/j.jsams.2017.11.015. PubMed DOI
Simpson L.P., Kordi M. Comparison of Critical Power and W′ Derived From 2 or 3 Maximal Tests. Int. J. Sports Physiol. Perform. 2017;12:825–830. doi: 10.1123/ijspp.2016-0371. PubMed DOI
Karsten B., Jobson S.A., Hopker J., Stevens L., Beedie C. Validity and Reliability of Critical Power Field Testing. Eur. J. Appl. Physiol. 2015;115:197–204. doi: 10.1007/s00421-014-3001-z. PubMed DOI
Karsten B., Baker J., Naclerio F., Klose A., Bianco A., Nimmerichter A. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W′, and Oxygen-Uptake Kinetics. Int. J. Sports Physiol. Perform. 2018;13:183–188. doi: 10.1123/ijspp.2016-0761. PubMed DOI
Karsten B., Hopker J., Jobson S.A., Baker J., Petrigna L., Klose A., Beedie C. Comparison of Inter-Trial Recovery Times for the Determination of Critical Power and W’ in Cycling. J. Sports Sci. 2017;35:1420–1425. doi: 10.1080/02640414.2016.1215500. PubMed DOI
Nimmerichter A., Prinz B., Gumpenberger M., Heider S., Wirth K. Field-Derived Power–Duration Variables to Predict Cycling Time-Trial Performance. Int. J. Sports Physiol. Perform. 2020;15:1095–1102. doi: 10.1123/ijspp.2019-0621. PubMed DOI
Triska C., Tschan H., Tazreiter G., Nimmerichter A. Critical Power in Laboratory and Field Conditions Using Single-Visit Maximal Effort Trials. Int. J. Sports Med. 2015;36:1063–1068. doi: 10.1055/s-0035-1549958. PubMed DOI
Wright J., Bruce-Low S., Jobson S. The Reliability and Validity of the 3-Min All-out Cycling Critical Power Test. Int. J. Sports Med. 2017;38:462–467. doi: 10.1055/s-0043-102944. PubMed DOI
Wright J., Bruce-Low S., Jobson S.A. The 3-Minute All-out Cycling Test Is Sensitive to Changes in Cadence Using the Lode Excalibur Sport Ergometer. J. Sports Sci. 2019;37:156–162. doi: 10.1080/02640414.2018.1487115. PubMed DOI
Coakley S.L., Passfield L. Cycling Performance Is Superior for Time-to-Exhaustion versus Time-Trial in Endurance Laboratory Tests. J. Sports Sci. 2018;36:1228–1234. doi: 10.1080/02640414.2017.1368691. PubMed DOI
Leo P., Spragg J., Mujika I., Menz V., Lawley J.S. Power Profiling in U23 Professional Cyclists During a Competitive Season. Int. J. Sports Physiol. Perform. 2021;16:881–889. doi: 10.1123/ijspp.2020-0200. PubMed DOI
Clark B., Macdermid P.W. A Comparative Analysis of Critical Power Models in Elite Road Cyclists. Curr. Res. Physiol. 2021;4:139–144. doi: 10.1016/j.crphys.2021.05.001. PubMed DOI PMC
Vanhatalo A., Doust J.H., Burnley M. Determination of Critical Power Using a 3-Min All-out Cycling Test. Med. Sci. Sports Exerc. 2007;39:548–555. doi: 10.1249/mss.0b013e31802dd3e6. PubMed DOI
Hugh Morton R. A 3-Parameter Critical Power Model. Ergonomics. 1996;39:611–619. doi: 10.1080/00140139608964484. PubMed DOI
Craig J.C., Vanhatalo A., Burnley M., Jones A.M., Poole D.C. Muscle and Exercise Physiology. Elsevier; Amsterdam, The Netherlands: 2019. Critical Power; pp. 159–181.
Dekerle J., Barstow T.J., Regan L., Carter H. The Critical Power Concept in All-out Isokinetic Exercise. J. Sci. Med. Sport. 2014;17:640–644. doi: 10.1016/j.jsams.2013.09.003. PubMed DOI
Maturana M.F., Keir D.A., McLay K.M., Murias J.M. Can Measures of Critical Power Precisely Estimate the Maximal Metabolic Steady-State? Appl. Physiol. Nutr. Metab. 2016;41:1197–1203. doi: 10.1139/apnm-2016-0248. PubMed DOI
Galbraith A., Hopker J., Lelliott S., Diddams L., Passfield L. A Single-Visit Field Test of Critical Speed. Int. J. Sports Physiol. Perform. 2014;9:931–935. doi: 10.1123/ijspp.2013-0507. PubMed DOI
Dekerle J., Sidney M., Hespel J.M., Pelayo P. Validity and Reliability of Critical Speed, Critical Stroke Rate, and Anaerobic Capacity in Relation to Front Crawl Swimming Performances. Int. J. Sports. Med. 2002;23:93–98. doi: 10.1055/s-2002-20125. PubMed DOI