Determination of Critical Power Using Different Possible Approaches among Endurance Athletes: A Review

. 2022 Jun 21 ; 19 (13) : . [epub] 20220621

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35805242

Critical power represents an important parameter of aerobic function and is the highest average effort that can be sustained for a period of time without fatigue. Critical power is determined mainly in the laboratory. Many different approaches have been applied in testing methods, and it is a difficult task to determine which testing protocol it the most suitable. This review aims to evaluate all possible tests on bicycle ergometers or bicycles used to estimate critical power and to compare them. A literature search was conducted in four databases (PubMed, Scopus, SPORTDiscus, and Web of Science) published from 2012 to 2022 and followed the PRISMA guidelines to process the review. Twenty-one articles met the eligibility criteria: records with trained or experienced endurance athletes (adults > 18), bicycle ergometer, a description of the testing protocol, and comparison of the tests. We found that the most widely used tests were the 3-min all-out tests set in a linear mode and the traditional protocol time to exhaustion. Some other alternatives could have been used but were not as regular. To summarize, the testing methods offered two main approaches in the laboratory (time to exhaustion test andthe 3-min all-out test with different protocols) and approach in the field, which is not yet completely standardized.

Zobrazit více v PubMed

Galán-Rioja M.Á., González-Mohíno F., Poole D.C., González-Ravé J.M. Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis. Sports Med. 2020;50:1771–1783. doi: 10.1007/s40279-020-01314-8. PubMed DOI

Jones A.M., Vanhatalo A., Burnley M., Morton R.H., Poole D.C. Critical Power: Implications for Determination of V˙O2max and Exercise Tolerance. Med. Sci. Sports Exerc. 2010;42:1876–1890. doi: 10.1249/MSS.0b013e3181d9cf7f. PubMed DOI

Vanhatalo A., Jones A.M., Burnley M. Application of Critical Power in Sport. Int. J. Sports Physiol. Perform. 2011;6:128–136. doi: 10.1123/ijspp.6.1.128. PubMed DOI

Poole D.C., Burnley M., Vanhatalo A., Rossiter H.B., Jones A.M. Critical Power: An Important Fatigue Threshold in Exercise Physiology. Med. Sci. Sports Exerc. 2016;48:2320–2334. doi: 10.1249/MSS.0000000000000939. PubMed DOI PMC

Jones A.M., Vanhatalo A. The ‘Critical Power’ Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise. Sports Med. 2017;47:65–78. doi: 10.1007/s40279-017-0688-0. PubMed DOI PMC

Jones A.M., Grassi B., Christensen P.M., Krustrup P., Bangsbo J., Poole D.C. Slow Component of V˙O2 Kinetics: Mechanistic Bases and Practical Applications. Med. Sci. Sports Exerc. 2011;43:2046–2062. doi: 10.1249/MSS.0b013e31821fcfc1. PubMed DOI

Burnley M., Jones A.M. Oxygen Uptake Kinetics as a Determinant of Sports Performance. Eur. J. Sport Sci. 2007;7:63–79. doi: 10.1080/17461390701456148. DOI

Black M.I., Durant J., Jones A.M., Vanhatalo A. Critical Power Derived from a 3-Min All-out Test Predicts 16.1-Km Road Time-Trial Performance. Eur. J. Sport Sci. 2014;14:217–223. doi: 10.1080/17461391.2013.810306. PubMed DOI

Magalang U.J., Grant B.J. Determination of Gas Exchange Threshold by Nonparametric Regression. Am. J. Respir. Crit. Care Med. 1995;151:98–106. doi: 10.1164/ajrccm.151.1.7812580. PubMed DOI

Pettitt R.W. Applying the Critical Speed Concept to Racing Strategy and Interval Training Prescription. Int. J. Sports Physiol. Perform. 2016;11:842–847. doi: 10.1123/ijspp.2016-0001. PubMed DOI

Lipski E.S., Spindler D.J., Hesselink M.K.C., Myers T.D., Sanders D. Differences in Performance Assessments Conducted Indoors and Outdoors in Professional Cyclists. Int. J. Sports Physiol. Perform. 2022:1–7. doi: 10.1123/ijspp.2021-0341. PubMed DOI

Leo P., Spragg J., Podlogar T., Lawley J.S., Mujika I. Power Profiling and the Power-Duration Relationship in Cycling: A Narrative Review. Eur. J. Appl. Physiol. 2022;122:301–316. doi: 10.1007/s00421-021-04833-y. PubMed DOI PMC

Bergstrom H.C., Housh T.J., Zuniga J.M., Camic C.L., Traylor D.A., Schmidt R.J., Johnson G.O. A New Single Work Bout Test to Estimate Critical Power and Anaerobic Work Capacity. J. Strength Cond. Res. 2012;26:656–663. doi: 10.1519/JSC.0b013e31822b7304. PubMed DOI

Bergstrom H.C., Housh T.J., Zuniga J.M., Traylor D.A., Lewis R.W., Camic C.L., Schmidt R.J., Johnson G.O. Differences Among Estimates of Critical Power and Anaerobic Work Capacity Derived from Five Mathematical Models and the Three-Minute All-Out Test. J. Strength Cond. Res. 2014;28:592–600. doi: 10.1519/JSC.0b013e31829b576d. PubMed DOI

Clark I.E., Gartner H.E., Williams J.L., Pettitt R.W. Validity of the 3-Minute All-Out Exercise Test on the CompuTrainer. J. Strength Cond. Res. 2016;30:825–829. doi: 10.1519/JSC.0000000000001169. PubMed DOI

Clark I.E., Murray S.R., Pettitt R.W. Alternative Procedures for the Three-Minute All-Out Exercise Test. J. Strength Cond. Res. 2012;27:2104–2112. doi: 10.1519/JSC.0b013e3182785041. PubMed DOI

Constantini K., Sabapathy S., Cross T.J. A Single-Session Testing Protocol to Determine Critical Power and W′. Eur. J. Appl. Physiol. 2014;114:1153–1161. doi: 10.1007/s00421-014-2827-8. PubMed DOI

Dicks N.D., Jamnick N.A., Murray S.R., Pettitt R.W. Load Determination for the 3-Minute All-Out Exercise Test for Cycle Ergometry. Int. J. Sports Physiol. Perform. 2016;11:197–203. doi: 10.1123/ijspp.2015-0116. PubMed DOI

Karsten B., Jobson S., Hopker J., Jimenez A., Beedie C. High Agreement between Laboratory and Field Estimates of Critical Power in Cycling. Int. J. Sports Med. 2013;35:298–303. doi: 10.1055/s-0033-1349844. PubMed DOI

Karsten B., Jobson S., Hopker J., Passfield L., Beedie C. The 3-Min Test Does Not Provide a Valid Measure of Critical Power Using the SRM Isokinetic Mode. Int. J. Sports Med. 2013;35:304–309. doi: 10.1055/s-0033-1349093. PubMed DOI

Maturana M.F., Fontana F.Y., Pogliaghi S., Passfield L., Murias J.M. Critical Power: How Different Protocols and Models Affect Its Determination. J. Sci. Med. Sport. 2018;21:742–747. doi: 10.1016/j.jsams.2017.11.015. PubMed DOI

Simpson L.P., Kordi M. Comparison of Critical Power and W′ Derived From 2 or 3 Maximal Tests. Int. J. Sports Physiol. Perform. 2017;12:825–830. doi: 10.1123/ijspp.2016-0371. PubMed DOI

Karsten B., Jobson S.A., Hopker J., Stevens L., Beedie C. Validity and Reliability of Critical Power Field Testing. Eur. J. Appl. Physiol. 2015;115:197–204. doi: 10.1007/s00421-014-3001-z. PubMed DOI

Karsten B., Baker J., Naclerio F., Klose A., Bianco A., Nimmerichter A. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W′, and Oxygen-Uptake Kinetics. Int. J. Sports Physiol. Perform. 2018;13:183–188. doi: 10.1123/ijspp.2016-0761. PubMed DOI

Karsten B., Hopker J., Jobson S.A., Baker J., Petrigna L., Klose A., Beedie C. Comparison of Inter-Trial Recovery Times for the Determination of Critical Power and W’ in Cycling. J. Sports Sci. 2017;35:1420–1425. doi: 10.1080/02640414.2016.1215500. PubMed DOI

Nimmerichter A., Prinz B., Gumpenberger M., Heider S., Wirth K. Field-Derived Power–Duration Variables to Predict Cycling Time-Trial Performance. Int. J. Sports Physiol. Perform. 2020;15:1095–1102. doi: 10.1123/ijspp.2019-0621. PubMed DOI

Triska C., Tschan H., Tazreiter G., Nimmerichter A. Critical Power in Laboratory and Field Conditions Using Single-Visit Maximal Effort Trials. Int. J. Sports Med. 2015;36:1063–1068. doi: 10.1055/s-0035-1549958. PubMed DOI

Wright J., Bruce-Low S., Jobson S. The Reliability and Validity of the 3-Min All-out Cycling Critical Power Test. Int. J. Sports Med. 2017;38:462–467. doi: 10.1055/s-0043-102944. PubMed DOI

Wright J., Bruce-Low S., Jobson S.A. The 3-Minute All-out Cycling Test Is Sensitive to Changes in Cadence Using the Lode Excalibur Sport Ergometer. J. Sports Sci. 2019;37:156–162. doi: 10.1080/02640414.2018.1487115. PubMed DOI

Coakley S.L., Passfield L. Cycling Performance Is Superior for Time-to-Exhaustion versus Time-Trial in Endurance Laboratory Tests. J. Sports Sci. 2018;36:1228–1234. doi: 10.1080/02640414.2017.1368691. PubMed DOI

Leo P., Spragg J., Mujika I., Menz V., Lawley J.S. Power Profiling in U23 Professional Cyclists During a Competitive Season. Int. J. Sports Physiol. Perform. 2021;16:881–889. doi: 10.1123/ijspp.2020-0200. PubMed DOI

Clark B., Macdermid P.W. A Comparative Analysis of Critical Power Models in Elite Road Cyclists. Curr. Res. Physiol. 2021;4:139–144. doi: 10.1016/j.crphys.2021.05.001. PubMed DOI PMC

Vanhatalo A., Doust J.H., Burnley M. Determination of Critical Power Using a 3-Min All-out Cycling Test. Med. Sci. Sports Exerc. 2007;39:548–555. doi: 10.1249/mss.0b013e31802dd3e6. PubMed DOI

Hugh Morton R. A 3-Parameter Critical Power Model. Ergonomics. 1996;39:611–619. doi: 10.1080/00140139608964484. PubMed DOI

Craig J.C., Vanhatalo A., Burnley M., Jones A.M., Poole D.C. Muscle and Exercise Physiology. Elsevier; Amsterdam, The Netherlands: 2019. Critical Power; pp. 159–181.

Dekerle J., Barstow T.J., Regan L., Carter H. The Critical Power Concept in All-out Isokinetic Exercise. J. Sci. Med. Sport. 2014;17:640–644. doi: 10.1016/j.jsams.2013.09.003. PubMed DOI

Maturana M.F., Keir D.A., McLay K.M., Murias J.M. Can Measures of Critical Power Precisely Estimate the Maximal Metabolic Steady-State? Appl. Physiol. Nutr. Metab. 2016;41:1197–1203. doi: 10.1139/apnm-2016-0248. PubMed DOI

Galbraith A., Hopker J., Lelliott S., Diddams L., Passfield L. A Single-Visit Field Test of Critical Speed. Int. J. Sports Physiol. Perform. 2014;9:931–935. doi: 10.1123/ijspp.2013-0507. PubMed DOI

Dekerle J., Sidney M., Hespel J.M., Pelayo P. Validity and Reliability of Critical Speed, Critical Stroke Rate, and Anaerobic Capacity in Relation to Front Crawl Swimming Performances. Int. J. Sports. Med. 2002;23:93–98. doi: 10.1055/s-2002-20125. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...