A Novel Method of Impeller Blade Monitoring Using Shaft Vibration Signal Processing
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/0008389
ERDF
PubMed
35808417
PubMed Central
PMC9269731
DOI
10.3390/s22134932
PII: s22134932
Knihovny.cz E-zdroje
- Klíčová slova
- algorithm, diagnostics, impeller blade, monitoring, signal processing, steam turbine, vibration,
- MeSH
- algoritmy MeSH
- chirurgické nástroje MeSH
- pára * MeSH
- počítačové zpracování signálu MeSH
- vibrace * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- pára * MeSH
The monitoring of impeller blade vibrations is an important task in the diagnosis of turbomachinery, especially in terms of steam turbines. Early detection of potential faults is the key to avoid the risk of turbine unexpected outages and to minimize profit loss. One of the ways to achieve this is long-term monitoring. However, existing monitoring systems for impeller blade long-term monitoring are quite expensive and also require special sensors to be installed. It is even common that the impeller blades are not monitored at all. In recent years, the authors of this paper developed a new method of impeller blade monitoring that is based on relative shaft vibration signal measurement and analysis. In this case, sensors that are already standardly installed in the bearing pedestal are used. This is a significant change in the accessibility of blade monitoring for a steam turbine operator in terms of expenditures. This article describes the developed algorithm for the relative shaft vibration signal analysis that is designed to run in a long-term perspective as a part of a remote monitoring system to track the natural blade frequency and its amplitude automatically.
Zobrazit více v PubMed
Russhard P. Vibration Engineering and Technology of Machinery. University of Manchester; Manchester, UK: 2014. The Rise and Fall of the Rotor Blade Strain Gauge; pp. 27–37. DOI
Heath S., Imregun M. A Survey of Blade Tip-Timing Measurement Techniques for Turbomachinery Vibration. J. Eng. Gas Turbines Power. 1998;120:784–791. doi: 10.1115/1.2818468. DOI
Mathioudakis K., Loukis S., Papiliou K. Casing Vibration and Gas Turbine Operating Conditions. American Society of Mechanical Engineers (ASME); Toronto, ON, Canada: 1989. DOI
Mathioudakis K., Papathanasiou A., Loukis E., Papiliou K. Fast response wall pressure measurement as a means of gas turbine blade fault identification. J. Eng. Gas Turbines Power. 1991;113:269–275. doi: 10.1115/1.2906558. DOI
Gubran A.A., Sinha J.K. Shaft instantaneous angular speed for blade vibration in rotating machine. Mech. Syst. Sig. Process. 2014;44:47–59. doi: 10.1016/j.ymssp.2013.02.005. DOI
Bachschmid N., Salvini G., Tanzi E., Pesatori E. Proceedings of the 9th IFToMM Intarnational Conference on Rotor Dynamics. Springer; Cham, Switzerland: 2015. The Influence of Blade Row Dynamics on Lateral and Torsional Shaft Vibrations in Steam Turbines. DOI
Vasicek V., Liska J., Strnad J., Jakl J. Identification of dynamic behavior of steam turbine blades using rotor vibration measurement; Proceedings of the 14th European Conference on Turbomachinery Fluid dynamics & Thermodynamic, ETC 2021; Gdansk, Poland. 12–16 April 2021.
Vasicek V., Liska J., Strnad J., Jakl J. Advances in Condition Monitoring and Structural Health Monitoring. Springer; Singapore: 2021. Experimental validation of the blade excitation in a shaft vibration signals. DOI
Liska J., Jakl J., Vasicek V. Rotating blades monitoring using standard turbine instrumentation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019;233:7447–7458. doi: 10.1177/0954406219889084. DOI
Liska J., Vasicek V., Jakl J. On possibilities of using relative shaft vibration signals for rotating blades monitoring; Proceedings of the Turbomachinery Technical Conference and Exposition; Oslo, Norway. 11–15 June 2018; DOI
Randall R.B. Vibration-Based Condition Monitoring. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2011. DOI
Vaseghi S.V. Advanced Digital Signal Processing and Noise Reduction. John Wiley & Sons; Hoboken, NJ, USA: 2000. DOI
Proakis J.G., Manolakis D.G. Digital Signal Processing, Principles, Algorithms, and Applications. Prentice-Hall; Hoboken, NJ, USA: 1996. DOI
Prabhu K.M.M. Window Functions and Their Applications in Signal Processing. Taylor & Francis Group; Abingdon-on-Thames, UK: 2014. DOI
Deller J.R., Hansen J.H.R., Proakis J.G. Discrete-Time Processing of Speech Signals. Willey-IEEE Press; Hoboken, NJ, USA: 1999.
Everitt B.S., Landau S., Leese M., Stahl D. Cluster Analysis. 5th ed. John Wiley & Sons Ltd.; Hoboken, NJ, USA: King′s College; London, UK: 2011. DOI
Boyce M.P. Gas Turbine Engineering Handbook, 4th ed. Elsevier; Amsterdam, The Netherlands: 2011. DOI