• This record comes from PubMed

Stimuli-responsive polypeptide nanogels for trypsin inhibition

. 2022 ; 13 () : 538-548. [epub] 20220622

Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection

Document type Journal Article

A new type of hydrophilic, biocompatible, and biodegradable polypeptide nanogel depots loaded with the natural serine protease inhibitor α1-antitrypsin (AAT) was applied for the inhibition of the inflammatory mediator trypsin. Two types of nanogels were prepared from linear synthetic polypeptides based on biocompatible and biodegradable poly[N 5-(2-hydroxyethyl)-ʟ-glutamine-ran-N 5-propargyl-ʟ-glutamine-ran-N 5-(6-aminohexyl)-ʟ-glutamine]-ran-N 5-[2-(4-hydroxyphenyl)ethyl)-ʟ-glutamine] (PHEG-Tyr) or biocompatible N α-ʟ-lysine-grafted α,β-poly[(2-propyne)-ᴅ,ʟ-aspartamide-ran-(2-hydroxyethyl)-ᴅʟ-aspartamide-ran-(2-(4-hydroxyphenyl)ethyl)-ᴅʟ-aspartamide] (N α-Lys-NG). Both nanogels were prepared by HRP/H2O2-mediated crosslinking in inverse miniemulsions with pH and temperature-stimuli responsive behavior confirmed by dynamic light scattering and zeta potential measurements. The loading capacity of PHEG-Tyr and N α-Lys-NG nanogels and their release profiles were first optimized with bovine serum albumin. The nanogels were then used for loading and release of AAT. PHEG-Tyr and N α-Lys-NG nanogels showed different loading capacities for AAT with the maximum (20%) achieved with N α-Lys-NG nanogel. In both cases, the nanogel depots demonstrated a burst release of AAT during the first 6 h, which could be favorable for quick inhibition of trypsin. A consequent pilot in vitro inhibition study revealed that both PHEG-Tyr and N α-Lys-NG nanogels loaded with AAT successfully inhibited the enzymatic activity of trypsin. Furthermore, the inhibitory efficiency of the AAT-loaded nanogels was higher than that of only AAT. Interestingly, also non-loaded PHEG-Tyr and N α-Lys-NG nanogels were shown to effectively inhibit trypsin because they contain suitable amino acids in their structures that effectively block the active site of trypsin.

See more in PubMed

Ouyang G, Pan G, Liu Q, Wu Y, Liu Z, Lu W, Li S, Zhou Z, Wen Y. BMC Med. 2020;18:388. doi: 10.1186/s12916-020-01859-5. PubMed DOI PMC

Drake M, Dodwad S-J M, Davis J, Kao L S, Cao Y, Ko T C. J Clin Med. 2021;10(2):300. doi: 10.3390/jcm10020300. PubMed DOI PMC

Xiao A Y, Tan M L Y, Wu L M, Asrani V M, Windsor J A, Yadav D, Petrov M S. Lancet Gastroenterol Hepatol. 2016;1:45–55. doi: 10.1016/s2468-1253(16)30004-8. PubMed DOI

Szabó A, Toldi V, Gazda L D, Demcsák A, Tőzsér J, Sahin-Tóth M. J Biol Chem. 2021;296:100343. doi: 10.1016/j.jbc.2021.100343. PubMed DOI PMC

Gui F, Zhang Y, Wan J, Zhan X, Yao Y, Li Y, Haddock A N, Shi J, Guo J, Chen J, et al. J Clin Invest. 2020;130:189–202. doi: 10.1172/jci130172. PubMed DOI PMC

Brandl T, Simic O, Skaanderup P R, Namoto K, Berst F, Ehrhardt C, Schiering N, Mueller I, Woelcke J. Bioorg Med Chem Lett. 2016;26:4340–4344. doi: 10.1016/j.bmcl.2016.07.029. PubMed DOI

Liu K. J Am Oil Chem Soc. 2021;98:355–373. doi: 10.1002/aocs.12475. DOI

Pouvreau L, Chobert J-M, Briand L, Quillien L, Tran V, Guéguen J, Haertlé T. FEBS Lett. 1998;423(2):167–172. doi: 10.1016/s0014-5793(98)00062-3. PubMed DOI

Chanphai P, Tajmir-Riahi H A. Carbohydr Polym. 2016;144:346–352. doi: 10.1016/j.carbpol.2016.02.066. PubMed DOI

Mao X, Yang Z. Ann Palliat Med. 2021;10:1325–1335. doi: 10.21037/apm-19-363. PubMed DOI

Beghdadi W, Madjene L C, Benhamou M, Charles N, Gautier N, Launay P, Blank U. Front Immunol. 2011;2:37. doi: 10.3389/fimmu.2011.00037. PubMed DOI PMC

Hashimoto Y, Mukai S-a, Sasaki Y, Akiyoshi K. Adv Healthcare Mater. 2018;7(23):1800729. doi: 10.1002/adhm.201800729. PubMed DOI

Vashist A, Kaushik A, Vashist A, Bala J, Nikkhah-Moshaie R, Sagar V, Nair M. Drug Discovery Today. 2018;23:1436–1443. doi: 10.1016/j.drudis.2018.05.018. PubMed DOI PMC

Massi L, Najer A, Chapman R, Spicer C D, Nele V, Che J, Booth M A, Doutch J J, Stevens M M. J Mater Chem B. 2020;8:8894–8907. doi: 10.1039/d0tb01546f. PubMed DOI PMC

Ozawa Y, Sawada S-i, Morimoto N, Akiyoshi K. Macromol Biosci. 2009;9(7):694–701. doi: 10.1002/mabi.200800288. PubMed DOI

Hirakura T, Yasugi K, Nemoto T, Sato M, Shimoboji T, Aso Y, Morimoto N, Akiyoshi K. J Controlled Release. 2010;142:483–489. doi: 10.1016/j.jconrel.2009.11.023. PubMed DOI

Morimoto N, Hirano S, Takahashi H, Loethen S, Thompson D H, Akiyoshi K. Biomacromolecules. 2013;14:56–63. doi: 10.1021/bm301286h. PubMed DOI PMC

Alkanawati M S, Machtakova M, Landfester K, Thérien-Aubin H. Biomacromolecules. 2021;22(7):2976–2984. doi: 10.1021/acs.biomac.1c00378. PubMed DOI PMC

Dunlea D M, Fee L T, McEnery T, McElvaney N G, Reeves E P. J Inflammation Res. 2018;11:123–134. doi: 10.2147/jir.s156405. PubMed DOI PMC

Stockley R A. Ann Transl Med. 2015;3:130. doi: 10.3978/j.issn.2305-5839.2015.04.25. PubMed DOI PMC

Pirooznia N, Hasannia S, Lotfi A S, Ghanei M. J Nanobiotechnol. 2012;10(1):20. doi: 10.1186/1477-3155-10-20. PubMed DOI PMC

Arjmand S, Bidram E, Lotfi A S, Mahdavi H, Alavi M. Int J Biosci, Biochem Bioinf. 2011;1:68–72. doi: 10.7763/ijbbb.2011.v1.13. DOI

Dvořáková J, Šálek P, Korecká L, Pavlova E, Černoch P, Janoušková O, Koutníková B, Proks V. J Appl Polym Sci. 2020;137:48725. doi: 10.1002/app.48725. DOI

Oleshchuk D, Šálek P, Dvořáková J, Kučka J, Pavlova E, Francová P, Šefc L, Proks V. Mater Sci Eng, C. 2021;126:111865. doi: 10.1016/j.msec.2021.111865. PubMed DOI

Hladysh S, Oleshchuk D, Dvořáková J, Golunova A, Šálek P, Pánek J, Janoušková O, Kaňková D, Pavlova E, Proks V. Eur Polym J. 2021;148:110347. doi: 10.1016/j.eurpolymj.2021.110347. DOI

Marciel A B, Chung E J, Brettmann B K, Leon L. Adv Colloid Interface Sci. 2017;239:187–198. doi: 10.1016/j.cis.2016.06.012. PubMed DOI PMC

Arteche Pujana M, Pérez-Álvarez L, Cesteros Iturbe L C, Katime I. Eur Polym J. 2014;61:215–225. doi: 10.1016/j.eurpolymj.2014.10.007. PubMed DOI

Bordat A, Boissenot T, Nicolas J, Tsapis N. Adv Drug Delivery Rev. 2019;138:167–192. doi: 10.1016/j.addr.2018.10.005. PubMed DOI

Ostolska I, Wiśniewska M. Colloid Polym Sci. 2014;292:2453–2464. doi: 10.1007/s00396-014-3276-y. PubMed DOI PMC

Argentiere S, Blasi L, Ciccarella G, Barbarella G, Cingolani R, Gigli G. J Appl Polym Sci. 2010;116:2808–2815. doi: 10.1002/app.31691. DOI

Zhang Y, Zhang D, Wang J-T, Zhang X, Yang Y. Polym Chem. 2021;12(4):554–563. doi: 10.1039/d0py01600d. DOI

Wang Q, Xu H, Yang X, Yang Y. Int J Pharm. 2008;361:189–193. doi: 10.1016/j.ijpharm.2008.05.011. PubMed DOI

Yoo J, Won Y-Y. ACS Biomater Sci Eng. 2020;6:6053–6062. doi: 10.1021/acsbiomaterials.0c01228. PubMed DOI

Lale S V, Koul V. Stimuli-Responsive Polymeric Nanoparticles for Cancer Therapy. In: Thakur V K, Thakur M K, Voicu S I, editors. Polymer Gels, Prospectives and Applications. Singapore: Springer; 2018. pp. 27–54. ((Gels Horizons: From Science to Smart Materials)). DOI

Chen Y, Zheng X, Qian H, Mao Z, Ding D, Jiang X. ACS Appl Mater Interfaces. 2010;2:3532–3538. doi: 10.1021/am100709d. PubMed DOI

Qin J, Zhong Z, Ma J. Mater Sci Eng, C. 2016;62:377–383. doi: 10.1016/j.msec.2016.01.088. PubMed DOI

Cohen A B. J Biol Chem. 1973;248:7055–7059. doi: 10.1016/s0021-9258(19)43360-7. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...