Stimuli-responsive polypeptide nanogels for trypsin inhibition
Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection
Document type Journal Article
PubMed
35812252
PubMed Central
PMC9235903
DOI
10.3762/bjnano.13.45
Knihovny.cz E-resources
- Keywords
- inflammatory mediator, nanogel, polypeptide, trypsin, α1-antitrypsin,
- Publication type
- Journal Article MeSH
A new type of hydrophilic, biocompatible, and biodegradable polypeptide nanogel depots loaded with the natural serine protease inhibitor α1-antitrypsin (AAT) was applied for the inhibition of the inflammatory mediator trypsin. Two types of nanogels were prepared from linear synthetic polypeptides based on biocompatible and biodegradable poly[N 5-(2-hydroxyethyl)-ʟ-glutamine-ran-N 5-propargyl-ʟ-glutamine-ran-N 5-(6-aminohexyl)-ʟ-glutamine]-ran-N 5-[2-(4-hydroxyphenyl)ethyl)-ʟ-glutamine] (PHEG-Tyr) or biocompatible N α-ʟ-lysine-grafted α,β-poly[(2-propyne)-ᴅ,ʟ-aspartamide-ran-(2-hydroxyethyl)-ᴅʟ-aspartamide-ran-(2-(4-hydroxyphenyl)ethyl)-ᴅʟ-aspartamide] (N α-Lys-NG). Both nanogels were prepared by HRP/H2O2-mediated crosslinking in inverse miniemulsions with pH and temperature-stimuli responsive behavior confirmed by dynamic light scattering and zeta potential measurements. The loading capacity of PHEG-Tyr and N α-Lys-NG nanogels and their release profiles were first optimized with bovine serum albumin. The nanogels were then used for loading and release of AAT. PHEG-Tyr and N α-Lys-NG nanogels showed different loading capacities for AAT with the maximum (20%) achieved with N α-Lys-NG nanogel. In both cases, the nanogel depots demonstrated a burst release of AAT during the first 6 h, which could be favorable for quick inhibition of trypsin. A consequent pilot in vitro inhibition study revealed that both PHEG-Tyr and N α-Lys-NG nanogels loaded with AAT successfully inhibited the enzymatic activity of trypsin. Furthermore, the inhibitory efficiency of the AAT-loaded nanogels was higher than that of only AAT. Interestingly, also non-loaded PHEG-Tyr and N α-Lys-NG nanogels were shown to effectively inhibit trypsin because they contain suitable amino acids in their structures that effectively block the active site of trypsin.
See more in PubMed
Ouyang G, Pan G, Liu Q, Wu Y, Liu Z, Lu W, Li S, Zhou Z, Wen Y. BMC Med. 2020;18:388. doi: 10.1186/s12916-020-01859-5. PubMed DOI PMC
Drake M, Dodwad S-J M, Davis J, Kao L S, Cao Y, Ko T C. J Clin Med. 2021;10(2):300. doi: 10.3390/jcm10020300. PubMed DOI PMC
Xiao A Y, Tan M L Y, Wu L M, Asrani V M, Windsor J A, Yadav D, Petrov M S. Lancet Gastroenterol Hepatol. 2016;1:45–55. doi: 10.1016/s2468-1253(16)30004-8. PubMed DOI
Szabó A, Toldi V, Gazda L D, Demcsák A, Tőzsér J, Sahin-Tóth M. J Biol Chem. 2021;296:100343. doi: 10.1016/j.jbc.2021.100343. PubMed DOI PMC
Gui F, Zhang Y, Wan J, Zhan X, Yao Y, Li Y, Haddock A N, Shi J, Guo J, Chen J, et al. J Clin Invest. 2020;130:189–202. doi: 10.1172/jci130172. PubMed DOI PMC
Brandl T, Simic O, Skaanderup P R, Namoto K, Berst F, Ehrhardt C, Schiering N, Mueller I, Woelcke J. Bioorg Med Chem Lett. 2016;26:4340–4344. doi: 10.1016/j.bmcl.2016.07.029. PubMed DOI
Liu K. J Am Oil Chem Soc. 2021;98:355–373. doi: 10.1002/aocs.12475. DOI
Pouvreau L, Chobert J-M, Briand L, Quillien L, Tran V, Guéguen J, Haertlé T. FEBS Lett. 1998;423(2):167–172. doi: 10.1016/s0014-5793(98)00062-3. PubMed DOI
Chanphai P, Tajmir-Riahi H A. Carbohydr Polym. 2016;144:346–352. doi: 10.1016/j.carbpol.2016.02.066. PubMed DOI
Mao X, Yang Z. Ann Palliat Med. 2021;10:1325–1335. doi: 10.21037/apm-19-363. PubMed DOI
Beghdadi W, Madjene L C, Benhamou M, Charles N, Gautier N, Launay P, Blank U. Front Immunol. 2011;2:37. doi: 10.3389/fimmu.2011.00037. PubMed DOI PMC
Hashimoto Y, Mukai S-a, Sasaki Y, Akiyoshi K. Adv Healthcare Mater. 2018;7(23):1800729. doi: 10.1002/adhm.201800729. PubMed DOI
Vashist A, Kaushik A, Vashist A, Bala J, Nikkhah-Moshaie R, Sagar V, Nair M. Drug Discovery Today. 2018;23:1436–1443. doi: 10.1016/j.drudis.2018.05.018. PubMed DOI PMC
Massi L, Najer A, Chapman R, Spicer C D, Nele V, Che J, Booth M A, Doutch J J, Stevens M M. J Mater Chem B. 2020;8:8894–8907. doi: 10.1039/d0tb01546f. PubMed DOI PMC
Ozawa Y, Sawada S-i, Morimoto N, Akiyoshi K. Macromol Biosci. 2009;9(7):694–701. doi: 10.1002/mabi.200800288. PubMed DOI
Hirakura T, Yasugi K, Nemoto T, Sato M, Shimoboji T, Aso Y, Morimoto N, Akiyoshi K. J Controlled Release. 2010;142:483–489. doi: 10.1016/j.jconrel.2009.11.023. PubMed DOI
Morimoto N, Hirano S, Takahashi H, Loethen S, Thompson D H, Akiyoshi K. Biomacromolecules. 2013;14:56–63. doi: 10.1021/bm301286h. PubMed DOI PMC
Alkanawati M S, Machtakova M, Landfester K, Thérien-Aubin H. Biomacromolecules. 2021;22(7):2976–2984. doi: 10.1021/acs.biomac.1c00378. PubMed DOI PMC
Dunlea D M, Fee L T, McEnery T, McElvaney N G, Reeves E P. J Inflammation Res. 2018;11:123–134. doi: 10.2147/jir.s156405. PubMed DOI PMC
Stockley R A. Ann Transl Med. 2015;3:130. doi: 10.3978/j.issn.2305-5839.2015.04.25. PubMed DOI PMC
Pirooznia N, Hasannia S, Lotfi A S, Ghanei M. J Nanobiotechnol. 2012;10(1):20. doi: 10.1186/1477-3155-10-20. PubMed DOI PMC
Arjmand S, Bidram E, Lotfi A S, Mahdavi H, Alavi M. Int J Biosci, Biochem Bioinf. 2011;1:68–72. doi: 10.7763/ijbbb.2011.v1.13. DOI
Dvořáková J, Šálek P, Korecká L, Pavlova E, Černoch P, Janoušková O, Koutníková B, Proks V. J Appl Polym Sci. 2020;137:48725. doi: 10.1002/app.48725. DOI
Oleshchuk D, Šálek P, Dvořáková J, Kučka J, Pavlova E, Francová P, Šefc L, Proks V. Mater Sci Eng, C. 2021;126:111865. doi: 10.1016/j.msec.2021.111865. PubMed DOI
Hladysh S, Oleshchuk D, Dvořáková J, Golunova A, Šálek P, Pánek J, Janoušková O, Kaňková D, Pavlova E, Proks V. Eur Polym J. 2021;148:110347. doi: 10.1016/j.eurpolymj.2021.110347. DOI
Marciel A B, Chung E J, Brettmann B K, Leon L. Adv Colloid Interface Sci. 2017;239:187–198. doi: 10.1016/j.cis.2016.06.012. PubMed DOI PMC
Arteche Pujana M, Pérez-Álvarez L, Cesteros Iturbe L C, Katime I. Eur Polym J. 2014;61:215–225. doi: 10.1016/j.eurpolymj.2014.10.007. PubMed DOI
Bordat A, Boissenot T, Nicolas J, Tsapis N. Adv Drug Delivery Rev. 2019;138:167–192. doi: 10.1016/j.addr.2018.10.005. PubMed DOI
Ostolska I, Wiśniewska M. Colloid Polym Sci. 2014;292:2453–2464. doi: 10.1007/s00396-014-3276-y. PubMed DOI PMC
Argentiere S, Blasi L, Ciccarella G, Barbarella G, Cingolani R, Gigli G. J Appl Polym Sci. 2010;116:2808–2815. doi: 10.1002/app.31691. DOI
Zhang Y, Zhang D, Wang J-T, Zhang X, Yang Y. Polym Chem. 2021;12(4):554–563. doi: 10.1039/d0py01600d. DOI
Wang Q, Xu H, Yang X, Yang Y. Int J Pharm. 2008;361:189–193. doi: 10.1016/j.ijpharm.2008.05.011. PubMed DOI
Yoo J, Won Y-Y. ACS Biomater Sci Eng. 2020;6:6053–6062. doi: 10.1021/acsbiomaterials.0c01228. PubMed DOI
Lale S V, Koul V. Stimuli-Responsive Polymeric Nanoparticles for Cancer Therapy. In: Thakur V K, Thakur M K, Voicu S I, editors. Polymer Gels, Prospectives and Applications. Singapore: Springer; 2018. pp. 27–54. ((Gels Horizons: From Science to Smart Materials)). DOI
Chen Y, Zheng X, Qian H, Mao Z, Ding D, Jiang X. ACS Appl Mater Interfaces. 2010;2:3532–3538. doi: 10.1021/am100709d. PubMed DOI
Qin J, Zhong Z, Ma J. Mater Sci Eng, C. 2016;62:377–383. doi: 10.1016/j.msec.2016.01.088. PubMed DOI
Cohen A B. J Biol Chem. 1973;248:7055–7059. doi: 10.1016/s0021-9258(19)43360-7. PubMed DOI