Stimuli-responsive polypeptide nanogels for trypsin inhibition

. 2022 ; 13 () : 538-548. [epub] 20220622

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35812252

A new type of hydrophilic, biocompatible, and biodegradable polypeptide nanogel depots loaded with the natural serine protease inhibitor α1-antitrypsin (AAT) was applied for the inhibition of the inflammatory mediator trypsin. Two types of nanogels were prepared from linear synthetic polypeptides based on biocompatible and biodegradable poly[N 5-(2-hydroxyethyl)-ʟ-glutamine-ran-N 5-propargyl-ʟ-glutamine-ran-N 5-(6-aminohexyl)-ʟ-glutamine]-ran-N 5-[2-(4-hydroxyphenyl)ethyl)-ʟ-glutamine] (PHEG-Tyr) or biocompatible N α-ʟ-lysine-grafted α,β-poly[(2-propyne)-ᴅ,ʟ-aspartamide-ran-(2-hydroxyethyl)-ᴅʟ-aspartamide-ran-(2-(4-hydroxyphenyl)ethyl)-ᴅʟ-aspartamide] (N α-Lys-NG). Both nanogels were prepared by HRP/H2O2-mediated crosslinking in inverse miniemulsions with pH and temperature-stimuli responsive behavior confirmed by dynamic light scattering and zeta potential measurements. The loading capacity of PHEG-Tyr and N α-Lys-NG nanogels and their release profiles were first optimized with bovine serum albumin. The nanogels were then used for loading and release of AAT. PHEG-Tyr and N α-Lys-NG nanogels showed different loading capacities for AAT with the maximum (20%) achieved with N α-Lys-NG nanogel. In both cases, the nanogel depots demonstrated a burst release of AAT during the first 6 h, which could be favorable for quick inhibition of trypsin. A consequent pilot in vitro inhibition study revealed that both PHEG-Tyr and N α-Lys-NG nanogels loaded with AAT successfully inhibited the enzymatic activity of trypsin. Furthermore, the inhibitory efficiency of the AAT-loaded nanogels was higher than that of only AAT. Interestingly, also non-loaded PHEG-Tyr and N α-Lys-NG nanogels were shown to effectively inhibit trypsin because they contain suitable amino acids in their structures that effectively block the active site of trypsin.

Zobrazit více v PubMed

Ouyang G, Pan G, Liu Q, Wu Y, Liu Z, Lu W, Li S, Zhou Z, Wen Y. BMC Med. 2020;18:388. doi: 10.1186/s12916-020-01859-5. PubMed DOI PMC

Drake M, Dodwad S-J M, Davis J, Kao L S, Cao Y, Ko T C. J Clin Med. 2021;10(2):300. doi: 10.3390/jcm10020300. PubMed DOI PMC

Xiao A Y, Tan M L Y, Wu L M, Asrani V M, Windsor J A, Yadav D, Petrov M S. Lancet Gastroenterol Hepatol. 2016;1:45–55. doi: 10.1016/s2468-1253(16)30004-8. PubMed DOI

Szabó A, Toldi V, Gazda L D, Demcsák A, Tőzsér J, Sahin-Tóth M. J Biol Chem. 2021;296:100343. doi: 10.1016/j.jbc.2021.100343. PubMed DOI PMC

Gui F, Zhang Y, Wan J, Zhan X, Yao Y, Li Y, Haddock A N, Shi J, Guo J, Chen J, et al. J Clin Invest. 2020;130:189–202. doi: 10.1172/jci130172. PubMed DOI PMC

Brandl T, Simic O, Skaanderup P R, Namoto K, Berst F, Ehrhardt C, Schiering N, Mueller I, Woelcke J. Bioorg Med Chem Lett. 2016;26:4340–4344. doi: 10.1016/j.bmcl.2016.07.029. PubMed DOI

Liu K. J Am Oil Chem Soc. 2021;98:355–373. doi: 10.1002/aocs.12475. DOI

Pouvreau L, Chobert J-M, Briand L, Quillien L, Tran V, Guéguen J, Haertlé T. FEBS Lett. 1998;423(2):167–172. doi: 10.1016/s0014-5793(98)00062-3. PubMed DOI

Chanphai P, Tajmir-Riahi H A. Carbohydr Polym. 2016;144:346–352. doi: 10.1016/j.carbpol.2016.02.066. PubMed DOI

Mao X, Yang Z. Ann Palliat Med. 2021;10:1325–1335. doi: 10.21037/apm-19-363. PubMed DOI

Beghdadi W, Madjene L C, Benhamou M, Charles N, Gautier N, Launay P, Blank U. Front Immunol. 2011;2:37. doi: 10.3389/fimmu.2011.00037. PubMed DOI PMC

Hashimoto Y, Mukai S-a, Sasaki Y, Akiyoshi K. Adv Healthcare Mater. 2018;7(23):1800729. doi: 10.1002/adhm.201800729. PubMed DOI

Vashist A, Kaushik A, Vashist A, Bala J, Nikkhah-Moshaie R, Sagar V, Nair M. Drug Discovery Today. 2018;23:1436–1443. doi: 10.1016/j.drudis.2018.05.018. PubMed DOI PMC

Massi L, Najer A, Chapman R, Spicer C D, Nele V, Che J, Booth M A, Doutch J J, Stevens M M. J Mater Chem B. 2020;8:8894–8907. doi: 10.1039/d0tb01546f. PubMed DOI PMC

Ozawa Y, Sawada S-i, Morimoto N, Akiyoshi K. Macromol Biosci. 2009;9(7):694–701. doi: 10.1002/mabi.200800288. PubMed DOI

Hirakura T, Yasugi K, Nemoto T, Sato M, Shimoboji T, Aso Y, Morimoto N, Akiyoshi K. J Controlled Release. 2010;142:483–489. doi: 10.1016/j.jconrel.2009.11.023. PubMed DOI

Morimoto N, Hirano S, Takahashi H, Loethen S, Thompson D H, Akiyoshi K. Biomacromolecules. 2013;14:56–63. doi: 10.1021/bm301286h. PubMed DOI PMC

Alkanawati M S, Machtakova M, Landfester K, Thérien-Aubin H. Biomacromolecules. 2021;22(7):2976–2984. doi: 10.1021/acs.biomac.1c00378. PubMed DOI PMC

Dunlea D M, Fee L T, McEnery T, McElvaney N G, Reeves E P. J Inflammation Res. 2018;11:123–134. doi: 10.2147/jir.s156405. PubMed DOI PMC

Stockley R A. Ann Transl Med. 2015;3:130. doi: 10.3978/j.issn.2305-5839.2015.04.25. PubMed DOI PMC

Pirooznia N, Hasannia S, Lotfi A S, Ghanei M. J Nanobiotechnol. 2012;10(1):20. doi: 10.1186/1477-3155-10-20. PubMed DOI PMC

Arjmand S, Bidram E, Lotfi A S, Mahdavi H, Alavi M. Int J Biosci, Biochem Bioinf. 2011;1:68–72. doi: 10.7763/ijbbb.2011.v1.13. DOI

Dvořáková J, Šálek P, Korecká L, Pavlova E, Černoch P, Janoušková O, Koutníková B, Proks V. J Appl Polym Sci. 2020;137:48725. doi: 10.1002/app.48725. DOI

Oleshchuk D, Šálek P, Dvořáková J, Kučka J, Pavlova E, Francová P, Šefc L, Proks V. Mater Sci Eng, C. 2021;126:111865. doi: 10.1016/j.msec.2021.111865. PubMed DOI

Hladysh S, Oleshchuk D, Dvořáková J, Golunova A, Šálek P, Pánek J, Janoušková O, Kaňková D, Pavlova E, Proks V. Eur Polym J. 2021;148:110347. doi: 10.1016/j.eurpolymj.2021.110347. DOI

Marciel A B, Chung E J, Brettmann B K, Leon L. Adv Colloid Interface Sci. 2017;239:187–198. doi: 10.1016/j.cis.2016.06.012. PubMed DOI PMC

Arteche Pujana M, Pérez-Álvarez L, Cesteros Iturbe L C, Katime I. Eur Polym J. 2014;61:215–225. doi: 10.1016/j.eurpolymj.2014.10.007. PubMed DOI

Bordat A, Boissenot T, Nicolas J, Tsapis N. Adv Drug Delivery Rev. 2019;138:167–192. doi: 10.1016/j.addr.2018.10.005. PubMed DOI

Ostolska I, Wiśniewska M. Colloid Polym Sci. 2014;292:2453–2464. doi: 10.1007/s00396-014-3276-y. PubMed DOI PMC

Argentiere S, Blasi L, Ciccarella G, Barbarella G, Cingolani R, Gigli G. J Appl Polym Sci. 2010;116:2808–2815. doi: 10.1002/app.31691. DOI

Zhang Y, Zhang D, Wang J-T, Zhang X, Yang Y. Polym Chem. 2021;12(4):554–563. doi: 10.1039/d0py01600d. DOI

Wang Q, Xu H, Yang X, Yang Y. Int J Pharm. 2008;361:189–193. doi: 10.1016/j.ijpharm.2008.05.011. PubMed DOI

Yoo J, Won Y-Y. ACS Biomater Sci Eng. 2020;6:6053–6062. doi: 10.1021/acsbiomaterials.0c01228. PubMed DOI

Lale S V, Koul V. Stimuli-Responsive Polymeric Nanoparticles for Cancer Therapy. In: Thakur V K, Thakur M K, Voicu S I, editors. Polymer Gels, Prospectives and Applications. Singapore: Springer; 2018. pp. 27–54. ((Gels Horizons: From Science to Smart Materials)). DOI

Chen Y, Zheng X, Qian H, Mao Z, Ding D, Jiang X. ACS Appl Mater Interfaces. 2010;2:3532–3538. doi: 10.1021/am100709d. PubMed DOI

Qin J, Zhong Z, Ma J. Mater Sci Eng, C. 2016;62:377–383. doi: 10.1016/j.msec.2016.01.088. PubMed DOI

Cohen A B. J Biol Chem. 1973;248:7055–7059. doi: 10.1016/s0021-9258(19)43360-7. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...