In Situ Cellular Localization of Nonfluorescent [60]Fullerene Nanomaterial in MCF-7 Breast Cancer Cells

. 2022 Aug 08 ; 8 (8) : 3450-3462. [epub] 20220720

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35856645

Cellular localization of carbon nanomaterials in cancer cells is essential information for better understanding their interaction with biological targets and a crucial factor for further evaluating their biological properties as nanovehicles or nanotherapeutics. Recently, increasing efforts to develop promising fullerene nanotherapeutics for cancer nanotechnology have been made. However, the main challenge regarding studying their cellular effects is the lack of effective methods for their visualization and determining their cellular fate due to the limited fluorescence of buckyball scaffolds. Herein, we developed a method for cellular localization of nonfluorescent and water-soluble fullerene nanomaterials using the in vitro click chemistry approach. First, we synthesized a triple-bonded fullerene probe (TBC60ser), which was further used as a starting material for 1,3-dipolar cycloaddition using 3-azido-7-hydroxycoumarin and sulfo-cyanine5 azide fluorophores to create fluorescent fullerene triazoles. In this work, we characterized the structurally triple-bonded [60]fullerene derivative and confirmed its high symmetry (Th) and the successful formation of fullerene triazoles by spectroscopic techniques (i.e., ultraviolet-visible, fluorescence, and Fourier transform infrared spectroscopies) and mass spectrometry. The created fluorescent fullerene triazoles were successfully localized in the MCF-7 breast cancer cell line using fluorescent microscopy. Overall, our findings demonstrate that TBC60ser localizes in the lysosomes of MCF-7 cells, with only a small affinity to mitochondria.

Zobrazit více v PubMed

de Lázaro I.; Mooney D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 2021, 20, 1469–1479. 10.1038/s41563-021-01047-7. PubMed DOI

Bobo D.; Robinson K. J.; Islam J.; Thurecht K. J.; Corrie S. R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33 (10), 2373–2387. 10.1007/s11095-016-1958-5. PubMed DOI

Wu D.; Si M.; Xue H.-Y.; Wong H. L. Nanomedicine applications in the treatment of breast cancer: current state of the art. International journal of nanomedicine 2017, 12, 5879.10.2147/IJN.S123437. PubMed DOI PMC

Arpino G.; Milano M.; De Placido S. Features of aggressive breast cancer. Breast 2015, 24 (5), 594–600. 10.1016/j.breast.2015.06.001. PubMed DOI

Zakharian T. Y.; Seryshev A.; Sitharaman B.; Gilbert B. E.; Knight V.; Wilson L. J. A Fullerene-Paclitaxel Chemotherapeutic: Synthesis, Characterization, and Study of Biological Activity in Tissue Culture. J. Am. Chem. Soc. 2005, 127 (36), 12508–12509. 10.1021/ja0546525. PubMed DOI

Chen D.; Dougherty C. A.; Zhu K.; Hong H. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. J. Controlled Release 2015, 210, 230–245. 10.1016/j.jconrel.2015.04.021. PubMed DOI

Nalepa P.; Gawecki R.; Szewczyk G.; Balin K.; Dulski M.; Sajewicz M.; Mrozek-Wilczkiewicz A.; Musioł R.; Polanski J.; Serda M. A [60] fullerene nanoconjugate with gemcitabine: synthesis, biophysical properties and biological evaluation for treating pancreatic cancer. Cancer Nanotechnology 2020, 11 (1), 2.10.1186/s12645-020-00058-4. DOI

Zhang H.; Ji Y.; Chen Q.; Jiao X.; Hou L.; Zhu X.; Zhang Z. Enhancement of cytotoxicity of artemisinin toward cancer cells by transferrin-mediated carbon nanotubes nanoparticles. J. Drug Targeting 2015, 23 (6), 552–567. 10.3109/1061186X.2015.1016437. PubMed DOI

Raza K.; Thotakura N.; Kumar P.; Joshi M.; Bhushan S.; Bhatia A.; Kumar V.; Malik R.; Sharma G.; Guru S. K.; et al. C60-fullerenes for delivery of docetaxel to breast cancer cells: a promising approach for enhanced efficacy and better pharmacokinetic profile. International journal of pharmaceutics 2015, 495 (1), 551–559. 10.1016/j.ijpharm.2015.09.016. PubMed DOI

Mehra N. K.; Jain A. K.; Nahar M. Carbon nanomaterials in oncology: an expanding horizon. Drug discovery today 2018, 23 (5), 1016–1025. 10.1016/j.drudis.2017.09.013. PubMed DOI

Lapin N. A.; Krzykawska-Serda M.; Ware M. J.; Curley S. A.; Corr S. J. Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields. Cancer nanotechnology 2016, 7 (1), 5.10.1186/s12645-016-0016-7. PubMed DOI PMC

Xie X.; Liao J.; Shao X.; Li Q.; Lin Y. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep. 2017, 7 (1), 3827.10.1038/s41598-017-04229-z. PubMed DOI PMC

Moon H. K.; Lee S. H.; Choi H. C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009, 3 (11), 3707–3713. 10.1021/nn900904h. PubMed DOI

Li Y.; Bai G.; Zeng S.; Hao J. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2019, 11 (5), 4737–4744. 10.1021/acsami.8b14877. PubMed DOI

Lapin N. A.; Krzykawska-Serda M.; Dilliard S.; Mackeyev Y.; Serda M.; Wilson L. J.; Curley S. A.; Corr S. J. The effects of non-invasive radiofrequency electric field hyperthermia on biotransport and biodistribution of fluorescent [60]fullerene derivative in a murine orthotopic model of breast adenocarcinoma. J. Controlled Release 2017, 260, 92–99. 10.1016/j.jconrel.2017.05.022. PubMed DOI PMC

Rašović I. Water-soluble fullerenes for medical applications. Materials science and technology 2017, 33 (7), 777–794. 10.1080/02670836.2016.1198114. DOI

Kwag D. S.; Park K.; Oh K. T.; Lee E. S. Hyaluronated fullerenes with photoluminescent and antitumoral activity. Chem. Commun. 2013, 49 (3), 282–284. 10.1039/C2CC36596K. PubMed DOI

Sayes C. M.; Fortner J. D.; Guo W.; Lyon D.; Boyd A. M.; Ausman K. D.; Tao Y. J.; Sitharaman B.; Wilson L. J.; Hughes J. B.; et al. The Differential Cytotoxicity of Water-Soluble Fullerenes. Nano Lett. 2004, 4 (10), 1881–1887. 10.1021/nl0489586. DOI

Raoof M.; Mackeyev Y.; Cheney M. A.; Wilson L. J.; Curley S. A. Internalization of C60 fullerenes into cancer cells with accumulation in the nucleus via the nuclear pore complex. Biomaterials 2012, 33 (10), 2952–2960. 10.1016/j.biomaterials.2011.12.043. PubMed DOI PMC

Lin S.-K.; Shiu L.-L.; Chien K.-M.; Luh T.-Y.; Lin T.-I. Fluorescence of fullerene derivatives at room temperature. J. Phys. Chem. 1995, 99 (1), 105–111. 10.1021/j100001a019. DOI

Serda M.; Ware M. J.; Newton J. M.; Sachdeva S.; Krzykawska-Serda M.; Nguyen L.; Law J.; Anderson A. O.; Curley S. A.; Wilson L. J.; et al. Development of photoactive Sweet-C60 for pancreatic cancer stellate cell therapy. Nanomedicine (Lond) 2018, 13 (23), 2981–2993. 10.2217/nnm-2018-0239. PubMed DOI PMC

Di Giosia M.; Soldà A.; Seeger M.; Cantelli A.; Arnesano F.; Nardella M. I.; Mangini V.; Valle F.; Montalti M.; Zerbetto F.; et al. A Bio-Conjugated Fullerene as a Subcellular-Targeted and Multifaceted Phototheranostic Agent. Adv. Funct. Mater. 2021, 31 (20), 2101527.10.1002/adfm.202101527. DOI

Kolb H. C.; Sharpless K. B. The growing impact of click chemistry on drug discovery. Drug discovery today 2003, 8 (24), 1128–1137. 10.1016/S1359-6446(03)02933-7. PubMed DOI

Kumar G. S.; Lin Q. Light-triggered click chemistry. Chem. Rev. 2021, 121, 6991–7031. 10.1021/acs.chemrev.0c00799. PubMed DOI PMC

Li H.; Cheng F.; Duft A. M.; Adronov A. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. J. Am. Chem. Soc. 2005, 127 (41), 14518–14524. 10.1021/ja054958b. PubMed DOI

Kou L.; He H.; Gao C. Click chemistry approach to functionalize two-dimensional macromolecules of graphene oxide nanosheets. Nano-Micro Letters 2010, 2 (3), 177–183. 10.1007/BF03353638. DOI

Iehl J.; de Freitas R. P.; Nierengarten J.-F. Click chemistry with fullerene derivatives. Tetrahedron Lett. 2008, 49 (25), 4063–4066. 10.1016/j.tetlet.2008.04.064. DOI

Muñoz A.; Sigwalt D.; Illescas B. M.; Luczkowiak J.; Rodríguez-Pérez L.; Nierengarten I.; Holler M.; Remy J.-S.; Buffet K.; Vincent S. P.; et al. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat. Chem. 2016, 8, 50.10.1038/nchem.2387. PubMed DOI

Iehl J.; Nguyen T. L. A.; Frein S.; Hahn U.; Barberá J.; Nierengarten J.-F.; Deschenaux R. Designing liquid-crystalline dendronised hexa-adducts of [60] fullerene via click chemistry. Liq. Cryst. 2017, 44 (12–13), 1852–1860. 10.1080/02678292.2017.1336677. DOI

Speers A. E.; Cravatt B. F. Profiling enzyme activities in vivo using click chemistry methods. Chemistry & biology 2004, 11 (4), 535–546. 10.1016/j.chembiol.2004.03.012. PubMed DOI

Kennedy D. C.; McKay C. S.; Legault M. C.; Danielson D. C.; Blake J. A.; Pegoraro A. F.; Stolow A.; Mester Z.; Pezacki J. P. Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J. Am. Chem. Soc. 2011, 133 (44), 17993–18001. 10.1021/ja2083027. PubMed DOI

Sletten E. M.; Bertozzi C. R. From mechanism to mouse: a tale of two bioorthogonal reactions. Accounts of chemical research 2011, 44 (9), 666–676. 10.1021/ar200148z. PubMed DOI PMC

Ramos-Soriano J.; Reina J. J.; Illescas B. M.; Rojo J.; Martín N. Maleimide and Cyclooctyne-Based Hexakis-Adducts of Fullerene: Multivalent Scaffolds for Copper-Free Click Chemistry on Fullerenes. Journal of organic chemistry 2018, 83 (4), 1727–1736. 10.1021/acs.joc.7b02402. PubMed DOI

Lapin N. A.; Vergara L. A.; Mackeyev Y.; Newton J. M.; Dilliard S. A.; Wilson L. J.; Curley S. A.; Serda R. E. Biotransport kinetics and intratumoral biodistribution of malonodiserinolamide-derivatized [60]fullerene in a murine model of breast adenocarcinoma. Int. J. Nanomed. 2017, 12, 8289–8307. 10.2147/IJN.S138641. PubMed DOI PMC

Hems E. S.; Wagstaff B. A.; Saalbach G.; Field R. A. CuAAC click chemistry for the enhanced detection of novel alkyne-based natural product toxins. Chem. Commun. 2018, 54 (86), 12234–12237. 10.1039/C8CC05113E. PubMed DOI PMC

Teng F.-A.; Guo Y.; He J.; Zhang Y.; Han Z.; Li H. Convenient syntheses of fullerynes for ‘clicking’into fullerene polymers. Designed monomers and polymers 2017, 20 (1), 283–292. 10.1080/15685551.2016.1256462. PubMed DOI PMC

Serda M.; Malarz K.; Mrozek-Wilczkiewicz A.; Wojtyniak M.; Musioł R.; Curley S. A. Glycofullerenes as non-receptor tyrosine kinase inhibitors-towards better nanotherapeutics for pancreatic cancer treatment. Sci. Rep. 2020, 10 (1), 260.10.1038/s41598-019-57155-7. PubMed DOI PMC

Czaplińska B.; Malarz K.; Mrozek-Wilczkiewicz A.; Musiol R. Acid selective pro-dye for cellular compartments. Sci. Rep. 2019, 9 (1), 15304.10.1038/s41598-019-50734-8. PubMed DOI PMC

Nakamura E.; Isobe H. Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience. Acc. Chem. Res. 2003, 36 (11), 807–815. 10.1021/ar030027y. PubMed DOI

Hirsch A.; Lamparth I.; Grösser T.; Karfunkel H. R. Regiochemistry of multiple additions to the fullerene core: synthesis of a Th-symmetric hexakis adduct of C60 with Bis (ethoxycarbonyl) methylene. J. Am. Chem. Soc. 1994, 116 (20), 9385–9386. 10.1021/ja00099a088. DOI

Shi W.; Salerno F.; Ward M. D.; Santana-Bonilla A.; Wade J.; Hou X.; Liu T.; Dennis T. J. S.; Campbell A. J.; Jelfs K. E.; et al. Fullerene Desymmetrization as a Means to Achieve Single-Enantiomer Electron Acceptors with Maximized Chiroptical Responsiveness. Adv. Mater. 2021, 33 (1), 2004115.10.1002/adma.202004115. PubMed DOI PMC

Miyazawa T.; Shimanouchi T.; Mizushima S. i. Normal vibrations of N-methylacetamide. J. Chem. Phys. 1958, 29 (3), 611–616. 10.1063/1.1744547. DOI

Yu J.; Guan M.; Li F.; Zhang Z.; Wang C.; Shu C.; Wei H.; Zhang X.-E. Effects of fullerene derivatives on bioluminescence and application for protease detection. Chem. Commun. 2012, 48 (89), 11011–11013. 10.1039/c2cc36099c. PubMed DOI

Yu B.; Wang X.; Qian X.; Xing W.; Yang H.; Ma L.; Lin Y.; Jiang S.; Song L.; Hu Y.; et al. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. Rsc Advances 2014, 4 (60), 31782–31794. 10.1039/C3RA45945D. DOI

Korzuch J.; Rak M.; Balin K.; Zubko M.; Głowacka O.; Dulski M.; Musioł R.; Madeja Z.; Serda M. Towards water-soluble [60] fullerenes for the delivery of siRNA in a prostate cancer model. Sci. Rep. 2021, 11 (1), 10565.10.1038/s41598-021-89943-5. PubMed DOI PMC

Serda M.; Gawecki R.; Dulski M.; Sajewicz M.; Talik E.; Szubka M.; Zubko M.; Malarz K.; Mrozek-Wilczkiewicz A.; Musioł R. Synthesis and applications of [60] fullerene nanoconjugate with 5-aminolevulinic acid and its glycoconjugate as drug delivery vehicles. RSC Adv. 2022, 12 (11), 6377–6388. 10.1039/D1RA08499B. PubMed DOI PMC

Dement’ev V.; Haghi A.; Kodolov V.. Selected Communications, Short Notes, and Abstracts. In Nanoscience and Nanoengineering; Apple Academic Press: Palm Bay, FL, 2018; pp 301–352.

Kung H.; Wu S.-M.; Wu Y.-J.; Yang Y.-W.; Chiang C.-M. Tracking the Chemistry of Unsaturated C3H3 Groups Adsorbed on a Silver Surface: Propargyl- Allenyl- Acetylide Triple Bond Migration, Self-Hydrogenation, and Carbon- Carbon Bond Formation. J. Am. Chem. Soc. 2008, 130 (31), 10263–10273. 10.1021/ja803509y. PubMed DOI

Vohs J.; Carney B.; Barteau M. Selectivity of proton abstraction from propyne on the silver (110) surface. J. Am. Chem. Soc. 1985, 107 (26), 7841–7848. 10.1021/ja00312a006. DOI

Hühn D.; Kantner K.; Geidel C.; Brandholt S.; De Cock I.; Soenen S. J.; Rivera Gil P.; Montenegro J.-M.; Braeckmans K.; Müllen K.; et al. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 2013, 7 (4), 3253–3263. 10.1021/nn3059295. PubMed DOI

Li W.; Chen C.; Ye C.; Wei T.; Zhao Y.; Lao F.; Chen Z.; Meng H.; Gao Y.; Yuan H.; et al. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 2008, 19 (14), 145102.10.1088/0957-4484/19/14/145102. PubMed DOI

Ma H.; Zhang X.; Yang Y.; Li S.; Huo J.; Liu Y.; Guan M.; Zhen M.; Shu C.; Li J.; et al. Cellular uptake, organelle enrichment, and in vitro antioxidation of fullerene derivatives, mediated by surface charge. Langmuir 2021, 37 (8), 2740–2748. 10.1021/acs.langmuir.0c03483. PubMed DOI

Santos S. M.; Dinis A. M.; Peixoto F.; Ferreira L.; Jurado A. S.; Videira R. A. Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics. toxicological sciences 2014, 138 (1), 117–129. 10.1093/toxsci/kft327. PubMed DOI

Collins T. J. ImageJ for microscopy. Biotechniques 2007, 43 (S1), S25–S30. 10.2144/000112517. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...