In Situ Cellular Localization of Nonfluorescent [60]Fullerene Nanomaterial in MCF-7 Breast Cancer Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35856645
PubMed Central
PMC9364322
DOI
10.1021/acsbiomaterials.2c00542
Knihovny.cz E-zdroje
- Klíčová slova
- [60]fullerenes, breast cancer, cellular colocalization, click reactions, lysosomes, triazoles,
- MeSH
- fullereny * chemie farmakologie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- nádory prsu * farmakoterapie MeSH
- nanostruktury * chemie MeSH
- triazoly MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fullereny * MeSH
- triazoly MeSH
Cellular localization of carbon nanomaterials in cancer cells is essential information for better understanding their interaction with biological targets and a crucial factor for further evaluating their biological properties as nanovehicles or nanotherapeutics. Recently, increasing efforts to develop promising fullerene nanotherapeutics for cancer nanotechnology have been made. However, the main challenge regarding studying their cellular effects is the lack of effective methods for their visualization and determining their cellular fate due to the limited fluorescence of buckyball scaffolds. Herein, we developed a method for cellular localization of nonfluorescent and water-soluble fullerene nanomaterials using the in vitro click chemistry approach. First, we synthesized a triple-bonded fullerene probe (TBC60ser), which was further used as a starting material for 1,3-dipolar cycloaddition using 3-azido-7-hydroxycoumarin and sulfo-cyanine5 azide fluorophores to create fluorescent fullerene triazoles. In this work, we characterized the structurally triple-bonded [60]fullerene derivative and confirmed its high symmetry (Th) and the successful formation of fullerene triazoles by spectroscopic techniques (i.e., ultraviolet-visible, fluorescence, and Fourier transform infrared spectroscopies) and mass spectrometry. The created fluorescent fullerene triazoles were successfully localized in the MCF-7 breast cancer cell line using fluorescent microscopy. Overall, our findings demonstrate that TBC60ser localizes in the lysosomes of MCF-7 cells, with only a small affinity to mitochondria.
Zobrazit více v PubMed
de Lázaro I.; Mooney D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 2021, 20, 1469–1479. 10.1038/s41563-021-01047-7. PubMed DOI
Bobo D.; Robinson K. J.; Islam J.; Thurecht K. J.; Corrie S. R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33 (10), 2373–2387. 10.1007/s11095-016-1958-5. PubMed DOI
Wu D.; Si M.; Xue H.-Y.; Wong H. L. Nanomedicine applications in the treatment of breast cancer: current state of the art. International journal of nanomedicine 2017, 12, 5879.10.2147/IJN.S123437. PubMed DOI PMC
Arpino G.; Milano M.; De Placido S. Features of aggressive breast cancer. Breast 2015, 24 (5), 594–600. 10.1016/j.breast.2015.06.001. PubMed DOI
Zakharian T. Y.; Seryshev A.; Sitharaman B.; Gilbert B. E.; Knight V.; Wilson L. J. A Fullerene-Paclitaxel Chemotherapeutic: Synthesis, Characterization, and Study of Biological Activity in Tissue Culture. J. Am. Chem. Soc. 2005, 127 (36), 12508–12509. 10.1021/ja0546525. PubMed DOI
Chen D.; Dougherty C. A.; Zhu K.; Hong H. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. J. Controlled Release 2015, 210, 230–245. 10.1016/j.jconrel.2015.04.021. PubMed DOI
Nalepa P.; Gawecki R.; Szewczyk G.; Balin K.; Dulski M.; Sajewicz M.; Mrozek-Wilczkiewicz A.; Musioł R.; Polanski J.; Serda M. A [60] fullerene nanoconjugate with gemcitabine: synthesis, biophysical properties and biological evaluation for treating pancreatic cancer. Cancer Nanotechnology 2020, 11 (1), 2.10.1186/s12645-020-00058-4. DOI
Zhang H.; Ji Y.; Chen Q.; Jiao X.; Hou L.; Zhu X.; Zhang Z. Enhancement of cytotoxicity of artemisinin toward cancer cells by transferrin-mediated carbon nanotubes nanoparticles. J. Drug Targeting 2015, 23 (6), 552–567. 10.3109/1061186X.2015.1016437. PubMed DOI
Raza K.; Thotakura N.; Kumar P.; Joshi M.; Bhushan S.; Bhatia A.; Kumar V.; Malik R.; Sharma G.; Guru S. K.; et al. C60-fullerenes for delivery of docetaxel to breast cancer cells: a promising approach for enhanced efficacy and better pharmacokinetic profile. International journal of pharmaceutics 2015, 495 (1), 551–559. 10.1016/j.ijpharm.2015.09.016. PubMed DOI
Mehra N. K.; Jain A. K.; Nahar M. Carbon nanomaterials in oncology: an expanding horizon. Drug discovery today 2018, 23 (5), 1016–1025. 10.1016/j.drudis.2017.09.013. PubMed DOI
Lapin N. A.; Krzykawska-Serda M.; Ware M. J.; Curley S. A.; Corr S. J. Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields. Cancer nanotechnology 2016, 7 (1), 5.10.1186/s12645-016-0016-7. PubMed DOI PMC
Xie X.; Liao J.; Shao X.; Li Q.; Lin Y. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep. 2017, 7 (1), 3827.10.1038/s41598-017-04229-z. PubMed DOI PMC
Moon H. K.; Lee S. H.; Choi H. C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 2009, 3 (11), 3707–3713. 10.1021/nn900904h. PubMed DOI
Li Y.; Bai G.; Zeng S.; Hao J. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2019, 11 (5), 4737–4744. 10.1021/acsami.8b14877. PubMed DOI
Lapin N. A.; Krzykawska-Serda M.; Dilliard S.; Mackeyev Y.; Serda M.; Wilson L. J.; Curley S. A.; Corr S. J. The effects of non-invasive radiofrequency electric field hyperthermia on biotransport and biodistribution of fluorescent [60]fullerene derivative in a murine orthotopic model of breast adenocarcinoma. J. Controlled Release 2017, 260, 92–99. 10.1016/j.jconrel.2017.05.022. PubMed DOI PMC
Rašović I. Water-soluble fullerenes for medical applications. Materials science and technology 2017, 33 (7), 777–794. 10.1080/02670836.2016.1198114. DOI
Kwag D. S.; Park K.; Oh K. T.; Lee E. S. Hyaluronated fullerenes with photoluminescent and antitumoral activity. Chem. Commun. 2013, 49 (3), 282–284. 10.1039/C2CC36596K. PubMed DOI
Sayes C. M.; Fortner J. D.; Guo W.; Lyon D.; Boyd A. M.; Ausman K. D.; Tao Y. J.; Sitharaman B.; Wilson L. J.; Hughes J. B.; et al. The Differential Cytotoxicity of Water-Soluble Fullerenes. Nano Lett. 2004, 4 (10), 1881–1887. 10.1021/nl0489586. DOI
Raoof M.; Mackeyev Y.; Cheney M. A.; Wilson L. J.; Curley S. A. Internalization of C60 fullerenes into cancer cells with accumulation in the nucleus via the nuclear pore complex. Biomaterials 2012, 33 (10), 2952–2960. 10.1016/j.biomaterials.2011.12.043. PubMed DOI PMC
Lin S.-K.; Shiu L.-L.; Chien K.-M.; Luh T.-Y.; Lin T.-I. Fluorescence of fullerene derivatives at room temperature. J. Phys. Chem. 1995, 99 (1), 105–111. 10.1021/j100001a019. DOI
Serda M.; Ware M. J.; Newton J. M.; Sachdeva S.; Krzykawska-Serda M.; Nguyen L.; Law J.; Anderson A. O.; Curley S. A.; Wilson L. J.; et al. Development of photoactive Sweet-C60 for pancreatic cancer stellate cell therapy. Nanomedicine (Lond) 2018, 13 (23), 2981–2993. 10.2217/nnm-2018-0239. PubMed DOI PMC
Di Giosia M.; Soldà A.; Seeger M.; Cantelli A.; Arnesano F.; Nardella M. I.; Mangini V.; Valle F.; Montalti M.; Zerbetto F.; et al. A Bio-Conjugated Fullerene as a Subcellular-Targeted and Multifaceted Phototheranostic Agent. Adv. Funct. Mater. 2021, 31 (20), 2101527.10.1002/adfm.202101527. DOI
Kolb H. C.; Sharpless K. B. The growing impact of click chemistry on drug discovery. Drug discovery today 2003, 8 (24), 1128–1137. 10.1016/S1359-6446(03)02933-7. PubMed DOI
Kumar G. S.; Lin Q. Light-triggered click chemistry. Chem. Rev. 2021, 121, 6991–7031. 10.1021/acs.chemrev.0c00799. PubMed DOI PMC
Li H.; Cheng F.; Duft A. M.; Adronov A. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. J. Am. Chem. Soc. 2005, 127 (41), 14518–14524. 10.1021/ja054958b. PubMed DOI
Kou L.; He H.; Gao C. Click chemistry approach to functionalize two-dimensional macromolecules of graphene oxide nanosheets. Nano-Micro Letters 2010, 2 (3), 177–183. 10.1007/BF03353638. DOI
Iehl J.; de Freitas R. P.; Nierengarten J.-F. Click chemistry with fullerene derivatives. Tetrahedron Lett. 2008, 49 (25), 4063–4066. 10.1016/j.tetlet.2008.04.064. DOI
Muñoz A.; Sigwalt D.; Illescas B. M.; Luczkowiak J.; Rodríguez-Pérez L.; Nierengarten I.; Holler M.; Remy J.-S.; Buffet K.; Vincent S. P.; et al. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat. Chem. 2016, 8, 50.10.1038/nchem.2387. PubMed DOI
Iehl J.; Nguyen T. L. A.; Frein S.; Hahn U.; Barberá J.; Nierengarten J.-F.; Deschenaux R. Designing liquid-crystalline dendronised hexa-adducts of [60] fullerene via click chemistry. Liq. Cryst. 2017, 44 (12–13), 1852–1860. 10.1080/02678292.2017.1336677. DOI
Speers A. E.; Cravatt B. F. Profiling enzyme activities in vivo using click chemistry methods. Chemistry & biology 2004, 11 (4), 535–546. 10.1016/j.chembiol.2004.03.012. PubMed DOI
Kennedy D. C.; McKay C. S.; Legault M. C.; Danielson D. C.; Blake J. A.; Pegoraro A. F.; Stolow A.; Mester Z.; Pezacki J. P. Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J. Am. Chem. Soc. 2011, 133 (44), 17993–18001. 10.1021/ja2083027. PubMed DOI
Sletten E. M.; Bertozzi C. R. From mechanism to mouse: a tale of two bioorthogonal reactions. Accounts of chemical research 2011, 44 (9), 666–676. 10.1021/ar200148z. PubMed DOI PMC
Ramos-Soriano J.; Reina J. J.; Illescas B. M.; Rojo J.; Martín N. Maleimide and Cyclooctyne-Based Hexakis-Adducts of Fullerene: Multivalent Scaffolds for Copper-Free Click Chemistry on Fullerenes. Journal of organic chemistry 2018, 83 (4), 1727–1736. 10.1021/acs.joc.7b02402. PubMed DOI
Lapin N. A.; Vergara L. A.; Mackeyev Y.; Newton J. M.; Dilliard S. A.; Wilson L. J.; Curley S. A.; Serda R. E. Biotransport kinetics and intratumoral biodistribution of malonodiserinolamide-derivatized [60]fullerene in a murine model of breast adenocarcinoma. Int. J. Nanomed. 2017, 12, 8289–8307. 10.2147/IJN.S138641. PubMed DOI PMC
Hems E. S.; Wagstaff B. A.; Saalbach G.; Field R. A. CuAAC click chemistry for the enhanced detection of novel alkyne-based natural product toxins. Chem. Commun. 2018, 54 (86), 12234–12237. 10.1039/C8CC05113E. PubMed DOI PMC
Teng F.-A.; Guo Y.; He J.; Zhang Y.; Han Z.; Li H. Convenient syntheses of fullerynes for ‘clicking’into fullerene polymers. Designed monomers and polymers 2017, 20 (1), 283–292. 10.1080/15685551.2016.1256462. PubMed DOI PMC
Serda M.; Malarz K.; Mrozek-Wilczkiewicz A.; Wojtyniak M.; Musioł R.; Curley S. A. Glycofullerenes as non-receptor tyrosine kinase inhibitors-towards better nanotherapeutics for pancreatic cancer treatment. Sci. Rep. 2020, 10 (1), 260.10.1038/s41598-019-57155-7. PubMed DOI PMC
Czaplińska B.; Malarz K.; Mrozek-Wilczkiewicz A.; Musiol R. Acid selective pro-dye for cellular compartments. Sci. Rep. 2019, 9 (1), 15304.10.1038/s41598-019-50734-8. PubMed DOI PMC
Nakamura E.; Isobe H. Functionalized Fullerenes in Water. The First 10 Years of Their Chemistry, Biology, and Nanoscience. Acc. Chem. Res. 2003, 36 (11), 807–815. 10.1021/ar030027y. PubMed DOI
Hirsch A.; Lamparth I.; Grösser T.; Karfunkel H. R. Regiochemistry of multiple additions to the fullerene core: synthesis of a Th-symmetric hexakis adduct of C60 with Bis (ethoxycarbonyl) methylene. J. Am. Chem. Soc. 1994, 116 (20), 9385–9386. 10.1021/ja00099a088. DOI
Shi W.; Salerno F.; Ward M. D.; Santana-Bonilla A.; Wade J.; Hou X.; Liu T.; Dennis T. J. S.; Campbell A. J.; Jelfs K. E.; et al. Fullerene Desymmetrization as a Means to Achieve Single-Enantiomer Electron Acceptors with Maximized Chiroptical Responsiveness. Adv. Mater. 2021, 33 (1), 2004115.10.1002/adma.202004115. PubMed DOI PMC
Miyazawa T.; Shimanouchi T.; Mizushima S. i. Normal vibrations of N-methylacetamide. J. Chem. Phys. 1958, 29 (3), 611–616. 10.1063/1.1744547. DOI
Yu J.; Guan M.; Li F.; Zhang Z.; Wang C.; Shu C.; Wei H.; Zhang X.-E. Effects of fullerene derivatives on bioluminescence and application for protease detection. Chem. Commun. 2012, 48 (89), 11011–11013. 10.1039/c2cc36099c. PubMed DOI
Yu B.; Wang X.; Qian X.; Xing W.; Yang H.; Ma L.; Lin Y.; Jiang S.; Song L.; Hu Y.; et al. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. Rsc Advances 2014, 4 (60), 31782–31794. 10.1039/C3RA45945D. DOI
Korzuch J.; Rak M.; Balin K.; Zubko M.; Głowacka O.; Dulski M.; Musioł R.; Madeja Z.; Serda M. Towards water-soluble [60] fullerenes for the delivery of siRNA in a prostate cancer model. Sci. Rep. 2021, 11 (1), 10565.10.1038/s41598-021-89943-5. PubMed DOI PMC
Serda M.; Gawecki R.; Dulski M.; Sajewicz M.; Talik E.; Szubka M.; Zubko M.; Malarz K.; Mrozek-Wilczkiewicz A.; Musioł R. Synthesis and applications of [60] fullerene nanoconjugate with 5-aminolevulinic acid and its glycoconjugate as drug delivery vehicles. RSC Adv. 2022, 12 (11), 6377–6388. 10.1039/D1RA08499B. PubMed DOI PMC
Dement’ev V.; Haghi A.; Kodolov V.. Selected Communications, Short Notes, and Abstracts. In Nanoscience and Nanoengineering; Apple Academic Press: Palm Bay, FL, 2018; pp 301–352.
Kung H.; Wu S.-M.; Wu Y.-J.; Yang Y.-W.; Chiang C.-M. Tracking the Chemistry of Unsaturated C3H3 Groups Adsorbed on a Silver Surface: Propargyl- Allenyl- Acetylide Triple Bond Migration, Self-Hydrogenation, and Carbon- Carbon Bond Formation. J. Am. Chem. Soc. 2008, 130 (31), 10263–10273. 10.1021/ja803509y. PubMed DOI
Vohs J.; Carney B.; Barteau M. Selectivity of proton abstraction from propyne on the silver (110) surface. J. Am. Chem. Soc. 1985, 107 (26), 7841–7848. 10.1021/ja00312a006. DOI
Hühn D.; Kantner K.; Geidel C.; Brandholt S.; De Cock I.; Soenen S. J.; Rivera Gil P.; Montenegro J.-M.; Braeckmans K.; Müllen K.; et al. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 2013, 7 (4), 3253–3263. 10.1021/nn3059295. PubMed DOI
Li W.; Chen C.; Ye C.; Wei T.; Zhao Y.; Lao F.; Chen Z.; Meng H.; Gao Y.; Yuan H.; et al. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 2008, 19 (14), 145102.10.1088/0957-4484/19/14/145102. PubMed DOI
Ma H.; Zhang X.; Yang Y.; Li S.; Huo J.; Liu Y.; Guan M.; Zhen M.; Shu C.; Li J.; et al. Cellular uptake, organelle enrichment, and in vitro antioxidation of fullerene derivatives, mediated by surface charge. Langmuir 2021, 37 (8), 2740–2748. 10.1021/acs.langmuir.0c03483. PubMed DOI
Santos S. M.; Dinis A. M.; Peixoto F.; Ferreira L.; Jurado A. S.; Videira R. A. Interaction of fullerene nanoparticles with biomembranes: from the partition in lipid membranes to effects on mitochondrial bioenergetics. toxicological sciences 2014, 138 (1), 117–129. 10.1093/toxsci/kft327. PubMed DOI
Collins T. J. ImageJ for microscopy. Biotechniques 2007, 43 (S1), S25–S30. 10.2144/000112517. PubMed DOI