• This record comes from PubMed

Towards water-soluble [60]fullerenes for the delivery of siRNA in a prostate cancer model

. 2021 May 19 ; 11 (1) : 10565. [epub] 20210519

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 34012024
PubMed Central PMC8134426
DOI 10.1038/s41598-021-89943-5
PII: 10.1038/s41598-021-89943-5
Knihovny.cz E-resources

This paper presents two water-soluble fullerene nanomaterials (HexakisaminoC60 and monoglucosamineC60, which is called here JK39) that were developed and synthesized as non-viral siRNA transfection nanosystems. The developed two-step Bingel-Hirsch reaction enables the chemical modification of the fullerene scaffold with the desired bioactive fragments such as D-glucosamine while keeping the crucial positive charged ethylenediamine based malonate. The ESI-MS and 13C-NMR analyses of JK39 confirmed its high Th symmetry, while X-ray photoelectron spectroscopy revealed the presence of nitrogen and oxygen-containing C-O or C-N bonds. The efficiency of both fullerenes as siRNA vehicles was tested in vitro using the prostate cancer cell line DU145 expressing the GFP protein. The HexakisaminoC60 fullerene was an efficient siRNA transfection agent, and decreased the GFP fluorescence signal significantly in the DU145 cells. Surprisingly, the glycofullerene JK39 was inactive in the transfection experiments, probably due to its high zeta potential and the formation of an extremely stable complex with siRNA.

Erratum In

PubMed

See more in PubMed

Farjadian F, et al. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine. 2019;14:93–126. doi: 10.2217/nnm-2018-0120. PubMed DOI PMC

Mei Y, et al. Recent progress in nanomaterials for nucleic acid delivery in cancer immunotherapy. Biomater. Sci. 2019;7:2640–2651. doi: 10.1039/C9BM00214F. PubMed DOI

Dammes N, Peer D. Paving the road for RNA therapeutics. Trends Pharmacol. Sci. 2020;41:755. doi: 10.1016/j.tips.2020.08.004. PubMed DOI PMC

Dykxhoorn DM, Lieberman J. Running interference: Prospects and obstacles to using small interfering RNAs as small molecule drugs. Annu. Rev. Biomed. Eng. 2006;8:377–402. doi: 10.1146/annurev.bioeng.8.061505.095848. PubMed DOI

Garber K. Alnylam launches era of RNAi drugs. Nat Biotechnol. 2018;36:777–778. doi: 10.1038/nbt0918-777. PubMed DOI

Kam NWS, Liu Z, Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 2005;127:12492–12493. doi: 10.1021/ja053962k. PubMed DOI

Nakamura E, et al. Functionalized fullerene as an artificial vector for transfection. Angew. Chem. 2000;112:4424–4427. doi: 10.1002/1521-3757(20001201)112:23<4424::AID-ANGE4424>3.0.CO;2-Y. PubMed DOI

Sitharaman B, et al. Water-soluble fullerene (C(60)) derivatives as nonviral gene-delivery vectors. Mol. Pharm. 2008;5:567–578. doi: 10.1021/mp700106w. PubMed DOI PMC

Sigwalt D, et al. Gene delivery with polycationic fullerene hexakis-adducts. Chem. Commun. 2011;47:4640–4642. doi: 10.1039/c0cc05783e. PubMed DOI

Illescas BM, et al. Multivalent cationic dendrofullerenes for gene transfer: Synthesis and DNA complexation. J. Mater. Chem. B. 2020;8:4505–4515. doi: 10.1039/D0TB00113A. PubMed DOI

Minami K, et al. siRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene. Sci. Rep. 2014;4:4916. doi: 10.1038/srep04916. PubMed DOI PMC

Minami K, Okamoto K, Harano K, Noiri E, Nakamura E. Hierarchical assembly of siRNA with tetraamino fullerene in physiological conditions for efficient internalization into cells and knockdown. ACS Appl. Mater. Interfaces. 2018;10:19347–19354. doi: 10.1021/acsami.8b01869. PubMed DOI

Wang J, et al. Visible light-switched cytosol release of siRNA by amphiphilic fullerene derivative to enhance RNAi efficacy in vitro and in vivo. Acta Biomater. 2017;59:158–169. doi: 10.1016/j.actbio.2017.05.031. PubMed DOI

Corbo C, et al. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine. 2016;11:81–100. doi: 10.2217/nnm.15.188. PubMed DOI PMC

Cai X, et al. Characterization of carbon nanotube protein corona by using quantitative proteomics. Nanomed. Nanotechnol. Biol. Med. 2013;9:583–593. doi: 10.1016/j.nano.2012.09.004. PubMed DOI

Belgorodsky B, et al. Formation and characterization of stable human serum albumin–Tris-malonic Acid [C60] fullerene complex. Bioconjug. Chem. 2005;16:1058–1062. doi: 10.1021/bc050103c. PubMed DOI

Calvaresi M, Zerbetto F. Baiting proteins with C60. ACS Nano. 2010;4:2283–2299. doi: 10.1021/nn901809b. PubMed DOI

Serda M, et al. Glycofullerenes as non-receptor tyrosine kinase inhibitors-towards better nanotherapeutics for pancreatic cancer treatment. Sci. Rep. 2020;10:1–11. doi: 10.1038/s41598-019-57155-7. PubMed DOI PMC

Gräfe C, et al. Intentional formation of a protein corona on nanoparticles: serum concentration affects protein corona mass, surface charge, and nanoparticle–cell interaction. Int. J. Biochem. Cell Biol. 2016;75:196–202. doi: 10.1016/j.biocel.2015.11.005. PubMed DOI

Rudzinski WE, Palacios A, Ahmed A, Lane MA, Aminabhavi TM. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles. Carbohyd. Polym. 2016;147:323–332. doi: 10.1016/j.carbpol.2016.04.041. PubMed DOI

Hirsch A, Lamparth I, Grösser T, Karfunkel HR. Regiochemistry of multiple additions to the fullerene core: Synthesis of a Th-symmetric hexakis adduct of C60 with Bis (ethoxycarbonyl) methylene. J. Am. Chem. Soc. 1994;116:9385–9386. doi: 10.1021/ja00099a088. DOI

Campisciano V, La Parola V, Liotta LF, Giacalone F, Gruttadauria M. Fullerene–Ionic-liquid conjugates: A new class of hybrid materials with unprecedented properties. Chem. A Eur. J. 2015;21:3327–3334. doi: 10.1002/chem.201406067. PubMed DOI

Serda M, et al. Development of photoactive Sweet-C60 for pancreatic cancer stellate cell therapy. Nanomedicine (Lond.) 2018;13:2981–2993. doi: 10.2217/nnm-2018-0239. PubMed DOI PMC

Serda M, et al. Developing (60] fullerene nanomaterials for better photodynamic treatment of non-melanoma skin cancers. ACS Biomater. Sci. Eng. 2020;6:5930. doi: 10.1021/acsbiomaterials.0c00932. PubMed DOI

Wang T, Larcher LM, Ma L, Veedu RN. Systematic screening of commonly used commercial transfection reagents towards efficient transfection of single-stranded oligonucleotides. Molecules. 2018;23:2564. doi: 10.3390/molecules23102564. PubMed DOI PMC

Rak M, et al. Boost of serum resistance and storage stability in cationic polyprenyl-based lipofection by helper lipids compositions. Eur. J. Pharm. Biopharm. 2020;155:199–209. doi: 10.1016/j.ejpb.2020.07.028. PubMed DOI

Rak M, et al. Efficient and non-toxic gene delivery by anionic lipoplexes based on polyprenyl ammonium salts and their effects on cell physiology. J. Gene Med. 2016;18:331–342. doi: 10.1002/jgm.2930. PubMed DOI

Chenon B, Sandorfy C. Hydrogen bonding in the amine hydrohalides: I. General aspects. Can. J. Chem. 1958;36:1181–1206. doi: 10.1139/v58-173. DOI

Stewart JE. Vibrational spectra of primary and secondary aliphatic amines. J. Chem. Phys. 1959;30:1259–1265. doi: 10.1063/1.1730168. DOI

Long F, Bakule R. Keto-enol transformation of 1, 2-cyclohexanedione. II. Acid catalysis in strongly acidic media 1–3. J. Am. Chem. Soc. 1963;85:2313–2318. doi: 10.1021/ja00898a027. DOI

Perrin CL. Proton exchange in amides: Surprises from simple systems. Acc. Chem. Res. 1989;22:268–275. doi: 10.1021/ar00164a002. DOI

Cho SJ, et al. N-protonation vs O-protonation in strained amides: Ab initio study. J. Org. Chem. 1997;62:4068–4071. doi: 10.1021/jo962063z. DOI

Cook D. The infrared spectra of N-acyltrialkylammonium halides, in relation to those of amide salts. Can. J. Chem. 1962;40:2362–2368. doi: 10.1139/v62-360. DOI

Watts JF. High resolution XPS of organic polymers: The Scienta ESCA 300 database. G. Beamson and D. Briggs. 280pp.,£ 65. John Wiley & Sons, Chichester, ISBN 0471 935921 (1992) Surf. Interface Anal. 1993;20:267–267. doi: 10.1002/sia.740200310. DOI

Yu J, et al. Effects of fullerene derivatives on bioluminescence and application for protease detection. Chem. Commun. 2012;48:11011–11013. doi: 10.1039/C2CC36099C. PubMed DOI

Yan X, et al. Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. J. Phys. D Appl. Phys. 2004;37:907. doi: 10.1088/0022-3727/37/6/015. DOI

Chi K, et al. Freestanding graphene paper supported three-dimensional porous graphene–polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl. Mater. Interfaces. 2014;6:16312–16319. doi: 10.1021/am504539k. PubMed DOI

Veerapandian M, Zhang L, Krishnamoorthy K, Yun K. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials. Nanotechnology. 2013;24:395706. doi: 10.1088/0957-4484/24/39/395706. PubMed DOI

Bon SB, et al. Plasma fluorination of chemically derived graphene sheets and subsequent modification with butylamine. Chem. Mater. 2009;21:3433–3438. doi: 10.1021/cm901039j. DOI

Yu B, et al. Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 2014;4:31782–31794. doi: 10.1039/C3RA45945D. DOI

Sadri R, et al. A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids. J. Colloid Interface Sci. 2017;504:115–123. doi: 10.1016/j.jcis.2017.03.051. PubMed DOI

Nishimura O, Yabe K, Iwaki M. X-ray photoelectron spectroscopy studies of high-dose nitrogen ion implanted-chromium: A possibility of a standard material for chemical state analysis. J. Electron Spectrosc. Relat. Phenom. 1989;49:335–342. doi: 10.1016/0368-2048(89)85021-2. DOI

Daems N, Sheng X, Vankelecom IF, Pescarmona PP. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A. 2014;2:4085–4110. doi: 10.1039/C3TA14043A. DOI

Lapin NA, et al. Biotransport kinetics and intratumoral biodistribution of malonodiserinolamide-derivatized [60] fullerene in a murine model of breast adenocarcinoma. Int. J. Nanomed. 2017;12:8289. doi: 10.2147/IJN.S138641. PubMed DOI PMC

Deryabin DG, et al. A zeta potential value determines the aggregate’s size of penta-substituted [60] fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells. J. Nanobiotechnol. 2015;13:1–13. PubMed PMC

Molinaro R, et al. Polyethylenimine and chitosan carriers for the delivery of RNA interference effectors. Expert Opin. Drug Deliv. 2013;10:1653–1668. doi: 10.1517/17425247.2013.840286. PubMed DOI

Sioud M. On the delivery of small interfering RNAs into mammalian cells. Expert Opin. Drug Deliv. 2005;2:639–651. doi: 10.1517/17425247.2.4.639. PubMed DOI

Wittrup A, et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 2015;33:870–876. doi: 10.1038/nbt.3298. PubMed DOI PMC

Wang J, et al. Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy. Biomaterials. 2018;171:72–82. doi: 10.1016/j.biomaterials.2018.04.020. PubMed DOI

Zhang Y, et al. Photo-tearable tape close-wrapped upconversion nanocapsules for near-infrared modulated efficient siRNA delivery and therapy. Biomaterials. 2018;163:55–66. doi: 10.1016/j.biomaterials.2018.02.019. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...