Analysis of Purine Metabolism to Elucidate the Pathogenesis of Acute Kidney Injury in Renal Hypouricemia

. 2022 Jul 02 ; 10 (7) : . [epub] 20220702

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35884889
Odkazy

PubMed 35884889
PubMed Central PMC9312704
DOI 10.3390/biomedicines10071584
PII: biomedicines10071584
Knihovny.cz E-zdroje

Renal hypouricemia is a disease caused by the dysfunction of renal urate transporters. This disease is known to cause exercise-induced acute kidney injury, but its mechanism has not yet been established. To analyze the mechanism by which hypouricemia causes renal failure, we conducted a semi-ischemic forearm exercise stress test to mimic exercise conditions in five healthy subjects, six patients with renal hypouricemia, and one patient with xanthinuria and analyzed the changes in purine metabolites. The results showed that the subjects with renal hypouricemia had significantly lower blood hypoxanthine levels and increased urinary hypoxanthine excretion after exercise than healthy subjects. Oxidative stress markers did not differ between healthy subjects and hypouricemic subjects before and after exercise, and no effect of uric acid as a radical scavenger was observed. As hypoxanthine is a precursor for adenosine triphosphate (ATP) production via the salvage pathway, loss of hypoxanthine after exercise in patients with renal hypouricemia may cause ATP loss in the renal tubules and consequent tissue damage.

Zobrazit více v PubMed

Ramsdell C.M., Kelley W.N. The Clinical Significance of Hypouricemia. Ann. Intern. Med. 1973;78:239–242. doi: 10.7326/0003-4819-78-2-239. PubMed DOI

Pineda C., Soto-Fajardo C., Mendoza J., Gutiérrez J., Sandoval H. Hypouricemia: What the practicing rheumatologist should know about this condition. Clin. Rheumatol. 2020;39:135–147. doi: 10.1007/s10067-019-04788-8. PubMed DOI

Xu L., Shi Y., Zhuang S., Liu N. Recent advances on uric acid transporters. Oncotarget. 2017;8:100852–100862. doi: 10.18632/oncotarget.20135. PubMed DOI PMC

Nakayama A., Matsuo H., Ohtahara A., Ogino K., Hakoda M., Hamada T., Hosoyamada M., Yamaguchi S., Hisatome I., Ichida K., et al. Clinical practice guideline for renal hypouricemia (1st edition) Hum. Cell. 2019;32:83–87. doi: 10.1007/s13577-019-00239-3. PubMed DOI PMC

Kawamura Y., Nakayama A., Shimizu S., Toyoda Y., Nishida Y., Hishida A., Katsuura-Kamano S., Shibuya K., Tamura T., Kawaguchi M., et al. A Proposal for Practical Diagnosis of Renal Hypouricemia: Evidenced from Genetic Studies of Nonfunctional Variants of URAT1/SLC22A12 among 30,685 Japanese Individuals. Biomedicines. 2021;9:1012. doi: 10.3390/biomedicines9081012. PubMed DOI PMC

Ichida K., Hosoyamada M., Kamatani N., Kamitsuji S., Hisatome I., Shibasaki T., Hosoya T. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin. Genet. 2008;74:243–251. doi: 10.1111/j.1399-0004.2008.01021.x. PubMed DOI

Claverie-Martin F., Trujillo-Suarez J., Gonzalez-Acosta H., Aparicio C., Roldan M.L.J., Stiburkova B., Ichida K., Martín-Gomez M.A., Goñi M.H., Hidalgo-Barquero M.C., et al. URAT1 and GLUT9 mutations in Spanish patients with renal hypouricemia. Clin. Chim. Acta. 2018;481:83–89. doi: 10.1016/j.cca.2018.02.030. PubMed DOI

Stiburkova B., Bohatá J., Pavelcová K., Tasic V., Plaseska-Karanfilska D., Cho S.-K., Potočnaková L., Šaligová J. Renal Hypouricemia 1: Rare Disorder as Common Disease in Eastern Slovakia Roma Population. Biomedicines. 2021;9:1607. doi: 10.3390/biomedicines9111607. PubMed DOI PMC

Stiburkova B., Gabrikova D., Čepek P., Šimek P., Kristian P., Cordoba-Lanus E., Claverie-Martin F. Prevalence of URAT1 allelic variants in the Roma population. Nucleosides Nucleotides Nucleic Acids. 2016;35:529–535. doi: 10.1080/15257770.2016.1168839. PubMed DOI

Wang C., Wang J., Liu S., Liang X., Song Y., Feng L., Zhong L., Guo X. Idiopathic renal hypouricemia: A case report and literature review. Mol. Med. Rep. 2019;20:5118–5124. doi: 10.3892/mmr.2019.10726. PubMed DOI PMC

Ames B.N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA. 1981;78:6858–6862. doi: 10.1073/pnas.78.11.6858. PubMed DOI PMC

De Becker B., Hupkens E., Dewachter L., Coremans C., Delporte C., van Antwerpen P., Franck T., Boudjeltia K.Z., Cullus P., van de Borne P. Acute effects of hypouricemia on endothelium, oxidative stress, and arterial stiffness: A randomized, double-blind, crossover study. Physiol. Rep. 2021;9:e15018. doi: 10.14814/phy2.15018. PubMed DOI PMC

Simmouds H.A. Hereditary Xanthinuria. [(accessed on 31 May 2022)]. Available online: https://www.orpha.net/data/patho/GB/uk-XDH.pdf.

Ichida K., Amaya Y., Kamatani N., Nishino T., Hosoya T., Sakai O. Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria. J. Clin. Investig. 1997;99:2391–2397. doi: 10.1172/JCI119421. PubMed DOI PMC

Sebesta I., Miyamoto D., Stiburkova B., Blahova S., Sato N., Nagata K., Okamoto K., Tsuruoka S., Ichida K. Modified forearm ischemic test in hypouricemic patients. Nucleosides Nucleotides Nucleic Acids. 2020;39:1432–1439. doi: 10.1080/15257770.2020.1750636. PubMed DOI

Tani T., Okamoto K., Fujiwara M., Katayama A., Tsuruoka S. Metabolomics analysis elucidates unique influences on purine/pyrimidine metabolism by xanthine oxidoreductase inhibitors in a rat model of renal ischemia-reperfusion injury. Mol. Med. 2019;25:40. doi: 10.1186/s10020-019-0109-y. PubMed DOI PMC

Nakayama K., Terawaki H., Nakayama M., Iwabuchi M., Sato T., Ito S. Reduction of serum antioxidative capacity during hemodialysis. Clin. Exp. Nephrol. 2007;11:218–224. doi: 10.1007/s10157-007-0486-3. PubMed DOI

Iamele L., Fiocchi R., Vernocchi A. Evaluation of an automated spectrophotometric assay for reactive oxygen metabolites in serum. Clin. Chem. Lab. Med. 2002;40:673–676. doi: 10.1515/CCLM.2002.115. PubMed DOI

Sakuma R., Nishina T., Kitamura M., Yamanaka H., Kamatani N., Nishioka K. Screening for adenine and hypoxanthine phosphoribosyltransferase deficiencies in human erythrocytes by high-performance liquid chromatography. Clin. Chim. Acta. 1987;170:281–289. doi: 10.1016/0009-8981(87)90138-0. PubMed DOI

Dudzinska W., Suska M., Lubkowska A., Jakubowska K., Olszewska M., Safranow K., Chlubek D. Comparison of human erythrocyte purine nucleotide metabolism and blood purine and pyrimidine degradation product concentrations before and after acute exercise in trained and sedentary subjects. J. Physiol. Sci. 2018;68:293–305. doi: 10.1007/s12576-017-0536-x. PubMed DOI PMC

Stiburkova B., Krijt J., Vyletal P., Bartl J., Gerhatova E., Korinek M., Sebesta I. Novel mutations in xanthine dehydrogenase/oxidase cause severe hypouricemia: Biochemical and molecular genetic analysis in two Czech families with xanthinuria type I. Clin. Chim. Acta. 2012;413:93–99. doi: 10.1016/j.cca.2011.08.038. PubMed DOI

Mancikova A., Krylov V., Hurba O., Šebesta I., Nakamura M., Ichida K., Stiburkova B. Functional analysis of novel allelic variants in URAT1 and GLUT9 causing renal hypouricemia type 1 and 2. Clin. Exp. Nephrol. 2015;20:578–584. doi: 10.1007/s10157-015-1186-z. PubMed DOI

Stiburkova B., Šebesta I., Ichida K., Nakamura M., Hůlková H., Krylov V., Kryspinova L., Jahnová H. Novel allelic variants and evidence for a prevalent mutation in URAT1 causing renal hypouricemia: Biochemical, genetics and functional analysis. Eur. J. Hum. Genet. 2013;21:1067–1073. doi: 10.1038/ejhg.2013.3. PubMed DOI PMC

Stiburkova B., Stekrova J., Nakamura M., Ichida K. Hereditary Renal Hypouricemia Type 1 and Autosomal Dominant Polycystic Kidney Disease. Am. J. Med Sci. 2015;350:268–271. doi: 10.1097/MAJ.0000000000000550. PubMed DOI

Ichida K., Hosoyamada M., Hisatome I., Enomoto A., Hikita M., Endou H., Hosoya T. Clinical and Molecular Analysis of Patients with Renal Hypouricemia in Japan-Influence of URAT1 Gene on Urinary Urate Excretion. J. Am. Soc. Nephrol. 2004;15:164–173. doi: 10.1097/01.ASN.0000105320.04395.D0. PubMed DOI

Tanaka Y., Hisatome I., Kinugawa T., Tanaka H., Tomikura Y., Ando F., Matsuura T., Igawa G., Matsubara K., Yamamoto Y., et al. Excessive purine degradation during semi-ischemic forearm test in patients with diabetes mellitus. Intern. Med. 2003;42:788–792. doi: 10.2169/internalmedicine.42.788. PubMed DOI

Psychogios N., Hau D.D., Peng J., Guo A.C., Mandal R., Bouatra S., Sinelnikov I., Krishnamurthy R., Eisner R., Gautam B., et al. The Human Serum Metabolome. PLoS ONE. 2011;6:e16957. doi: 10.1371/journal.pone.0016957. PubMed DOI PMC

Kanďár R., Štramová X., Drábková P., Křenková J. A Monitoring of Allantoin, Uric Acid, and Malondialdehyde Levels in Plasma and Erythrocytes After Ten Minutes of Running Activity. Physiol. Res. 2014;63:753–762. doi: 10.33549/physiolres.932696. PubMed DOI

Yamamoto T., Kario K., Suda M., Moriwaki Y., Takahashi S., Higashino K. A Case of Xanthinuria: A Study on the Metabolism of Pyrazinamide and Allopurinol. Jpn. J. Med. 1991;30:430–434. doi: 10.2169/internalmedicine1962.30.430. PubMed DOI

Dudzinska W., Hlynczak A.J., Skotnicka E., Suska M. The purine metabolism of human erythrocytes. Biochemistry. 2006;71:467–475. doi: 10.1134/S0006297906050014. PubMed DOI

Casali E., Berni P., Spisni A., Baricchi R., Pertinhez T.A. Hypoxanthine: A new paradigm to interpret the origin of transfusion toxicity. Blood Transfus. 2015;14:555–556. doi: 10.2450/2015.0177-15. PubMed DOI PMC

Atkinson D.E., Walton G.M. Adenosine Triphosphate Conservation in Metabolic Regulation. J. Biol. Chem. 1967;242:3239–3241. doi: 10.1016/S0021-9258(18)95956-9. PubMed DOI

Dudzinska W., Lubkowska A., Dolegowska B., Safranow K., Jakubowska K. Adenine, guanine and pyridine nucleotides in blood during physical exercise and restitution in healthy subjects. Eur. J. Appl. Physiol. 2010;110:1155–1162. doi: 10.1007/s00421-010-1611-7. PubMed DOI PMC

Furukawa J., Inoue K., Maeda J., Yasujima T., Ohta K., Kanai Y., Takada T., Matsuo H., Yuasa H. Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals. Sci. Rep. 2015;5:15057. doi: 10.1038/srep15057. PubMed DOI PMC

Arakawa H., Amezawa N., Kawakatsu Y., Tamai I. Renal Reabsorptive Transport of Uric Acid Precursor Xanthine by URAT1 and GLUT9. Biol. Pharm. Bull. 2020;43:1792–1798. doi: 10.1248/bpb.b20-00597. PubMed DOI

Aomura D., Sonoda K., Harada M., Hashimoto K., Kamijo Y. A Case of Acute Kidney Injury in a Patient with Renal Hypouricemia without Intense Exercise. Case Rep. Nephrol. Dial. 2020;10:26–34. doi: 10.1159/000506673. PubMed DOI PMC

Erley C.M.M., Hirschberg R.R., Hoefer W., Schaefer K. Acute renal failure due to uric acid nephropathy in a patient with renal hypouricemia. Klin. Wochenschr. 1989;67:308–312. doi: 10.1007/BF01892900. PubMed DOI

Kaneko K., Taniguchi N., Tanabe Y., Nakano T., Hasui M., Nozu K. Oxidative imbalance in idiopathic renal hypouricemia. Pediatr. Nephrol. 2009;24:869–871. doi: 10.1007/s00467-008-1032-6. PubMed DOI

Bhasin B., Stiburkova B., De Castro-Pretelt M., Beck N., Bodurtha J.N., Atta M.G. Hereditary renal hypouricemia: A new role for allopurinol? Am. J. Med. 2014;127:e3–e4. doi: 10.1016/j.amjmed.2013.08.025. PubMed DOI

Yeun J.Y., Hasbargen J.A. Renal hypouricemia: Prevention of exercise-induced acute renal failure and a review of the literature. Am. J. Kidney Dis. 1995;25:937–946. doi: 10.1016/0272-6386(95)90579-0. PubMed DOI

Stout J.T., Caskey C.T. HPRT: Gene structure, expression, and mutation. Annu. Rev. Genet. 1985;19:127–148. doi: 10.1146/annurev.ge.19.120185.001015. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace