Analysis of Purine Metabolism to Elucidate the Pathogenesis of Acute Kidney Injury in Renal Hypouricemia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35884889
PubMed Central
PMC9312704
DOI
10.3390/biomedicines10071584
PII: biomedicines10071584
Knihovny.cz E-zdroje
- Klíčová slova
- acute kidney injury, hypouricemia, xanthinuria,
- Publikační typ
- časopisecké články MeSH
Renal hypouricemia is a disease caused by the dysfunction of renal urate transporters. This disease is known to cause exercise-induced acute kidney injury, but its mechanism has not yet been established. To analyze the mechanism by which hypouricemia causes renal failure, we conducted a semi-ischemic forearm exercise stress test to mimic exercise conditions in five healthy subjects, six patients with renal hypouricemia, and one patient with xanthinuria and analyzed the changes in purine metabolites. The results showed that the subjects with renal hypouricemia had significantly lower blood hypoxanthine levels and increased urinary hypoxanthine excretion after exercise than healthy subjects. Oxidative stress markers did not differ between healthy subjects and hypouricemic subjects before and after exercise, and no effect of uric acid as a radical scavenger was observed. As hypoxanthine is a precursor for adenosine triphosphate (ATP) production via the salvage pathway, loss of hypoxanthine after exercise in patients with renal hypouricemia may cause ATP loss in the renal tubules and consequent tissue damage.
Department of Nephrology Graduate School of Medicine Nippon Medical School Tokyo 113 8603 Japan
Department of Pathophysiology Tokyo University of Pharmacy and Life Sciences Tokyo 192 0392 Japan
Division of Kidney and Hypertension Jikei University School of Medicine Tokyo 105 8461 Japan
Zobrazit více v PubMed
Ramsdell C.M., Kelley W.N. The Clinical Significance of Hypouricemia. Ann. Intern. Med. 1973;78:239–242. doi: 10.7326/0003-4819-78-2-239. PubMed DOI
Pineda C., Soto-Fajardo C., Mendoza J., Gutiérrez J., Sandoval H. Hypouricemia: What the practicing rheumatologist should know about this condition. Clin. Rheumatol. 2020;39:135–147. doi: 10.1007/s10067-019-04788-8. PubMed DOI
Xu L., Shi Y., Zhuang S., Liu N. Recent advances on uric acid transporters. Oncotarget. 2017;8:100852–100862. doi: 10.18632/oncotarget.20135. PubMed DOI PMC
Nakayama A., Matsuo H., Ohtahara A., Ogino K., Hakoda M., Hamada T., Hosoyamada M., Yamaguchi S., Hisatome I., Ichida K., et al. Clinical practice guideline for renal hypouricemia (1st edition) Hum. Cell. 2019;32:83–87. doi: 10.1007/s13577-019-00239-3. PubMed DOI PMC
Kawamura Y., Nakayama A., Shimizu S., Toyoda Y., Nishida Y., Hishida A., Katsuura-Kamano S., Shibuya K., Tamura T., Kawaguchi M., et al. A Proposal for Practical Diagnosis of Renal Hypouricemia: Evidenced from Genetic Studies of Nonfunctional Variants of URAT1/SLC22A12 among 30,685 Japanese Individuals. Biomedicines. 2021;9:1012. doi: 10.3390/biomedicines9081012. PubMed DOI PMC
Ichida K., Hosoyamada M., Kamatani N., Kamitsuji S., Hisatome I., Shibasaki T., Hosoya T. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin. Genet. 2008;74:243–251. doi: 10.1111/j.1399-0004.2008.01021.x. PubMed DOI
Claverie-Martin F., Trujillo-Suarez J., Gonzalez-Acosta H., Aparicio C., Roldan M.L.J., Stiburkova B., Ichida K., Martín-Gomez M.A., Goñi M.H., Hidalgo-Barquero M.C., et al. URAT1 and GLUT9 mutations in Spanish patients with renal hypouricemia. Clin. Chim. Acta. 2018;481:83–89. doi: 10.1016/j.cca.2018.02.030. PubMed DOI
Stiburkova B., Bohatá J., Pavelcová K., Tasic V., Plaseska-Karanfilska D., Cho S.-K., Potočnaková L., Šaligová J. Renal Hypouricemia 1: Rare Disorder as Common Disease in Eastern Slovakia Roma Population. Biomedicines. 2021;9:1607. doi: 10.3390/biomedicines9111607. PubMed DOI PMC
Stiburkova B., Gabrikova D., Čepek P., Šimek P., Kristian P., Cordoba-Lanus E., Claverie-Martin F. Prevalence of URAT1 allelic variants in the Roma population. Nucleosides Nucleotides Nucleic Acids. 2016;35:529–535. doi: 10.1080/15257770.2016.1168839. PubMed DOI
Wang C., Wang J., Liu S., Liang X., Song Y., Feng L., Zhong L., Guo X. Idiopathic renal hypouricemia: A case report and literature review. Mol. Med. Rep. 2019;20:5118–5124. doi: 10.3892/mmr.2019.10726. PubMed DOI PMC
Ames B.N., Cathcart R., Schwiers E., Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA. 1981;78:6858–6862. doi: 10.1073/pnas.78.11.6858. PubMed DOI PMC
De Becker B., Hupkens E., Dewachter L., Coremans C., Delporte C., van Antwerpen P., Franck T., Boudjeltia K.Z., Cullus P., van de Borne P. Acute effects of hypouricemia on endothelium, oxidative stress, and arterial stiffness: A randomized, double-blind, crossover study. Physiol. Rep. 2021;9:e15018. doi: 10.14814/phy2.15018. PubMed DOI PMC
Simmouds H.A. Hereditary Xanthinuria. [(accessed on 31 May 2022)]. Available online: https://www.orpha.net/data/patho/GB/uk-XDH.pdf.
Ichida K., Amaya Y., Kamatani N., Nishino T., Hosoya T., Sakai O. Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria. J. Clin. Investig. 1997;99:2391–2397. doi: 10.1172/JCI119421. PubMed DOI PMC
Sebesta I., Miyamoto D., Stiburkova B., Blahova S., Sato N., Nagata K., Okamoto K., Tsuruoka S., Ichida K. Modified forearm ischemic test in hypouricemic patients. Nucleosides Nucleotides Nucleic Acids. 2020;39:1432–1439. doi: 10.1080/15257770.2020.1750636. PubMed DOI
Tani T., Okamoto K., Fujiwara M., Katayama A., Tsuruoka S. Metabolomics analysis elucidates unique influences on purine/pyrimidine metabolism by xanthine oxidoreductase inhibitors in a rat model of renal ischemia-reperfusion injury. Mol. Med. 2019;25:40. doi: 10.1186/s10020-019-0109-y. PubMed DOI PMC
Nakayama K., Terawaki H., Nakayama M., Iwabuchi M., Sato T., Ito S. Reduction of serum antioxidative capacity during hemodialysis. Clin. Exp. Nephrol. 2007;11:218–224. doi: 10.1007/s10157-007-0486-3. PubMed DOI
Iamele L., Fiocchi R., Vernocchi A. Evaluation of an automated spectrophotometric assay for reactive oxygen metabolites in serum. Clin. Chem. Lab. Med. 2002;40:673–676. doi: 10.1515/CCLM.2002.115. PubMed DOI
Sakuma R., Nishina T., Kitamura M., Yamanaka H., Kamatani N., Nishioka K. Screening for adenine and hypoxanthine phosphoribosyltransferase deficiencies in human erythrocytes by high-performance liquid chromatography. Clin. Chim. Acta. 1987;170:281–289. doi: 10.1016/0009-8981(87)90138-0. PubMed DOI
Dudzinska W., Suska M., Lubkowska A., Jakubowska K., Olszewska M., Safranow K., Chlubek D. Comparison of human erythrocyte purine nucleotide metabolism and blood purine and pyrimidine degradation product concentrations before and after acute exercise in trained and sedentary subjects. J. Physiol. Sci. 2018;68:293–305. doi: 10.1007/s12576-017-0536-x. PubMed DOI PMC
Stiburkova B., Krijt J., Vyletal P., Bartl J., Gerhatova E., Korinek M., Sebesta I. Novel mutations in xanthine dehydrogenase/oxidase cause severe hypouricemia: Biochemical and molecular genetic analysis in two Czech families with xanthinuria type I. Clin. Chim. Acta. 2012;413:93–99. doi: 10.1016/j.cca.2011.08.038. PubMed DOI
Mancikova A., Krylov V., Hurba O., Šebesta I., Nakamura M., Ichida K., Stiburkova B. Functional analysis of novel allelic variants in URAT1 and GLUT9 causing renal hypouricemia type 1 and 2. Clin. Exp. Nephrol. 2015;20:578–584. doi: 10.1007/s10157-015-1186-z. PubMed DOI
Stiburkova B., Šebesta I., Ichida K., Nakamura M., Hůlková H., Krylov V., Kryspinova L., Jahnová H. Novel allelic variants and evidence for a prevalent mutation in URAT1 causing renal hypouricemia: Biochemical, genetics and functional analysis. Eur. J. Hum. Genet. 2013;21:1067–1073. doi: 10.1038/ejhg.2013.3. PubMed DOI PMC
Stiburkova B., Stekrova J., Nakamura M., Ichida K. Hereditary Renal Hypouricemia Type 1 and Autosomal Dominant Polycystic Kidney Disease. Am. J. Med Sci. 2015;350:268–271. doi: 10.1097/MAJ.0000000000000550. PubMed DOI
Ichida K., Hosoyamada M., Hisatome I., Enomoto A., Hikita M., Endou H., Hosoya T. Clinical and Molecular Analysis of Patients with Renal Hypouricemia in Japan-Influence of URAT1 Gene on Urinary Urate Excretion. J. Am. Soc. Nephrol. 2004;15:164–173. doi: 10.1097/01.ASN.0000105320.04395.D0. PubMed DOI
Tanaka Y., Hisatome I., Kinugawa T., Tanaka H., Tomikura Y., Ando F., Matsuura T., Igawa G., Matsubara K., Yamamoto Y., et al. Excessive purine degradation during semi-ischemic forearm test in patients with diabetes mellitus. Intern. Med. 2003;42:788–792. doi: 10.2169/internalmedicine.42.788. PubMed DOI
Psychogios N., Hau D.D., Peng J., Guo A.C., Mandal R., Bouatra S., Sinelnikov I., Krishnamurthy R., Eisner R., Gautam B., et al. The Human Serum Metabolome. PLoS ONE. 2011;6:e16957. doi: 10.1371/journal.pone.0016957. PubMed DOI PMC
Kanďár R., Štramová X., Drábková P., Křenková J. A Monitoring of Allantoin, Uric Acid, and Malondialdehyde Levels in Plasma and Erythrocytes After Ten Minutes of Running Activity. Physiol. Res. 2014;63:753–762. doi: 10.33549/physiolres.932696. PubMed DOI
Yamamoto T., Kario K., Suda M., Moriwaki Y., Takahashi S., Higashino K. A Case of Xanthinuria: A Study on the Metabolism of Pyrazinamide and Allopurinol. Jpn. J. Med. 1991;30:430–434. doi: 10.2169/internalmedicine1962.30.430. PubMed DOI
Dudzinska W., Hlynczak A.J., Skotnicka E., Suska M. The purine metabolism of human erythrocytes. Biochemistry. 2006;71:467–475. doi: 10.1134/S0006297906050014. PubMed DOI
Casali E., Berni P., Spisni A., Baricchi R., Pertinhez T.A. Hypoxanthine: A new paradigm to interpret the origin of transfusion toxicity. Blood Transfus. 2015;14:555–556. doi: 10.2450/2015.0177-15. PubMed DOI PMC
Atkinson D.E., Walton G.M. Adenosine Triphosphate Conservation in Metabolic Regulation. J. Biol. Chem. 1967;242:3239–3241. doi: 10.1016/S0021-9258(18)95956-9. PubMed DOI
Dudzinska W., Lubkowska A., Dolegowska B., Safranow K., Jakubowska K. Adenine, guanine and pyridine nucleotides in blood during physical exercise and restitution in healthy subjects. Eur. J. Appl. Physiol. 2010;110:1155–1162. doi: 10.1007/s00421-010-1611-7. PubMed DOI PMC
Furukawa J., Inoue K., Maeda J., Yasujima T., Ohta K., Kanai Y., Takada T., Matsuo H., Yuasa H. Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals. Sci. Rep. 2015;5:15057. doi: 10.1038/srep15057. PubMed DOI PMC
Arakawa H., Amezawa N., Kawakatsu Y., Tamai I. Renal Reabsorptive Transport of Uric Acid Precursor Xanthine by URAT1 and GLUT9. Biol. Pharm. Bull. 2020;43:1792–1798. doi: 10.1248/bpb.b20-00597. PubMed DOI
Aomura D., Sonoda K., Harada M., Hashimoto K., Kamijo Y. A Case of Acute Kidney Injury in a Patient with Renal Hypouricemia without Intense Exercise. Case Rep. Nephrol. Dial. 2020;10:26–34. doi: 10.1159/000506673. PubMed DOI PMC
Erley C.M.M., Hirschberg R.R., Hoefer W., Schaefer K. Acute renal failure due to uric acid nephropathy in a patient with renal hypouricemia. Klin. Wochenschr. 1989;67:308–312. doi: 10.1007/BF01892900. PubMed DOI
Kaneko K., Taniguchi N., Tanabe Y., Nakano T., Hasui M., Nozu K. Oxidative imbalance in idiopathic renal hypouricemia. Pediatr. Nephrol. 2009;24:869–871. doi: 10.1007/s00467-008-1032-6. PubMed DOI
Bhasin B., Stiburkova B., De Castro-Pretelt M., Beck N., Bodurtha J.N., Atta M.G. Hereditary renal hypouricemia: A new role for allopurinol? Am. J. Med. 2014;127:e3–e4. doi: 10.1016/j.amjmed.2013.08.025. PubMed DOI
Yeun J.Y., Hasbargen J.A. Renal hypouricemia: Prevention of exercise-induced acute renal failure and a review of the literature. Am. J. Kidney Dis. 1995;25:937–946. doi: 10.1016/0272-6386(95)90579-0. PubMed DOI
Stout J.T., Caskey C.T. HPRT: Gene structure, expression, and mutation. Annu. Rev. Genet. 1985;19:127–148. doi: 10.1146/annurev.ge.19.120185.001015. PubMed DOI