Neutron Radiation Dose Measurements in a Scanning Proton Therapy Room: Can Parents Remain Near Their Children During Treatment?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35912238
PubMed Central
PMC9330633
DOI
10.3389/fonc.2022.903706
Knihovny.cz E-zdroje
- Klíčová slova
- active neutron monitors, ambient dose equivalent, anthropomorphic pediatric phantom, clinical conditions, scanning proton therapy, secondary neutrons,
- Publikační typ
- časopisecké články MeSH
PURPOSE: This study aims to characterize the neutron radiation field inside a scanning proton therapy treatment room including the impact of different pediatric patient sizes. MATERIALS AND METHODS: Working Group 9 of the European Radiation Dosimetry Group (EURADOS) has performed a comprehensive measurement campaign to measure neutron ambient dose equivalent, H*(10), at eight different positions around 1-, 5-, and 10-year-old pediatric anthropomorphic phantoms irradiated with a simulated brain tumor treatment. Several active detector systems were used. RESULTS: The neutron dose mapping within the gantry room showed that H*(10) values significantly decreased with distance and angular deviation with respect to the beam axis. A maximum value of about 19.5 µSv/Gy was measured along the beam axis at 1 m from the isocenter for a 10-year-old pediatric phantom at 270° gantry angle. A minimum value of 0.1 µSv/Gy was measured at a distance of 2.25 m perpendicular to the beam axis for a 1-year-old pediatric phantom at 140° gantry angle.The H*(10) dependence on the size of the pediatric patient was observed. At 270° gantry position, the measured neutron H*(10) values for the 10-year-old pediatric phantom were up to 20% higher than those measured for the 5-year-old and up to 410% higher than for the 1-year-old phantom, respectively. CONCLUSIONS: Using active neutron detectors, secondary neutron mapping was performed to characterize the neutron field generated during proton therapy of pediatric patients. It is shown that the neutron ambient dose equivalent H*(10) significantly decreases with distance and angle with respect to the beam axis. It is reported that the total neutron exposure of a person staying at a position perpendicular to the beam axis at a distance greater than 2 m from the isocenter remains well below the dose limit of 1 mSv per year for the general public (recommended by the International Commission on Radiological Protection) during the entire treatment course with a target dose of up to 60 Gy. This comprehensive analysis is key for general neutron shielding issues, for example, the safe operation of anesthetic equipment. However, it also enables the evaluation of whether it is safe for parents to remain near their children during treatment to bring them comfort. Currently, radiation protection protocols prohibit the occupancy of the treatment room during beam delivery.
Belgian Nuclear Research Center Mol Belgium
Cambridge University Hospital National Health Service Trust Medical Physics Cambridge United Kingdom
Danish Centre for Particle Therapy Aarhus University Hospital Aarhus Denmark
Departament de Física Universitat Autònoma de Barcelona Bellaterra Spain
Faculty of Medical Sciences University of Newcastle upon Tyne Newcastle upon Tyne United Kingdom
Helmholtz Zentrum München Institute of Radiation Medicine Neuherberg Germany
Institut de Radioprotection et de Sûreté Nucléaire PSE Santé Fontenay aux Roses France
Institute of Nuclear Physics Polish Academy of Sciences Krakow Poland
Zobrazit více v PubMed
PTCOG . Particle Therapy Co-Operative Group (2022). Available at: https://www.ptcog.ch/index.php/patient-statistics (Accessed February 14, 2022).
Zacharatou Jarlskog C, Paganetti H. Risk of Developing Second Cancer From Neutron Dose in Proton Therapy as Function of Field Characteristics, Organ, and Patient Age. Int J Radiat Oncol Biol Phys (2008) 72:228–35. doi: 10.1016/j.ijrobp.2008.04.069 PubMed DOI
Newhauser WD, Durante M. Assessing the Risk of Second Malignancies After Modern Radiotherapy. Nat Rev Cancer (2011) 11(6):438–48. doi: 10.1038/nrc3069 PubMed DOI PMC
NCRP . National Council on Radiation Protection and Measurements. In: Uncertainties in the Estimation of Radiation Risks and Probability of Disease Causation. NCRP; Bethesda, MD: Report No. 171; (2012).
Durante M, Loeffler JS. Charged Particles in Radiation Oncology. Nat Rev Clin Oncol (2009) 7(1):37–43. doi: 10.1038/nrclinonc.2009.183 PubMed DOI
Jariskog CZ. Sensitivity of Different Dose Scoring Methods on Organ-Specific Neutron Dose Calculations in Proton Therapy. Phys Med Biol (2008) 53(17):4523–32. doi: 10.1088/0031-9155/53/17/004 PubMed DOI
ICRP . The 2007 Recommendations of the International Commission on Radiological Protection Vol. 37. ICRP Publication 103, Ann. ICRP, Ann. ICRP; (2007). PubMed
Polf JC, Newhauser WD. Calculations of Neutron Dose Equivalent Exposures From Range-Modulated Proton Therapy Beams. Phys Med Biol (2005) 50(16):3859–73. doi: 10.1088/0031-9155/50/16/014 PubMed DOI
Taddei PJ, Mirkovic D, Fontenot ,JD, Giebeler A, Zheng YS, Kornguth D, et al. . Stray Radiation Dose and Second Cancer Risk for a Pediatric Patient Receiving Craniospinal Irradiation With Proton Beams. Phys Med Biol (2009) 54(8):2259–75. doi: 10.1088/0031-9155/54/8/001 PubMed DOI PMC
Stolarczyk L, Cywicka-Jakiel T, Horwacik T, Olko P, Swakon J, Waligorski MPR. Evaluation of Risk of Secondary Cancer Occurrence After Proton Radiotherapy of Ocular Tumours, Radiat. Meas (2011) 46(12):1944–7. doi: 10.1016/j.radmeas.2011.05.046 DOI
Farah J, Martinetti F, Sayah R, Lacoste V, Donadille L, Trompier F, et al. . Monte Carlo Modeling of Proton Therapy Installations: A Global Experimental Method to Validate Secondary Neutron Dose Calculations. Phys Med Biol (2014) 59:2747. doi: 10.1088/0031-9155/59/11/2747 PubMed DOI
Hälg RA, Schneider U. Neutron Dose and its Measurement in Proton Therapy—Current State of Knowledge. Br J Radiol (2020) 93:20190412. doi: 10.1259/bjr.20190412 PubMed DOI PMC
Farah J, Mares V, Romero-Expósito M, Trinkl S, Domingo C, Dufek V, et al. . Measurement of Stray Radiation Within a Scanning Proton Therapy Facility: EURADOS WG9 Intercomparison Exercise of Active Dosimetry Systems: Characterization of Stray Neutrons in Proton Therapy, Med. Phys (2015) 42(5):2572–84. doi: 10.1118/1.4916667 PubMed DOI
Mojżeszek N, Farah J, Kłodowska M, Ploc O, Stolarczyk L, Waligórski MPR, et al. . Measurement of Stray Neutron Doses Inside the Treatment Room From a Proton Pencil Beam Scanning System. Phys Med (2017) 34:80–4. doi: 10.1016/j.ejmp.2017.01.013 PubMed DOI
Mares V, Romero-Expósito M, Farah J, Trinkl S, Domingo C, Dommert M, et al. . A Comprehensive Spectrometry Study of a Stray Neutron Radiation Field in Scanning Proton Therapy. Phys Med Biol (2016) 61(11):4127–40. doi: 10.1088/0031-9155/61/11/4127 PubMed DOI
Stolarczyk L, Trinkl S, Romero-Expósito M, Mojżeszek N, Ambrozova I, Domingo C, et al. . Dose Distribution of Secondary Radiation in a Water Phantom for a Proton Pencil Beam—EURADOS WG9 Intercomparison Exercise. Phys Med Biol (2018) 63(8):085017. doi: 10.1088/1361-6560/aab469 PubMed DOI
Knežević Ž, Ambrozova I, Domingo C, De Saint-Hubert M, Majer M, Martínez-Rovira I, et al. . Comparison of Response of Passive Dosimetry Systems in Scanning Proton Radiotherapy – A Study Using Pediatric Anthropomorpfic Phantoms. Radiat Prot Dosimet (2018) 180:1–4 256–60. doi: 10.1093/rpd/ncx254 PubMed DOI
De Saint-Hubert M, Majer M, Hršak H, Heinrich Z, Knežević Ž, Miljanić S, et al. . Out-Of-Field Doses in Children Treated for Large Arteriovenous Malformations Using Hypofractionated Gamma Knife Radiosurgery and Intensity-Modulated Radiatin Therapy. Radiat Prot Dosimet (2018) 181:100–10. doi: 10.1093/rpd/ncx301 PubMed DOI
Wochnik A, Stolarczyk L, Ambrožová I, Davídková M, De Saint-Hubert M, Domański S, et al. . Out-of-Field Doses for Scanning Proton Radiotherapy of Shallowly Located Paediatric Tumours–A Comparison of Range Shifter and 3D Printed Compensator. Phys Med Biol (2021) 66:035012. doi: 10.1088/1361-6560/abcb1f PubMed DOI
Majer M, Ambrožová I, Davídková M, De Saint-Hubert M, Kasabašić M, Knežević Ž, et al. . Out-Of-Field Doses in Pediatric Craniospinal Irradiations With 3D-CRT, VMAT, and Scanning Proton Radiotherapy: A Phantom Study. Med Phys (2022) 49(4):2672–83. doi: 10.1002/mp.15493 PubMed DOI
Kneževic´ Ž, Ambrozova I, Domingo C, De Saint-Hubert M, Majer M, Martínez-Rovira I, et al. . Comparison of Response of Passive Dosimetry Systems in Scanning Proton Radiotherapy—A Study Using Paediatric Anthropomorphic Phantoms. Radiat Prot Dosimetry (2018) 180(1–4):256–60. doi: 10.1093/rpd/ncx254 PubMed DOI
ICRP . Report of the Task Group on Reference Man. Oxford: ICRP Publication 23. Pergamon Press; (1975).
ICRU . Report 48, Phantoms and Computational Models in Therapy, Diagnosis and Protection. J Int Commission Radiat Units Measurements (1992) os25(1). doi: 10.1093/jicru/os25.1.Report48 DOI
Dommert M. Secondary Neutrons in Hadron Therapy. [Master Thesis]. Munich, Germany: Technical University of Munich (TUM) (2015).
Mares V, Sannikov AV, Schraube H. Response Functions of the Andersson-Braun and Extended Range Rem Counters for Neutron Energies From Thermal to 10 GeV. Nucl Instrum Meth A (2002) 476(1-2):341–6. doi: 10.1016/S0168-9002(01)01459-0 DOI
Burgkhardt B, Fieg G, Klett A, Plewnia A, Siebert BRL. The Neutron Fluence and H*(10) Response of the New LB 6411 REM Counter. Radiat Prot Dosim (1997) 70:361–4. doi: 10.1093/oxfordjournals.rpd.a031977 DOI
De Smet V, Stichelbaut F, Vanaudenhove T, Mathot G, De Lentdecker G, Dubus A, et al. . Neutron H*(10) Inside a Proton Therapy Facility: Comparison Between Monte Carlo Simulations and WENDI-2 Measurements. Radiat Prot Dosimet (2014) 161(1-4):417–21. doi: 10.1093/rpd/nct289 PubMed DOI
Trompier F, Gressier V, B. Asselineau B, Martin A, Pelcot G, Pepino M. Investigation of the Neutron Energy Response of a New Commercial Neutron Survey-Meter. In: Proceedings of the 12th Neurton and Ion Dosimetry Symposium, Aix-En-Provence. France: Radiation Protection Dosimetry; ISSN 0144-8420; Worldcat; (2013).
Thomas DJ. The System of Radiation Protection for Neutrons: Does it Fit the Purpose? Radiat Prot Dosim. (2013) 161(1-4):3–10. doi: 10.1093/ppd/nct303 PubMed DOI
Golnik N. Recombination Chambers—do the Old Ideas Remain Useful? Radiat Prot Dosimet (2017) 180:3–9. doi: 10.1093/rpd/ncx279 PubMed DOI
ICRP . International Commission on Radiological Protection Conversion Coefficients for Use in Radiological Protection Against External Radiation (Publication 74) (Oxford: Pergamon). (1997).
Pelliccioni M. Overview of Fluence-to-Effective Dose and Fluence-to-Ambient Dose Equivalent Conversion Coefficients for High Energy Radiation Calculated Using the FLUKA Code Radiat. Prot Dosim. (2000) 88:279–97. doi: 10.1093/oxfordjournals.rpd.a033046 DOI
Mares V, Maczka T, Leuthold G, Ruehm W. Air Crew Dosimetry With a New Version of EPCARD. Radiat Prot Dosimet (2009) 136(4):262–6. doi: 10.1093/rpd/ncp129 PubMed DOI
Briesmeister JF. (1993).
Prael RE, Lichtenstein H. User Guide to LCS: The LAHET Code System. LA-UR-89-3014 (1989).
Savitskaya EN, Sannikov AV. High Energy Neutron and Proton Kerma Factors for Different Elements, Radiat. Prot Dosim. (1995) 60(2):135–46. doi: 10.1093/oxfordjournals.rpd.a082710 DOI
Waters L. ed. MCNPX User's Manual Version 2.4.0, Los Alamos National Laboratory Document. Los Alamos, NM, USA: LA-UR-99-4999: (1999).
Bergmeier F. Measurement of Doses of Secondary Neutrons From Cosmic Radiation by Means of Various REM Counters. [Bachelor Thesis]. Munich, Germany: Ludwig Maximilian University of Munich (LMU). (2011).
Schinner K. Bestimmung Der Empfindlichkeit Von REM-Counter Und Bonner-Kugeln Auf Gammastrahlung. [Diploma Thesis]. Ilmenau, Germany: Ilmenau University of Technology (TU Ilmenau). (2014).
International Standard . ISI/DIS 8529-1, Reference Neutron Radiations – Part 1: Characteristics and Methods of Production. (2001).
Mares V, Trinkl S, Iwamoto Y, Masuda A, Matsumoto T, Hagiwara M, et al. . Neutron Spectrometry and Dosimetry in 100 and 300 MeV Quasimono-Energetic Neutron Field at Osaka University, Japan. EPJ Web Conf (2017) 153:08020. doi: 10.1051/epjconf/201715308020 DOI
Olsher RH, Hsu HH, Beverding A, Kleck JH, Casson WH, Vasilik DG, et al. . WENDI: An Improved Neutron Rem Meter. Health Phys (2000) 79(2):170–81. doi: 10.1097/00004032-200008000-00010 PubMed DOI
De Smet V, De Saint-Hubert M, Dinar N, Manessi GP, Aza E, Cassell C, et al. . Secondary Neutrons Inside a Proton Therapy Facility: MCNPX Simulations Compared to Measurements Performed With a Bonner Sphere Spectrometer and Neutron H*(10) Monitors. Radiat Measurements. (2017) 99:25–40. doi: 10.1016/j.radmeas.2017.03.005 DOI
Conroy T. Environmental Radiation Monitor with 500 Tissue Equivalent Proportional Counter (TEPC), HAWK Version 2. Operations and Repair Manual. Goleta, CA, USA: Far West Technology Inc. (FWT) (2004).
ICRP . 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60, Ann. ICRP 21; (1991). PubMed
Farah J, De Saint-Hubert M, Mojżeszek N, Chiriotti S, Gryzinski M, Ploc O, et al. . Performance Tests and Comparison of Microdosimetric Measurements With Four Tissue-Equivalent Proportional Counters in Scanning Proton Therapy. Radiat Measurements (2017) 96:42–52. doi: 10.1016/j.radmeas.2016.12.005 DOI
Trompier F, Delacroix S, Vabre I, Joussard F, Proust J. Secondary Exposure for 73 and 200 MeV Proton Therapy. Radiat Protect Dosim (2007) 125(1–4):349–54. PubMed
Gressier V, Asselineau B, Guerre-Chaley JF, Martin A, Muller H. AMANDE Accelerator Energy Performances. In: Proceedings of the International Workshop on Fast Neutron Detectors and Applications. Cape Town, South Africa: University of Cape Town; (2006).
Zielczyński M, Golnik N. Recombination Index of Radiation Quality - Measuring and Applications. Radiat Prot Dosimet (1994) 52(1-4):419–22. doi: 10.1093/oxfordjournals.rpd.a082226 DOI
Golnik N, Mayer S, Zielczyński M. Recombination Index of Radiation Quality of Low-LET Radiation. Nucl Instruments Methods Phys Res Section B: Beam Interact Mater Atoms (2004) 213:650–3. doi: 10.1016/S0168-583X(03)01679-3 DOI
AAPM . American Association of Physicists in Medicine, Protocol for Neutron Beam Dosimetry. AAPM Report No. 7. New York: American Institute of Physics; (1980).
Tulik P, Tulik M, Maciak M, Golnik N, Kabat D, Byrski T, et al. . Investigation of Secondary Mixed Radiation Field Around a Medical Linear Accelerator. Radiat Prot Dosimet (2018) 180(1–4):252–5. doi: 10.1093/rpd/ncx199 PubMed DOI