Extremity compartment syndrome: A review with a focus on non-invasive methods of diagnosis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
35923576
PubMed Central
PMC9340208
DOI
10.3389/fbioe.2022.801586
PII: 801586
Knihovny.cz E-resources
- Keywords
- acute compartment syndrome, bioimpedance measurement, continuous measurement, detection, non-invasive diagnosis,
- Publication type
- Journal Article MeSH
- Review MeSH
The article deals with an overview of acute extremity compartment syndrome with a focus on the option of non-invasive detection of the syndrome. Acute extremity compartment syndrome (ECS) is an urgent complication that occurs most often in fractures or high-energy injuries. There is still no reliable method for detecting ECS. The only objective measurement method used in clinical practice is an invasive measurement of intramuscular pressure (IMP). The purpose of this paper is to summarize the current state of research into non-invasive measurement methods that could allow simple and reliable continuous monitoring of patients at risk of developing ECS. Clinical trials are currently underway to verify the suitability of the most studied method, near-infrared spectroscopy (NIRS), which is a method for measuring the local oxygenation of muscle compartments. Less explored methods include the use of ultrasound, ultrasound elastography, bioimpedance measurements, and quantitative tissue hardness measurements. Finding a suitable method for continuous non-invasive monitoring of the syndrome would greatly improve the quality of care for patients at risk. ECS must be diagnosed quickly and accurately to prevent irreversible tissue damage that can occur within hours of syndrome onset and may even warrant amputation if neglected.
See more in PubMed
Abraham P., Leftheriotis G., Saumet J. L. (1998). Laser Doppler flowmetry in the diagnosis of chronic compartment syndrome. J. Bone Jt. Surg. Br. volumeBritish volume 80-B, 365–369. 10.1302/0301-620x.80b2.0800365 PubMed DOI
Aedo-Martín D., Navarro-Suay R., García-Cañas R., Fernández-Gayol M., Vethencourt-Koifmann R., Areta-Jiménez F. J. (2019). Use of oxygen tissue monitoring in patients with compartment syndrome: Two clinical cases and literature review. Mil. Med. 184, e475–e479. 10.1093/milmed/usy270 PubMed DOI
Andreisek G., White L. M., Sussman M. S., Langer D. L., Patel C., Su J. W.-S., et al. (2009). T2*-weighted and arterial spin labeling MRI of calf muscles in healthy volunteers and patients with chronic exertional compartment syndrome: Preliminary experience. Am. J. Roentgenol. 193, W327–W333. 10.2214/ajr.08.1579 PubMed DOI
Arbabi S., Brundage S. I., Gentilello L. M. (1999). Near-infrared spectroscopy: A potential method for continuous, transcutaneous monitoring for compartmental syndrome in critically injured patients. J. Trauma Inj. Infect. Crit. Care 47, 829–833. 10.1097/00005373-199911000-00002 PubMed DOI
Barie P. S., Mullins R. J. (1988). Experimental methods in the pathogenesis of limb ischemia. J. Surg. Res. 44, 284–307. 10.1016/0022-4804(88)90059-5 PubMed DOI
Barstow T. J. (2019). Understanding near infrared spectroscopy and its application to skeletal muscle research. J. Appl. physiology 126, 1360–1376. 10.1152/japplphysiol.00166.2018 PubMed DOI
Bartels E. M., Sørensen E. R., Harrison A. P. (2015). Multi-frequency bioimpedance in human muscle assessment. Physiol. Rep. 3, e12354. 10.14814/phy2.12354 PubMed DOI PMC
Bermudez K., Knudson M. M., Morabito D., Kessel O. (1998). Fasciotomy, chronic venous insufficiency, and the calf muscle pump. Arch. Surg. 133, 1356–1361. 10.1001/archsurg.133.12.1356 PubMed DOI
Bloch A., Tomaschett C., Jakob S. M., Schwinghammer A., Schmid T. (2018). Compression sonography for non-invasive measurement of lower leg compartment pressure in an animal model. Injury 49, 532–537. 10.1016/j.injury.2017.11.036 PubMed DOI
Bowyer M. W. (2015). Lower extremity fasciotomy: Indications and technique. Curr. Trauma Rep. 1, 35–44. 10.1007/s40719-014-0002-7 DOI
Budsberg S. C., Shuler M. S., Hansen M., Uhl E., Freedman B. A. (2016). Comparison of NIRS, serum biomarkers, and muscle damage in a porcine balloon compression model of acute compartment syndrome. J. Trauma Acute Care Surg. 81, 876–881. 10.1097/ta.0000000000001225 PubMed DOI
Bussell H. R., Aufdenblatten C. A., Subotic U., Kalisch M., Staubli G., Weber D. M., et al. (2019). Compartment pressures in children with normal and fractured lower extremities. Eur. J. Trauma Emerg. Surg. 45, 493–497. 10.1007/s00068-019-01082-9 PubMed DOI
Chung J. H., Ahn K. R., Park J. H., Kim C. S., Kang K. S., Yoo S. H., et al. (2010). Lower leg compartment syndrome following prolonged orthopedic surgery in the lithotomy position -A case report-. Korean J. Anesthesiol. 59, S49. 10.4097/kjae.2010.59.s.s49 PubMed DOI PMC
Coccolini F., Improta M., Picetti E., Branca Vergano L., Catena F., de 'Angelis N., et al. (2020). Timing of surgical intervention for compartment syndrome in different body region: Systematic review of the literature. World J. Emerg. Surg. 15, 60–13. 10.1186/s13017-020-00339-8 PubMed DOI PMC
Cole A., Roskosky M., Shuler M., Freedman B. (2014). Near infrared spectroscopy and lower extremity acute compartment syndrome: A review of the literature. J. Trauma Treat. S 2, 003.
Creze M., Nordez A., Soubeyrand M., Rocher L., Maître X., Bellin M.-F. (2018). Shear wave sonoelastography of skeletal muscle: Basic principles, biomechanical concepts, clinical applications, and future perspectives. Skelet. Radiol. 47, 457–471. 10.1007/s00256-017-2843-y PubMed DOI
Dickson K. F., Sullivan M. J., Steinberg B., Myers L., Anderson E. R., 3rd, Harris M. (2003). Noninvasive measurement of compartment syndrome. Orthopedics 26, 1215–1218. 10.3928/0147-7447-20031201-11 PubMed DOI
Donaldson J., Haddad B., Khan W. S. (2014). The pathophysiology, diagnosis and current management of acute compartment syndrome. Toorthj 8, 185–193. 10.2174/1874325001408010185 PubMed DOI PMC
Doro C. J., Sitzman T. J., O’Toole R. V. (2014). Can intramuscular glucose levels diagnose compartment syndrome? J. Trauma Acute Care Surg. 76, 474–478. 10.1097/ta.0b013e3182a9ccd1 PubMed DOI
Dumontier C., Sautet A., Man M., Bennani M., Apoil A. (1994). Entrapment and compartment syndromes of the upper limb in haemophilia. J. Hand Surg. 19, 427–429. 10.1016/0266-7681(94)90204-6 PubMed DOI
Edwards P. O., Miles K. A., Owens S. J., Kemp P. M., Jenner J. R. (1999). A new non-invasive test for the detection of compartment syndromes. Nucl. Med. Commun. 20, 215–218. 10.1097/00006231-199903000-00003 PubMed DOI
Eicken J. J., Morrow D. (2019). Limb threatening thigh hematoma diagnosis accelerated by emergency physician bedside ultrasound. SAGE Open Med. Case Rep. 7, 1. 10.1177/2050313x19848589 PubMed DOI PMC
Elliott K. G. (2007). Intramuscular pH as a novel diagnostic tool for acute compartment syndrome: A prospective clinical study.
Garabekyan T., Murphey G. C., Macias B. R., Lynch J. E., Hargens A. R. (2009). New noninvasive ultrasound technique for monitoring perfusion pressure in a porcine model of acute compartment syndrome. J. Orthop. Trauma 23, 186–192. 10.1097/BOT.0b013e31819901db PubMed DOI PMC
Garr J. L., Gentilello L. M., Cole P. A., Mock C. N., Matsen F. A., 3rd (1999). Monitoring for compartmental syndrome using near-infrared spectroscopy. J. Trauma Inj. Infect. Crit. Care 46, 613–618. 10.1097/00005373-199904000-00009 PubMed DOI
Gentilello L. M., Sanzone A., Wang L., Liu P.-Y., Robinson L. (2001). Near-infrared spectroscopy versus compartment pressure for the diagnosis of lower extremity compartmental syndrome using electromyography-determined measurements of neuromuscular function. J. Trauma Inj. Infect. Crit. Care 51 (1–8), 1–9. 10.1097/00005373-200107000-00001 PubMed DOI
Giannotti G., Cohn S. M., Brown M., Varela J. E., McKenney M. G., Wiseberg J. A. (2000). Utility of near-infrared spectroscopy in the diagnosis of lower extremity compartment syndrome. J. Trauma Inj. Infect. Crit. Care 48, 396–401. 10.1097/00005373-200003000-00005 PubMed DOI
Gourgiotis S., Villias C., Germanos S., Foukas A., Ridolfini M. P. (2007). Acute limb compartment syndrome: A review. J. Surg. Educ. 64, 178–186. 10.1016/j.jsurg.2007.03.006 PubMed DOI
Harris I. A., Kadir A., Donald G. (2006). Continuous compartment pressure monitoring for tibia fractures: Does it influence outcome? J. Trauma Inj. Infect. Crit. Care 60, 1330–1335. 10.1097/01.ta.0000196001.03681.c3 PubMed DOI
Heckman M. M., Whitesides T. E., Jr, Grewe S. R., Rooks M. D. (1994). Compartment pressure in association with closed tibial fractures. The relationship between tissue pressure, compartment, and the distance from the site of the fracture. J. Bone & Jt. Surg. 76, 1285–1292. 10.2106/00004623-199409000-00002 PubMed DOI
Herring M. J., Donohoe E., Marmor M. T. (2019). A novel non-invasive method for the detection of elevated intra-compartmental pressures of the leg. J. Vis. Exp. 1, 1. 10.3791/59887 PubMed DOI
Inami T., Kawakami Y. (2016). Assessment of individual muscle hardness and stiffness using ultrasound elastography. Jpfsm 5, 313–317. 10.7600/jpfsm.5.313 DOI
Jackson K., 2nd, Cole A., Potter B. K., Shuler M., Kinsey T., Freedman B. (2013). Identification of optimal control compartments for serial near-infrared spectroscopy assessment of lower extremity compartmental perfusion. J. Surg. Orthop. Adv. 22, 2–9. 10.3113/jsoa.2013.0002 PubMed DOI
Johnstone A., Johnstone A., Elliott K. (2013). “Acute compartment syndrome: Intramuscular pH supersedes pressure in making the diagnosis,” in Orthopaedic proceedings, 38.
Joseph B., Varghese R. A., Mulpuri K., Paravatty S., Kamath S., Nagaraja N. (2006). Measurement of tissue hardness: Can this be a method of diagnosing compartment syndrome noninvasively in children? J. Pediatr. Orthop. B 15, 443–448. 10.1097/01.bpb.0000236226.21949.5c PubMed DOI
Khalil S., Mohktar M., Ibrahim F. (2014). The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 14, 10895–10928. 10.3390/s140610895 PubMed DOI PMC
Kim H. J., Kim S. M., Kim B., La Yun B., Jang M., Ko Y., et al. (2018). Comparison of strain and shear wave elastography for qualitative and quantitative assessment of breast masses in the same population. Sci. Rep. 8, 6197. 10.1038/s41598-018-24377-0 PubMed DOI PMC
Koo T. K., Guo J.-Y., Cohen J. H., Parker K. J. (2014). Quantifying the passive stretching response of human tibialis anterior muscle using shear wave elastography. Clin. Biomech. 29, 33–39. 10.1016/j.clinbiomech.2013.11.009 PubMed DOI
Large T. M., Agel J., Holtzman D. J., Benirschke S. K., Krieg J. C. (2015). Interobserver variability in the measurement of lower leg compartment pressures. J. Orthop. trauma 29, 316–321. 10.1097/bot.0000000000000317 PubMed DOI
Lee S. H., Padilla M., Lynch J. E., Hargens A. R. (2013). Noninvasive measurements of pressure for detecting compartment syndromes. J. Orthop. Rheumatol. 1, 5. 10.13188/2334-2846.1000005 PubMed DOI PMC
Lin W., Li Z., Xue E., Chen S., Liang R. (2020). Using shear wave elastography method to evaluate testicular compartment syndrome after testicular torsion. Andrologia 52, e13618. 10.1111/and.13618 PubMed DOI
Long N., Ahn J. S., Kim D. J. (2021). Adjunctive use of point of care ultrasound to diagnose compartment syndrome of the thigh. pocus 6, 64–66. 10.24908/pocus.v6i2.15185 PubMed DOI PMC
Lynch J. E., Lynch J. K., Cole S. L., Carter J. A., Hargens A. R. (2009). Noninvasive monitoring of elevated intramuscular pressure in a model compartment syndrome via quantitative fascial motion. J. Orthop. Res. 27, 489–494. 10.1002/jor.20778 PubMed DOI PMC
Madeja R., Pometlová J., Brzóska R., Voves J., Bialy L., Pleva L., et al. (2022). Outcomes of mini-invasive arthroscopic arthrolysis combined with locking screw and/or intramedullary nail extraction after osteosynthesis of the proximal humerus fracture. Jcm 11, 362. 10.3390/jcm11020362 PubMed DOI PMC
Marmor M., Charlu J., Knox R., Curtis W., Hoogervorst P., Herfat S. (2019). Use of standard musculoskeletal ultrasound to determine the need for fasciotomy in an elevated muscle compartment pressure cadaver leg model. Injury 50, 627–632. 10.1016/j.injury.2019.01.015 PubMed DOI
Marmor M. T., Barker J. P., Matz J., Donohoe E., Herring M. J. (2021). A dual-sensor ultrasound based method for detecting elevated muscle compartment pressures: A prospective clinical pilot study. Injury 52, 2166–2172. 10.1016/j.injury.2021.02.054 PubMed DOI
Matsen F. A., 3d, Winquist R. A., Krugmire R. B. (1980). Diagnosis and management of compartmental syndromes. J. Bone & Jt. Surg. 62, 286–291. 10.2106/00004623-198062020-00016 PubMed DOI
Mauffrey C., Hak D. J., Martin M. P., III (2019). Compartment syndrome: A guide to diagnosis and management. PubMed
McMillan T. E., Gardner W. T., Schmidt A. H., Johnstone A. J. (2019). Diagnosing acute compartment syndrome-where have we got to? Int. Orthop. 43, 2429–2435. 10.1007/s00264-019-04386-y PubMed DOI PMC
McQueen M. M., Duckworth A. D. (2014). The diagnosis of acute compartment syndrome: A review. Eur. J. Trauma Emerg. Surg. 40, 521–528. 10.1007/s00068-014-0414-7 PubMed DOI
McQueen M. M., Gaston P., Court-Brown C. M. (2000). Acute compartment syndrome. J. bone Jt. Surg. Br. volume 82-B, 200–203. 10.1302/0301-620x.82b2.0820200 PubMed DOI
Merchan N., Ingalls B., Garcia J., Wixted J., Rozental T. D., Harper C. M., et al. (2022). Factors associated with surgical site infections after fasciotomy in patients with compartment syndrome. JAAOS Glob. Res. Rev. 6, e2200002. 10.5435/jaaosglobal-d-22-00002 PubMed DOI PMC
Meyer R. S., White K. K., Smith J. M., Groppo E. R., Mubarak S. J., Hargens A. R. (2002). Intramuscular and blood pressures in legs positioned in the hemilithotomy position. J. Bone Jt. Surgery-American Volume 84, 1829–1835. 10.2106/00004623-200210000-00014 PubMed DOI
Modrall J., Eidt J. F. (2011). Patient Management following extremity fasciotomy.
Molčányi T. (2010). Prejavy akútneho kompartment syndrómu a jeho biomechanické dôsledky.
Mubarak S. J., Owen C. A., Hargens A. R., Garetto L. P., Akeson W. H. (1978). Acute compartment syndromes. J. Bone & Jt. Surg. 60, 1091–1095. 10.2106/00004623-197860080-00012 PubMed DOI
Mühlbacher J., Pauzenberger R., Asenbaum U., Gauster T., Kapral S., Herkner H., et al. (2019). Feasibility of ultrasound measurement in a human model of acute compartment syndrome. World J. Emerg. Surg. 14, 4. 10.1186/s13017-019-0222-9 PubMed DOI PMC
Nakhostine M., Styf J. R., van Leuven S., Hargens A. R., Gershuni D. H. (1993). Intramuscular pressure varies with depth: The tibialis anterior muscle studied in 12 volunteers. Acta Orthop. Scand. 64, 377–381. 10.3109/17453679308993649 PubMed DOI
Neagle C. E., Schaffer J. L., Heppenstall R. B. (1991). Compartment syndrome complicating prolonged use of the lithotomy position. Surgery 110, 566–569. PubMed
Nescolarde L., Yanguas J., Lukaski H., Alomar X., Rosell-Ferrer J., Rodas G. (2013). Localized bioimpedance to assess muscle injury. Physiol. Meas. 34, 237–245. 10.1088/0967-3334/34/2/237 PubMed DOI
Ohta H., Van Vo N.-M., Hata J., Terawaki K., Shirakawa T., Okano H. J. (2021). An early detection of acute compartment syndrome in fastened zip-tie rat model using dynamic phosphorous-31 magnetic resonance spectroscopy at 9.4 tesla. PubMed PMC
Osborn C. P. M., Schmidt A. H. (2020). Management of acute compartment syndrome. J. Am. Acad. Orthop. Surg. 28, e108–e114. 10.5435/jaaos-d-19-00270 PubMed DOI
Paluch Ł., Noszczyk B., Walecki J., Osiak K., Kiciński M., Pietruski P. (2018). Shear-wave elastography in the diagnosis of ulnar tunnel syndrome. J. Plastic, Reconstr. Aesthetic Surg. 71, 1593–1599. 10.1016/j.bjps.2018.08.018 PubMed DOI
Pechar J., Lyons M. M. (2016). Acute compartment syndrome of the lower leg: A review. J. Nurse Pract. 12, 265–270. 10.1016/j.nurpra.2015.10.013 PubMed DOI PMC
Ringler M. D., Litwiller D. V., Felmlee J. P., Shahid K. R., Finnoff J. T., Carter R. E., et al. (2013). MRI accurately detects chronic exertional compartment syndrome: A validation study. Skelet. Radiol. 42, 385–392. 10.1007/s00256-012-1487-1 PubMed DOI
Rominger M. B., Lukosch C. J., Bachmann G. F. (2004). MR imaging of compartment syndrome of the lower leg: A case control study. Eur. Radiol. 14, 1432–1439. 10.1007/s00330-004-2305-5 PubMed DOI
Rothenberg K. A., George E. L., Trickey A. W., Chandra V., Stern J. R. (2019). Delayed fasciotomy is associated with higher risk of major amputation in patients with acute limb ischemia. Ann. Vasc. Surg. 59, 195–201. 10.1016/j.avsg.2019.01.028 PubMed DOI
Rutkove S. B. (2009). Electrical impedance myography: Background, current state, and future directions. Muscle Nerve 40, 936–946. 10.1002/mus.21362 PubMed DOI PMC
Saber A. (2014). Compartment syndromes. J. Acute Dis. 3, 169–177. 10.1016/S2221-6189(14)60040-8 DOI
Sadeghi S., Johnson M., Bader D. A., Cortes D. H. (2019b). Change in shear modulus of healthy lower leg muscles after treadmill running: Toward a noninvasive diagnosis of chronic exertional compartment syndrome. J. Eng. Sci. Med. Diagnostics Ther. 2, 031004. 10.1115/1.4043537 DOI
Sadeghi S., Johnson M., Bader D. A., Cortes D. H. (2019a). The shear modulus of lower-leg muscles correlates to intramuscular pressure. J. Biomechanics 83, 190–196. 10.1016/j.jbiomech.2018.11.045 PubMed DOI
Scheeren T. W. L., Schober P., Schwarte L. A. (2012). Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): Background and current applications. J. Clin. Monit. Comput. 26, 279–287. 10.1007/s10877-012-9348-y PubMed DOI PMC
Schmidt A. H., Di J., Zipunnikov V., Frey K. P., Scharfstein D. O., O'Toole R. V., et al. (2020). Perfusion pressure lacks diagnostic specificity for the diagnosis of acute compartment syndrome. J. Orthop. trauma 34, 287–293. 10.1097/bot.0000000000001719 PubMed DOI
Schmidt A. H. (2017). Acute compartment syndrome. Injury 48 (Suppl. 1), S22–s25. 10.1016/j.injury.2017.04.024 PubMed DOI
Schmidt A. H., Bosse M. J., Obremskey W. T., O’Toole R. V., Carroll E. A., Stinner D. J., et al. (2018). Continuous near-infrared spectroscopy demonstrates limitations in monitoring the development of acute compartment syndrome in patients with leg injuries. J. Bone Jt. Surg. 100, 1645–1652. 10.2106/jbjs.17.01495 PubMed DOI
Schmidt A. H., Bosse M. J., Frey K. P., O'Toole R. V., Stinner D. J., Scharfstein D. O., et al. (2017). Predicting acute compartment syndrome (PACS): The role of continuous monitoring. J. Orthop. Trauma 31 (Suppl. 1), S40–s47. 10.1097/bot.0000000000000796 PubMed DOI
Seiler J. G., III, Valadie A. L., III, Drvaric D. M., Frederick R. W., Whitesides T. E., Jr (1996). Perioperative compartment syndrome. A report of four cases. J. Bone & Jt. Surg. 78, 600–602. 10.2106/00004623-199604000-00017 PubMed DOI
Sellei R., Hingmann S., Kobbe P., Weber C., Grice J., Zimmerman F., et al. (2015a). Compartment elasticity measured by pressure-related ultrasound to determine patients "at risk" for compartment syndrome: An experimental in vitro study. Patient Saf. Surg. 9, 4. 10.1186/s13037-014-0051-4 PubMed DOI PMC
Sellei R. M., Hingmann S. J., Weber C., Jeromin S., Zimmermann F., Turner J., et al. (2015b). Assessment of elevated compartment pressures by pressure-related ultrasound: A cadaveric model. Eur. J. Trauma Emerg. Surg. 41, 639–645. 10.1007/s00068-014-0449-9 PubMed DOI
Sellei R. M., Wollnitz J., Reinhardt N., de la Fuente M., Radermacher K., Weber C., et al. (2020b). Non-invasive measurement of muscle compartment elasticity in lower limbs to determine acute compartment syndrome: Clinical results with pressure related ultrasound. Injury 51, 301–306. 10.1016/j.injury.2019.11.027 PubMed DOI
Sellei R., Warkotsch U., Kobbe P., Weber C., Reinhardt N., de la Fuente M., et al. (2020a). Non-invasive and reliable assessment of compartment elasticity by pressure related ultrasound: An in-vitro study. Injury 52 (4), 724–730. 10.1016/j.injury.2020.10.069 PubMed DOI
Shaaban-Ali M., Momeni M., Denault A. (2021). Clinical and technical limitations of cerebral and somatic near-infrared spectroscopy as an oxygenation monitor. J. Cardiothorac. Vasc. Anesth. 35, 763–779. 10.1053/j.jvca.2020.04.054 PubMed DOI
Shadgan B., Menon M., O'Brien P. J., Reid W. D. (2008). Diagnostic techniques in acute compartment syndrome of the leg. J. Orthop. Trauma 22, 581–587. 10.1097/BOT.0b013e318183136d PubMed DOI
Shakespeare D. T., Henderson N. J., Clough G. (1982). The slit catheter: A comparison with the wick catheter in the measurement of compartment pressure. Injury 13, 404–408. 10.1016/0020-1383(82)90094-8 PubMed DOI
Shuler M. S., Reisman W. M., Cole A. L., Whitesides T. E., Jr., Moore T. J. (2011). Near-infrared spectroscopy in acute compartment syndrome: Case report. Injury 42, 1506–1508. 10.1016/j.injury.2011.03.022 PubMed DOI
Shuler M. S., Reisman W. M., Kinsey T. L., Whitesides T. E., Jr, Hammerberg E. M., Davila M. G., et al. (2010). Correlation between muscle oxygenation and compartment pressures in acute compartment syndrome of the leg. J. Bone Jt. Surgery-American Volume 92, 863–870. 10.2106/jbjs.i.00816 PubMed DOI
Shuler M. S., Roskosky M., Kinsey T., Glaser D., Reisman W., Ogburn C., et al. (2018). Continual near-infrared spectroscopy monitoring in the injured lower limb and acute compartment syndrome. Bone & Jt. J. 100-b, 787–797. 10.1302/0301-620x.100b6.bjj-2017-0736.r3 PubMed DOI
Simms M. S., Terry T. (2005). Well leg compartment syndrome after pelvic and perineal surgery in the lithotomy position. Postgrad. Med. J. 81, 534–536. 10.1136/pgmj.2004.030965 PubMed DOI PMC
Steinberg B. D. (2005). Evaluation of limb compartments with increased interstitial pressure. An improved noninvasive method for determining quantitative hardness. J. Biomechanics 38, 1629–1635. 10.1016/j.jbiomech.2004.07.030 PubMed DOI
Steinberg B. D., Gelberman R. H. (1994). Evaluation of limb compartments with suspected increased interstitial pressure A noninvasive method for determining quantitative hardness. Clin. Orthop. Relat. Res. 300, 248–253. 10.1097/00003086-199403000-00034 PubMed DOI
Steinberg B., Riel R., Armitage M., Berrey H. (2011). Quantitative muscle hardness as a noninvasive means for detecting patients at risk of compartment syndromes. Physiol. Meas. 32, 433–444. 10.1088/0967-3334/32/4/005 PubMed DOI
Taylor R. M., Sullivan M. P., Mehta S. (2012). Acute compartment syndrome: Obtaining diagnosis, providing treatment, and minimizing medicolegal risk. Curr. Rev. Musculoskelet. Med. 5, 206–213. 10.1007/s12178-012-9126-y PubMed DOI PMC
Tischenko G. J., Goodman S. B. (1990). Compartment syndrome after intramedullary nailing of the tibia. J. Bone & Jt. Surg. 72, 41–44. 10.2106/00004623-199072010-00007 PubMed DOI
Tonkovic S., Tonkovic I., Kovacic D. (2000). Bioelectric impedance analysis of lower leg ischaemic muscles. Proc. 22nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (cat. No.00CH37143) 1, 757–760. 10.1109/IEMBS.2000.900859 DOI
Tonkovic S., Voloder D. (1998). “Compartmental syndrome diagnostics using custom designed bioimpedance analyzer,” in MELECON '98. 9th Mediterranean Electrotechnical Conference. Proceedings (Cat. No.98CH36056), Tel-Aviv, Israel, 18-20 May 1998 (IEEE; ), 1480–1484. 2. 10.1109/MELCON.1998.699486 DOI
Tran A. A., Lee D., Fassihi S. C., Smith E., Lee R., Siram G. (2020). A systematic review of the effect of regional anesthesia on diagnosis and management of acute compartment syndrome in long bone fractures. Eur. J. Trauma Emerg. Surg. 46, 1281–1290. 10.1007/s00068-020-01320-5 PubMed DOI
Tucker A. K. (2010). Chronic exertional compartment syndrome of the leg. Curr. Rev. Musculoskelet. Med. 3, 32–37. 10.1007/s12178-010-9065-4 PubMed DOI PMC
Ulmer T. (2002). The clinical diagnosis of compartment syndrome of the lower leg: Are clinical findings predictive of the disorder? J. Orthop. Trauma 16, 572–577. 10.1097/00005131-200209000-00006 PubMed DOI
Van Den Brand J. G. H., Sosef N. L., Verleisdonk E. J. M. M., van der Werken C. (2004). Acute compartment syndrome after lower leg fracture. Eur. J. Trauma 30, 93–97. 10.1007/s00068-004-1301-4 DOI
Velmahos G. C., Theodorou D., Demetriades D., Chan L., Berne T. V., Asensio J., et al. (1997). Complications and nonclosure rates of fasciotomy for trauma and related risk factors. World J. Surg. 21, 247–253. 10.1007/s002689900224 PubMed DOI
Verleisdonk E. J. M. M., Van Gils A., Van der Werken C. (2001). The diagnostic value of MRI scans for the diagnosis of chronic exertional compartment syndrome of the lower leg. Skelet. Radiol. 30, 321–325. 10.1007/s002560100361 PubMed DOI
Walters T. J., Kottke M. A., Hargens A. R., Ryan K. L. (2019). Noninvasive diagnostics for extremity compartment syndrome following traumatic injury: A state-of-the-art review. J. Trauma Acute Care Surg. 87, S59–S66. 10.1097/ta.0000000000002284 PubMed DOI
Ward L. (2009). Is BIS ready for prime time as the gold standard measure? J. Lymphoedema 4, 1.
Watanabe R., Kotoura H., Morishita Y. (1998). CT analysis of the use of the electrical impedance technique to estimate local oedema in the extremities in patients with lymphatic obstruction. Med. Biol. Eng. Comput. 36, 60–65. 10.1007/bf02522859 PubMed DOI
Whitesides T. E., Heckman M. M. (1996). Acute compartment syndrome: Update on diagnosis and treatment. J. Am. Acad. Orthop. Surg. 4, 209–218. 10.5435/00124635-199607000-00005 PubMed DOI
Wiemann J. M., Ueno T., Leek B. T., Yost W. T., Schwartz A. K., Hargens A. R. (2006). Noninvasive measurements of intramuscular pressure using pulsed phase-locked loop ultrasound for detecting compartment syndromes. J. Orthop. Trauma 20, 458–463. 10.1097/00005131-200608000-00002 PubMed DOI
Bioimpedance measurement: a non-invasive diagnosis of limb compartment syndrome