Searching for new mTOR kinase inhibitors: Analysis of binding sites and validation of docking protocols

. 2023 Jan ; 101 (1) : 103-119. [epub] 20220809

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35945665

The mammalian target of rapamycin (mTOR) is an important biological target for development of novel anticancer drugs and potential antiageing agents. Therefore, many scientific groups search for mTOR kinase inhibitors. Herein, we present structure-based approach which could be helpful in the studies on new bioactive compounds. Method validation was preceded by structural analysis of ATP catalytic cleft and FRB domain. In silico studies allowed us to point crucial amino acid residues for ligand binding and develop optimal docking protocols. The presented methodology could be applied for design and development of potential mTOR kinase inhibitors.

Zobrazit více v PubMed

Anandapadamanaban, M., Masson, G. R., Perisic, O., Berndt, A., Kaufman, J., Johnson, C. M., Santhanam, B., Rogala, K. B., Sabatini, D. M., & Williams, R. L. (2019). Architecture of human rag GTPase heterodimers and their complex with mTORC1. Science, 366(6462), 203-210. https://doi.org/10.1126/science.aax3939

Anisimov, V. N., Zabezhinski, M. A., Popovich, I. G., Piskunova, T. S., Semenchenko, A. V., Tyndyk, M. L., Yurova, M. N., Rosenfeld, S. V., & Blagosklonny, M. V. (2011). Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle, 10(24), 4230-4236. https://doi.org/10.4161/cc.10.24.18486

Aylett, C. H. S., Sauer, E., Imseng, S., Boehringer, D., Hall, M. N., Ban, N., & Maier, T. (2016). Architecture of human mTOR complex 1. Science, 351(6268), 48-52. https://doi.org/10.1126/science.aaa3870

Beaufils, F., Cmiljanovic, N., Cmiljanovic, V., Bohnacker, T., Melone, A., Marone, R., Jackson, E., Zhang, X., Sele, A., Borsari, C., Mestan, J., Hebeisen, P., Hillmann, P., Giese, B., Zvelebil, M., Fabbro, D., Williams, R. L., Rageot, D., & Wymann, M. P. (2017). 5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a potent, brain-penetrant, orally bioavailable, pan-class i PI3K/mTOR inhibitor as clinical candidate in oncology. Journal of Medicinal Chemistry, 60(17), 7524-7538. https://doi.org/10.1021/acs.jmedchem.7b00930

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235

Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545-1614. https://doi.org/10.1002/JCC.21287

Chen, X., Liu, M., Tian, Y., Li, J., Qi, Y., Zhao, D., Wu, Z., Huang, M., Wong, C. C. L., Wang, H. W., Wang, J., Yang, H., & Xu, Y. (2018). Cryo-EM structure of human mTOR complex 2. Cell Research, 28(5), 518-528. https://doi.org/10.1038/s41422-018-0029-3

Choi, J., Chen, J., Schreiber, S. L., & Clardy, J. (1996). Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science, 273(5272), 239-242. https://doi.org/10.1126/science.273.5272.239

Chresta, C. M., Davies, B. R., Hickson, I., Harding, T., Cosulich, S., Critchlow, S. E., Vincent, J. P., Ellston, R., Jones, D., Sini, P., James, D., Howard, Z., Dudley, P., Hughes, G., Smith, L., Maguire, S., Hummersone, M., Malagu, K., Menear, K., … Pass, M. (2010). AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Research, 70(1), 288-298. https://doi.org/10.1158/0008-5472.CAN-09-1751

Davies, M., Nowotka, M., Papadatos, G., Dedman, N., Gaulton, A., Atkinson, F., Bellis, L., & Overington, J. P. (2015). ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Research, 43(W1), W612-W620. https://doi.org/10.1093/NAR/GKV352

Feldman, M. E., Apsel, B., Uotila, A., Loewith, R., Knight, Z. A., Ruggero, D., & Shokat, K. M. (2009). Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biology, 7(2), 371-383. https://doi.org/10.1371/journal.pbio.1000038

Heimhalt, M., Berndt, A., Wagstaff, J., Anandapadamanaban, M., Perisic, O., Maslen, S., McLaughlin, S., Yu, C. W. H., Masson, G. R., Boland, A., Ni, X., Yamashita, K., Murshudov, G. N., Skehel, M., Freund, S. M., & Williams, R. L. (2021). Bipartite binding and partial inhibition links deptor and mtor in a mutually antagonistic embrace. eLife, 10, 1-38. https://doi.org/10.7554/ELIFE.68799

Jain, B. P., & Pandey, S. (2018). WD40 repeat proteins: Signalling scaffold with diverse functions. Protein Journal, 37, 391-406. https://doi.org/10.1007/s10930-018-9785-7

Jean, S., & Kiger, A. A. (2014). Classes of phosphoinositide 3-kinases at a glance. Journal of Cell Science, 127(5), 923-928. https://doi.org/10.1242/jcs.093773

Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859-1865. https://doi.org/10.1002/JCC.20945

Lau, W. C. Y., Li, Y., Liu, Z., Gao, Y., Zhang, Q., & Huen, M. S. Y. (2016). Structure of the human dimeric ATM kinase. Cell Cycle, 15(8), 1117-1124. https://doi.org/10.1080/15384101.2016.1158362

Lee, S. Y., Lee, H., Lee, H. K., Lee, S. W., Ha, S. C., Kwon, T., Seo, J. K., Lee, C., & Rhee, H. W. (2016). Proximity-directed labeling reveals a new rapamycin-induced heterodimer of FKBP25 and FRB in live cells. ACS Central Science, 2(8), 506-516. https://doi.org/10.1021/acscentsci.6b00137

Leone, M., Crowell, K. J., Chen, J., Jung, D., Chiang, G. G., Sareth, S., Abraham, R. T., & Pellecchia, M. (2006). The FRB domain of mTOR: NMR solution structure and inhibitor design. Biochemistry, 45(34), 10294-10302. https://doi.org/10.1021/bi060976+

Liang, J., Choi, J., & Clardy, J. (1999). Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2.2 Å resolution. Acta Crystallographica Section D: Biological Crystallography, 55(4), 736-744. https://doi.org/10.1107/S0907444998014747

Liu, G. Y., & Sabatini, D. M. (2020). mTOR at the nexus of nutrition, growth, ageing and disease. Nature Reviews Molecular Cell Biology, 21, 183-203. https://doi.org/10.1038/s41580-019-0199-y

Liu, Q., Wang, J., Kang, S. A., Thoreen, C. C., Hur, W., Ahmed, T., Sabatini, D. M., & Gray, N. S. (2011). Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. Journal of Medicinal Chemistry, 54(5), 1473-1480. https://doi.org/10.1021/jm101520v

Marz, A. M., Fabian, A.-K., Kozany, C., Bracher, A., & Hausch, F. (2013). Large FK506-binding proteins shape the pharmacology of rapamycin. Molecular and Cellular Biology, 33(7), 1357-1367. https://doi.org/10.1128/mcb.00678-12

Morad, S. A. F., Schmid, M., Büchele, B., Siehl, H. U., El Gafaary, M., Lunov, O., Syrovets, T., & Simmet, T. (2013). A novel semisynthetic inhibitor of the FRB domain of mammalian target of rapamycin blocks proliferation and triggers apoptosis in chemoresistant prostate cancer cells. Molecular Pharmacology, 83(2), 531-541. https://doi.org/10.1124/mol.112.081349

Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582-6594. https://doi.org/10.1021/jm300687e

Nguyen, T. L., Nokin, M. J., Egorov, M., Tome, M., Bodineau, C., Di Primo, C., Minder, L., Wdzieczak-Bakala, J., Garcia-Alvarez, M. C., Bignon, J. ôme, Thoison, O., Delpech, B., Surpateanu, G., Frapart, Y. M., Peyrot, F., Abbas, K., Teres, S., Evrard, S., Khatib, A. M., Soubeyran, P., Iorga, B. I., Duran, R. V., & Collin, P. (2018). MTOR inhibition via displacement of phosphatidic acid induces enhanced cytotoxicity specifically in cancer cells. Cancer Research, 78(18), 5384-5397. https://doi.org/10.1158/0008-5472.CAN-18-0232

Pike, K. G., Malagu, K., Hummersone, M. G., Menear, K. A., Duggan, H. M. E., Gomez, S., Martin, N. M. B., Ruston, L., Pass, S. L., & Pass, M. (2013). Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: The discovery of AZD8055 and AZD2014. Bioorganic and Medicinal Chemistry Letters, 23(5), 1212-1216. https://doi.org/10.1016/j.bmcl.2013.01.019

Raynaud, F. I., Eccles, S. A., Patel, S., Alix, S., Box, G., Chuckowree, I., Folkes, A., Gowan, S., Brandon, A. D. H., Di Stefano, F., Hayes, A., Henley, A. T., Lensun, L., Pergl-Wilson, G., Robson, A., Saghir, N., Zhyvoloup, A., McDonald, E., Sheldrake, P., … Workman, P. (2009). Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: From PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Molecular Cancer Therapeutics, 8(7), 1725-1738. https://doi.org/10.1158/1535-7163.MCT-08-1200

Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168, 960-976. https://doi.org/10.1016/j.cell.2017.02.004

Scaiola, A., Mangia, F., Imseng, S., Boehringer, D., Berneiser, K., Shimobayashi, M., Stuttfeld, E., Hall, M. N., Ban, N., & Maier, T. (2020). The 3.2-Å resolution structure of human mTORC2. Science Advances, 6(45), eabc1251. https://doi.org/10.1126/SCIADV.ABC1251

Sunami, T., Byrne, N., Diehl, R. E., Funabashi, K., Hall, D. L., Ikuta, M., Patel, S. B., Shipman, J. M., Smith, R. F., Takahashi, I., Zugay-Murphy, J., Iwasawa, Y., Lumb, K. J., Munshi, S. K., & Sharma, S. (2010). Structural basis of human p70 ribosomal S6 kinase-1 regulation by activation loop phosphorylation. Journal of Biological Chemistry, 285(7), 4587-4594. https://doi.org/10.1074/jbc.M109.040667

Sutherlin, D. P., Bao, L., Berry, M., Castanedo, G., Chuckowree, I., Dotson, J., Folks, A., Friedman, L., Goldsmith, R., Gunzner, J., Heffron, T., Lesnick, J., Lewis, C., Mathieu, S., Murray, J., Nonomiya, J., Pang, J., Pegg, N., Prior, W. W., … Olivero, A. (2011). Discovery of a potent, selective, and orally available class i phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. Journal of Medicinal Chemistry, 54(21), 7579-7587. https://doi.org/10.1021/jm2009327

Veverka, V., Crabbe, T., Bird, I., Lennie, G., Muskett, F. W., Taylor, R. J., & Carr, M. D. (2008). Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: Compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Oncogene, 27(5), 585-595. https://doi.org/10.1038/sj.onc.1210693

Vieira, T. F., Martins, F. G., Moreira, J. P., Barbosa, T., & Sousa, S. F. (2021). In silico identification of possible inhibitors for protein kinase B (PknB) of mycobacterium tuberculosis. Molecules, 26(20), 6162. https://doi.org/10.3390/molecules26206162

Vistusertib (AZD2014) For Recurrent Grade II-III Meningiomas. (2017). https://clinicaltrials.gov/ct2/show/NCT03071874

Wälchli, M., Berneiser, K., Mangia, F., Imseng, S., Craigie, L. M., Stuttfeld, E., Hall, M. N., & Maier, T. (2021). Regulation of human mTOR complexes by DEPTOR. eLife, 10, 1-19. https://doi.org/10.7554/ELIFE.70871

Wu, H. D., Kikuchi, M., Dagliyan, O., Aragaki, A. K., Nakamura, H., Dokholyan, N. V., Umehara, T., & Inoue, T. (2020). Rational design and implementation of a chemically inducible heterotrimerization system. Nature Methods, 17(9), 928-936. https://doi.org/10.1038/s41592-020-0913-x

Yang, H., Jiang, X., Li, B., Yang, H. J., Miller, M., Yang, A., Dhar, A., & Pavletich, N. P. (2017). Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature, 552(7685), 368-373. https://doi.org/10.1038/nature25023

Yang, H., Rudge, D. G., Koos, J. D., Vaidialingam, B., Yang, H. J., & Pavletich, N. P. (2013). MTOR kinase structure, mechanism and regulation. Nature, 497(7448), 217-223. https://doi.org/10.1038/nature12122

Yang, H., Wang, J., Liu, M., Chen, X., Huang, M., Tan, D., Dong, M. Q., Wong, C. C. L., Wang, J., Xu, Y., & Wang, H. W. (2016). 4.4 Å resolution Cryo-EM structure of human mTOR complex 1. Protein and Cell, 7(12), 878-887. https://doi.org/10.1007/s13238-016-0346-6

Zou, Z., Tao, T., Li, H., & Zhu, X. (2020). MTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell & Bioscience, 10(1), 1-11. https://doi.org/10.1186/s13578-020-00396-1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...