docking validation
Dotaz
Zobrazit nápovědu
The mammalian target of rapamycin (mTOR) is an important biological target for development of novel anticancer drugs and potential antiageing agents. Therefore, many scientific groups search for mTOR kinase inhibitors. Herein, we present structure-based approach which could be helpful in the studies on new bioactive compounds. Method validation was preceded by structural analysis of ATP catalytic cleft and FRB domain. In silico studies allowed us to point crucial amino acid residues for ligand binding and develop optimal docking protocols. The presented methodology could be applied for design and development of potential mTOR kinase inhibitors.
- MeSH
- inhibitory proteinkinas farmakologie chemie MeSH
- protinádorové látky * MeSH
- sirolimus * MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
The increasing resistance of pathogens to common antibiotics, as well as the need to control urease activity to improve the yield of soil nitrogen fertilization in agricultural applications, has stimulated the development of novel classes of molecules that target urease as an enzyme. In this context, the newly developed compounds on the basis of 1-heptanoyl-3-arylthiourea family were evaluated for Jack bean urease enzyme inhibition activity to validate their role as potent inhibitors of this enzyme. 1-Heptanoyl-3-arylthioureas were obtained in excellent yield and characterized through spectral and elemental analysis. All the compounds displayed remarkable potency against urease inhibition as compared to thiourea standard. It was found that novel compounds fulfill the criteria of drug-likeness by obeying Lipinski's rule of five. Particularly compound 4a and 4c can serve as lead molecules in 4D (drug designing discovery and development). Kinetic mechanism and molecular docking studies also carried out to delineate the mode of inhibition and binding affinity of the molecules.
- MeSH
- Canavalia enzymologie MeSH
- inhibitory enzymů chemie farmakologie MeSH
- kinetika MeSH
- molekulární struktura MeSH
- simulace molekulového dockingu * MeSH
- thiomočovina chemie farmakologie MeSH
- ureasa antagonisté a inhibitory metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MOTIVATION: Metallothionein-III (MT-III) displays neuro-inhibitory activity and is involved in the repair of neuronal damage. An altered expression level of MT-III suggests that it could be a mitigating factor in Alzheimer's disease (AD) neuronal dysfunction. Currently there are limited marketed drugs available against MT-III. The inhibitors are mostly pseudo-peptide based with limited ADMET. In our present study, available database InterBioScreen (natural compounds) was screened out for MT-III. Pharmacodynamics and pharmacokinetic studies were performed. Molecular docking and simulations of top hit molecules were performed to study complex stability. RESULTS: Study reveals potent selective molecules that interact and form hydrogen bonds with amino acids Ser-6 and Lys-22 are common to established melatonin inhibitors for MT-III. These include DMHMIO, MCA B and s27533 derivatives. The ADMET profiling was better with comparable interaction energy values. It includes properties like blood brain barrier, hepatotoxicity, druggability, mutagenicity and carcinogenicity. Molecular dynamics studies were performed to validate our findings.
- MeSH
- Alzheimerova nemoc metabolismus patologie MeSH
- biofyzikální jevy MeSH
- lidé MeSH
- proteiny nervové tkáně antagonisté a inhibitory chemie MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Acanthamoeba species are capable of causing amoebic keratitis (AK). As a monotherapy, alpha-mangostin is effective for the treatment of AK; however, its bioavailability is quite poor. Moreover, the efficacy of therapy is contingent on the parasite and virulent strains. To improve readiness against AK, it is necessary to find other derivatives with accurate target identification. Beta-tubulin (BT) has been used as a target for anti-Acanthamoeba (A. keratitis). In this work, therefore, a model of the BT protein of A. keratitis was constructed by homology modeling utilizing the amino acid sequence from NCBI (GenBank: JQ417907.1). Ramachandran Plot was responsible for validating the protein PDB. The verified BT PDB was used for docking with the specified ligand. Based on an improved docking score compared to alpha-mangostin (AM), two modified compounds were identified: 1,6-dihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C1) and 1,6-dihydroxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C2). In addition, molecular dynamics simulations were conducted to analyze the interaction characteristics of the two bound BT-new compound complexes. During simulations, the TRP9, ARG50, VAL52, and GLN122 residues of BT-C1 that align to the identical residues in BT-AM generate consistent hydrogen bond interactions with 0-3 and 0-2. However, the BT-C2 complex has a different binding site, TYR 258, ILE 281, and SER 302, and can form more hydrogen bonds in the range 0-4. Therefore, this study reveals that C1 and C2 inhibit BT as an additive or synergistic effect; however, further in vitro and in vivo studies are needed.
- MeSH
- Acanthamoeba * MeSH
- akantamébová keratitida * parazitologie MeSH
- lidé MeSH
- ligandy MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- tubulin MeSH
- xantony MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Rhomboids are intramembrane serine proteases with diverse physiological functions in organisms ranging from archaea to humans. Crystal structure analysis has provided a detailed understanding of the catalytic mechanism, and rhomboids have been implicated in various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has lagged behind, and previously described small molecule inhibitors displayed insufficient potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of novel scaffolds with reduced liabilities and the possibility for broad structural variations. Docking studies with the E. coli rhomboid GlpG indicated that 2-styryl substituted benzoxazinones might comprise novel rhomboid inhibitors. Protease in vitro assays confirmed activity of 2-styryl substituted benzoxazinones against GlpG but not against the soluble serine protease α-chymotrypsin. Furthermore, mass spectrometry analysis demonstrated covalent modification of the catalytic residue Ser201, corroborating the predicted mechanism of inhibition and the formation of an acyl enzyme intermediate. In conclusion, 2-styryl substituted benzoxazinones are a novel rhomboid inhibitor scaffold with ample opportunity for optimization.
- MeSH
- benzoxaziny chemická syntéza chemie MeSH
- chymotrypsin chemie MeSH
- DNA vazebné proteiny antagonisté a inhibitory chemie genetika MeSH
- Drosophila chemie MeSH
- endopeptidasy chemie genetika MeSH
- enzymatické testy MeSH
- Escherichia coli enzymologie MeSH
- inhibitory serinových proteinas chemická syntéza chemie MeSH
- katalytická doména MeSH
- lidé MeSH
- membránové proteiny antagonisté a inhibitory chemie genetika MeSH
- mutace MeSH
- objevování léků MeSH
- proteiny Drosophily metabolismus MeSH
- proteiny z Escherichia coli antagonisté a inhibitory chemie genetika MeSH
- serin chemie MeSH
- simulace molekulového dockingu MeSH
- skot MeSH
- styreny chemická syntéza chemie MeSH
- transformující růstový faktor alfa metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Aldo-keto reductase 1C3 (AKR1C3) catalyzes the reduction of androstenedione to testosterone and reduces the effectiveness of chemotherapeutics. AKR1C3 is a target for treatment of breast and prostate cancer and AKR1C3 inhibition could be an effective adjuvant therapy in the context of leukemia and other cancers. In the present study, steroidal bile acid fused tetrazoles were screened for their ability to inhibit AKR1C3. Four C24 bile acids with C-ring fused tetrazoles were moderate to strong AKR1C3 inhibitors (37-88% inhibition), while B-ring fused tetrazoles had no effect on AKR1C3 activity. Based on a fluorescence assay in yeast cells, these four compounds displayed no affinity for estrogen receptor-α, or the androgen receptor, suggesting a lack of estrogenic or androgenic effects. A top inhibitor showed specificity for AKR1C3 over AKR1C2, and inhibited AKR1C3 with an IC50 of ∼7 μM. The structure of AKR1C3·NADP+ in complex with this C-ring fused bile acid tetrazole was determined by X-ray crystallography at 1.4 Å resolution, revealing that the C24 carboxylate is anchored to the catalytic oxyanion site (H117, Y55); meanwhile the tetrazole interacts with a tryptophan (W227) important for steroid recognition. Molecular docking predicts that all four top AKR1C3 inhibitors bind with nearly identical geometry, suggesting that C-ring bile acid fused tetrazoles represent a new class of AKR1C3 inhibitors.
- Publikační typ
- časopisecké články MeSH
For coronaviruses, RNA-dependent RNA polymerase (RdRp) is an essential enzyme that catalyses the replication from RNA template and therefore remains an attractive therapeutic target for anti-COVID drug discovery. In the present study, we performed a comprehensive in silico screening for 16,776 potential molecules from recently established drug libraries based on two important pharmacophores (3-amino-4-phenylbutan-2-ol and piperazine). Based on initial assessment, 4042 molecules were obtained suitable as drug candidates, which were following Lipinski's rule. Molecular docking implemented for the analysis of molecular interactions narrowed this number of compounds down to 19. Subsequent to screening filtering criteria and considering the critical parameters viz. docking score and MM-GBSA binding free energy, 1-(4-((2S,3S)-3-amino-2-hydroxy-4-phenylbutyl)piperazin-1-yl)-3-phenylurea (compound 1) was accomplished to score highest in comparison to the remaining 18 shortlisted drug candidates. Notably, compound 1 displayed higher docking score (-8.069 kcal/mol) and MM-GBSA binding free energy (-49.56 kcal/mol) than the control drug, remdesivir triphosphate, the active form of remdesivir as well as adenosine triphosphate. Furthermore, a molecular dynamics simulation was carried out (100 ns), which substantiated the candidacy of compound 1 as better inhibitor. Overall, our systematic in silico study predicts the potential of compound 1 to exhibit a more favourable specific activity than remdesivir triphosphate. Hence, we suggest compound 1 as a novel potential drug candidate, which should be considered for further exploration and validation of its potential against SARS-CoV-2 in wet lab experimental studies.Communicated by Ramasawamy H. Sarma.
Cardiotonic steroids (CTS) are steroidal drugs, processed from the seeds and dried leaves of the genus Digitalis as well as from the skin and parotid gland of amphibians. The most commonly known CTS are ouabain, digoxin, digoxigenin and bufalin. CTS can be used for safer medication of congestive heart failure and other related conditions due to promising pharmacological and medicinal properties. Ouabain isolated from plants is widely utilized in in vitro studies to specifically block the sodium potassium (Na+/K+-ATPase) pump. For checking, whether ouabain derivatives are robust inhibitors of Na+/K+-ATPase pump, molecular docking simulation was performed between ouabain and its derivatives using YASARA software. The docking energy falls within the range of 8.470 kcal/mol to 7.234 kcal/mol, in which digoxigenin was found to be the potential ligand with the best docking energy of 8.470 kcal/mol. Furthermore, pharmacophore modeling was applied to decipher the electronic features of CTS. Molecular dynamics simulation was also employed to determine the conformational properties of Na+/K+-ATPase-ouabain and Na+/K+-ATPase-digoxigenin complexes with the plausible structural integrity through conformational ensembles for 100 ns which promoted digoxigenin as the most promising CTS for treating conditions of congestive heart failure patients.
- MeSH
- biologické modely MeSH
- difuze MeSH
- digoxin chemie farmakologie MeSH
- kvantitativní vztahy mezi strukturou a aktivitou MeSH
- ligandy MeSH
- ouabain chemie farmakologie MeSH
- reprodukovatelnost výsledků MeSH
- simulace molekulového dockingu * MeSH
- sodíko-draslíková ATPasa antagonisté a inhibitory metabolismus MeSH
- srdeční glykosidy farmakologie MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
This study aimed to investigate the effect of irisin on LPS-induced inflammation in RAW 264.7 macrophages through inhibition of the mitogen-activated protein kinase (MAPK) pathway. A network pharmacology-based approach, combined with molecular docking and in vitro validation were performed to identify the biological activity, key targets, and potential pharmacological mechanisms of irisin against LPS-induced inflammation. By matching 100 potential genes of irisin with 1893 ulcerative colitis (UC) related genes, 51 common genes were obtained. Using protein-protein interaction networks (PPI) and component-target network analysis,10 core genes of irisin on UC were further identified. The results of gene ontology (GO) enrichment analysis showed that the molecular mechanisms of irisin on UC were mainly related to major enrichment in the categories of response to xenobiotic stimulus, response to the drug, and negative regulation of gene expression. Molecular docking results showed good binding activity for almost all core component targets. More importantly, MTT assay and flow cytometry results showed that LPS-induced cytotoxicity was reversed by irisin, after coincubation with irisin, the level of IL-12 and IL-23 decreased in LPS-stimulated RAW264.7 macrophages. Irisin pretreatment significantly inhibited the phosphorylation of ERK and AKT and increased the expression of PPAR alpha and PPAR gamma. LPS-induced enhancement of phagocytosis and cell clearance were reversed by irisin pretreatment. Irisin ameliorated LPS-induced inflammation by inhibiting cytotoxicity and apoptosis, and this protective effect may be mediated through the MAPK pathway. These findings confirmed our prediction that irisin plays an anti-inflammatory role in LPS-induced inflammation via the MAPK pathway.
- MeSH
- fibronektiny * farmakologie MeSH
- lipopolysacharidy MeSH
- makrofágy MeSH
- mitogenem aktivované proteinkinasy * MeSH
- myši MeSH
- RAW 264.7 buňky MeSH
- simulace molekulového dockingu MeSH
- ulcerózní kolitida * MeSH
- zánět chemicky indukované farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Novel 4-aminoquinazoline-6-carboxamide derivatives bearing differently substituted aryl or heteroaryl groups at position 7 in the core were rationally designed, synthesized and evaluated for biological activity in vitro as phosphatidylinositol 4-kinase IIα (PI4K2A) inhibitors. The straightforward approach described here enabled the sequential, modular synthesis and broad functionalization of the scaffold in a mere six steps. The SAR investigation reported here is based on detailed structural analysis of the conserved binding mode of ATP and other adenine derivatives to the catalytic site of type II PI4Ks, combined with extensive docking studies. Several compounds exhibited significant activity against PI4K2A. Moreover, we solved a crystal structure of PI4K2B in complex with one of our lead ligand candidates, which validated the ligand binding site and pose predicted by our docking-based ligand model. These discoveries suggest that our structure-based approach may be further developed and employed to synthesize new inhibitors with optimized potency and selectivity for this class of PI4Ks.