Searching for new mTOR kinase inhibitors: Analysis of binding sites and validation of docking protocols
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35945665
DOI
10.1111/cbdd.14126
Knihovny.cz E-resources
- Keywords
- ATP-binding site, FRB domain, docking validation, inhibitors, mTOR kinase, protein structure analysis,
- MeSH
- Protein Kinase Inhibitors pharmacology chemistry MeSH
- Antineoplastic Agents * MeSH
- Sirolimus * MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Protein Kinase Inhibitors MeSH
- Antineoplastic Agents * MeSH
- Sirolimus * MeSH
The mammalian target of rapamycin (mTOR) is an important biological target for development of novel anticancer drugs and potential antiageing agents. Therefore, many scientific groups search for mTOR kinase inhibitors. Herein, we present structure-based approach which could be helpful in the studies on new bioactive compounds. Method validation was preceded by structural analysis of ATP catalytic cleft and FRB domain. In silico studies allowed us to point crucial amino acid residues for ligand binding and develop optimal docking protocols. The presented methodology could be applied for design and development of potential mTOR kinase inhibitors.
Doctoral School of Medical and Health Sciences Jagiellonian University Medical College Cracow Poland
See more in PubMed
Anandapadamanaban, M., Masson, G. R., Perisic, O., Berndt, A., Kaufman, J., Johnson, C. M., Santhanam, B., Rogala, K. B., Sabatini, D. M., & Williams, R. L. (2019). Architecture of human rag GTPase heterodimers and their complex with mTORC1. Science, 366(6462), 203-210. https://doi.org/10.1126/science.aax3939
Anisimov, V. N., Zabezhinski, M. A., Popovich, I. G., Piskunova, T. S., Semenchenko, A. V., Tyndyk, M. L., Yurova, M. N., Rosenfeld, S. V., & Blagosklonny, M. V. (2011). Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle, 10(24), 4230-4236. https://doi.org/10.4161/cc.10.24.18486
Aylett, C. H. S., Sauer, E., Imseng, S., Boehringer, D., Hall, M. N., Ban, N., & Maier, T. (2016). Architecture of human mTOR complex 1. Science, 351(6268), 48-52. https://doi.org/10.1126/science.aaa3870
Beaufils, F., Cmiljanovic, N., Cmiljanovic, V., Bohnacker, T., Melone, A., Marone, R., Jackson, E., Zhang, X., Sele, A., Borsari, C., Mestan, J., Hebeisen, P., Hillmann, P., Giese, B., Zvelebil, M., Fabbro, D., Williams, R. L., Rageot, D., & Wymann, M. P. (2017). 5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a potent, brain-penetrant, orally bioavailable, pan-class i PI3K/mTOR inhibitor as clinical candidate in oncology. Journal of Medicinal Chemistry, 60(17), 7524-7538. https://doi.org/10.1021/acs.jmedchem.7b00930
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235
Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545-1614. https://doi.org/10.1002/JCC.21287
Chen, X., Liu, M., Tian, Y., Li, J., Qi, Y., Zhao, D., Wu, Z., Huang, M., Wong, C. C. L., Wang, H. W., Wang, J., Yang, H., & Xu, Y. (2018). Cryo-EM structure of human mTOR complex 2. Cell Research, 28(5), 518-528. https://doi.org/10.1038/s41422-018-0029-3
Choi, J., Chen, J., Schreiber, S. L., & Clardy, J. (1996). Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science, 273(5272), 239-242. https://doi.org/10.1126/science.273.5272.239
Chresta, C. M., Davies, B. R., Hickson, I., Harding, T., Cosulich, S., Critchlow, S. E., Vincent, J. P., Ellston, R., Jones, D., Sini, P., James, D., Howard, Z., Dudley, P., Hughes, G., Smith, L., Maguire, S., Hummersone, M., Malagu, K., Menear, K., … Pass, M. (2010). AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Research, 70(1), 288-298. https://doi.org/10.1158/0008-5472.CAN-09-1751
Davies, M., Nowotka, M., Papadatos, G., Dedman, N., Gaulton, A., Atkinson, F., Bellis, L., & Overington, J. P. (2015). ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Research, 43(W1), W612-W620. https://doi.org/10.1093/NAR/GKV352
Feldman, M. E., Apsel, B., Uotila, A., Loewith, R., Knight, Z. A., Ruggero, D., & Shokat, K. M. (2009). Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biology, 7(2), 371-383. https://doi.org/10.1371/journal.pbio.1000038
Heimhalt, M., Berndt, A., Wagstaff, J., Anandapadamanaban, M., Perisic, O., Maslen, S., McLaughlin, S., Yu, C. W. H., Masson, G. R., Boland, A., Ni, X., Yamashita, K., Murshudov, G. N., Skehel, M., Freund, S. M., & Williams, R. L. (2021). Bipartite binding and partial inhibition links deptor and mtor in a mutually antagonistic embrace. eLife, 10, 1-38. https://doi.org/10.7554/ELIFE.68799
Jain, B. P., & Pandey, S. (2018). WD40 repeat proteins: Signalling scaffold with diverse functions. Protein Journal, 37, 391-406. https://doi.org/10.1007/s10930-018-9785-7
Jean, S., & Kiger, A. A. (2014). Classes of phosphoinositide 3-kinases at a glance. Journal of Cell Science, 127(5), 923-928. https://doi.org/10.1242/jcs.093773
Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859-1865. https://doi.org/10.1002/JCC.20945
Lau, W. C. Y., Li, Y., Liu, Z., Gao, Y., Zhang, Q., & Huen, M. S. Y. (2016). Structure of the human dimeric ATM kinase. Cell Cycle, 15(8), 1117-1124. https://doi.org/10.1080/15384101.2016.1158362
Lee, S. Y., Lee, H., Lee, H. K., Lee, S. W., Ha, S. C., Kwon, T., Seo, J. K., Lee, C., & Rhee, H. W. (2016). Proximity-directed labeling reveals a new rapamycin-induced heterodimer of FKBP25 and FRB in live cells. ACS Central Science, 2(8), 506-516. https://doi.org/10.1021/acscentsci.6b00137
Leone, M., Crowell, K. J., Chen, J., Jung, D., Chiang, G. G., Sareth, S., Abraham, R. T., & Pellecchia, M. (2006). The FRB domain of mTOR: NMR solution structure and inhibitor design. Biochemistry, 45(34), 10294-10302. https://doi.org/10.1021/bi060976+
Liang, J., Choi, J., & Clardy, J. (1999). Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2.2 Å resolution. Acta Crystallographica Section D: Biological Crystallography, 55(4), 736-744. https://doi.org/10.1107/S0907444998014747
Liu, G. Y., & Sabatini, D. M. (2020). mTOR at the nexus of nutrition, growth, ageing and disease. Nature Reviews Molecular Cell Biology, 21, 183-203. https://doi.org/10.1038/s41580-019-0199-y
Liu, Q., Wang, J., Kang, S. A., Thoreen, C. C., Hur, W., Ahmed, T., Sabatini, D. M., & Gray, N. S. (2011). Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. Journal of Medicinal Chemistry, 54(5), 1473-1480. https://doi.org/10.1021/jm101520v
Marz, A. M., Fabian, A.-K., Kozany, C., Bracher, A., & Hausch, F. (2013). Large FK506-binding proteins shape the pharmacology of rapamycin. Molecular and Cellular Biology, 33(7), 1357-1367. https://doi.org/10.1128/mcb.00678-12
Morad, S. A. F., Schmid, M., Büchele, B., Siehl, H. U., El Gafaary, M., Lunov, O., Syrovets, T., & Simmet, T. (2013). A novel semisynthetic inhibitor of the FRB domain of mammalian target of rapamycin blocks proliferation and triggers apoptosis in chemoresistant prostate cancer cells. Molecular Pharmacology, 83(2), 531-541. https://doi.org/10.1124/mol.112.081349
Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582-6594. https://doi.org/10.1021/jm300687e
Nguyen, T. L., Nokin, M. J., Egorov, M., Tome, M., Bodineau, C., Di Primo, C., Minder, L., Wdzieczak-Bakala, J., Garcia-Alvarez, M. C., Bignon, J. ôme, Thoison, O., Delpech, B., Surpateanu, G., Frapart, Y. M., Peyrot, F., Abbas, K., Teres, S., Evrard, S., Khatib, A. M., Soubeyran, P., Iorga, B. I., Duran, R. V., & Collin, P. (2018). MTOR inhibition via displacement of phosphatidic acid induces enhanced cytotoxicity specifically in cancer cells. Cancer Research, 78(18), 5384-5397. https://doi.org/10.1158/0008-5472.CAN-18-0232
Pike, K. G., Malagu, K., Hummersone, M. G., Menear, K. A., Duggan, H. M. E., Gomez, S., Martin, N. M. B., Ruston, L., Pass, S. L., & Pass, M. (2013). Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: The discovery of AZD8055 and AZD2014. Bioorganic and Medicinal Chemistry Letters, 23(5), 1212-1216. https://doi.org/10.1016/j.bmcl.2013.01.019
Raynaud, F. I., Eccles, S. A., Patel, S., Alix, S., Box, G., Chuckowree, I., Folkes, A., Gowan, S., Brandon, A. D. H., Di Stefano, F., Hayes, A., Henley, A. T., Lensun, L., Pergl-Wilson, G., Robson, A., Saghir, N., Zhyvoloup, A., McDonald, E., Sheldrake, P., … Workman, P. (2009). Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: From PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Molecular Cancer Therapeutics, 8(7), 1725-1738. https://doi.org/10.1158/1535-7163.MCT-08-1200
Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168, 960-976. https://doi.org/10.1016/j.cell.2017.02.004
Scaiola, A., Mangia, F., Imseng, S., Boehringer, D., Berneiser, K., Shimobayashi, M., Stuttfeld, E., Hall, M. N., Ban, N., & Maier, T. (2020). The 3.2-Å resolution structure of human mTORC2. Science Advances, 6(45), eabc1251. https://doi.org/10.1126/SCIADV.ABC1251
Sunami, T., Byrne, N., Diehl, R. E., Funabashi, K., Hall, D. L., Ikuta, M., Patel, S. B., Shipman, J. M., Smith, R. F., Takahashi, I., Zugay-Murphy, J., Iwasawa, Y., Lumb, K. J., Munshi, S. K., & Sharma, S. (2010). Structural basis of human p70 ribosomal S6 kinase-1 regulation by activation loop phosphorylation. Journal of Biological Chemistry, 285(7), 4587-4594. https://doi.org/10.1074/jbc.M109.040667
Sutherlin, D. P., Bao, L., Berry, M., Castanedo, G., Chuckowree, I., Dotson, J., Folks, A., Friedman, L., Goldsmith, R., Gunzner, J., Heffron, T., Lesnick, J., Lewis, C., Mathieu, S., Murray, J., Nonomiya, J., Pang, J., Pegg, N., Prior, W. W., … Olivero, A. (2011). Discovery of a potent, selective, and orally available class i phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. Journal of Medicinal Chemistry, 54(21), 7579-7587. https://doi.org/10.1021/jm2009327
Veverka, V., Crabbe, T., Bird, I., Lennie, G., Muskett, F. W., Taylor, R. J., & Carr, M. D. (2008). Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: Compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Oncogene, 27(5), 585-595. https://doi.org/10.1038/sj.onc.1210693
Vieira, T. F., Martins, F. G., Moreira, J. P., Barbosa, T., & Sousa, S. F. (2021). In silico identification of possible inhibitors for protein kinase B (PknB) of mycobacterium tuberculosis. Molecules, 26(20), 6162. https://doi.org/10.3390/molecules26206162
Vistusertib (AZD2014) For Recurrent Grade II-III Meningiomas. (2017). https://clinicaltrials.gov/ct2/show/NCT03071874
Wälchli, M., Berneiser, K., Mangia, F., Imseng, S., Craigie, L. M., Stuttfeld, E., Hall, M. N., & Maier, T. (2021). Regulation of human mTOR complexes by DEPTOR. eLife, 10, 1-19. https://doi.org/10.7554/ELIFE.70871
Wu, H. D., Kikuchi, M., Dagliyan, O., Aragaki, A. K., Nakamura, H., Dokholyan, N. V., Umehara, T., & Inoue, T. (2020). Rational design and implementation of a chemically inducible heterotrimerization system. Nature Methods, 17(9), 928-936. https://doi.org/10.1038/s41592-020-0913-x
Yang, H., Jiang, X., Li, B., Yang, H. J., Miller, M., Yang, A., Dhar, A., & Pavletich, N. P. (2017). Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature, 552(7685), 368-373. https://doi.org/10.1038/nature25023
Yang, H., Rudge, D. G., Koos, J. D., Vaidialingam, B., Yang, H. J., & Pavletich, N. P. (2013). MTOR kinase structure, mechanism and regulation. Nature, 497(7448), 217-223. https://doi.org/10.1038/nature12122
Yang, H., Wang, J., Liu, M., Chen, X., Huang, M., Tan, D., Dong, M. Q., Wong, C. C. L., Wang, J., Xu, Y., & Wang, H. W. (2016). 4.4 Å resolution Cryo-EM structure of human mTOR complex 1. Protein and Cell, 7(12), 878-887. https://doi.org/10.1007/s13238-016-0346-6
Zou, Z., Tao, T., Li, H., & Zhu, X. (2020). MTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell & Bioscience, 10(1), 1-11. https://doi.org/10.1186/s13578-020-00396-1