The natural cytotoxicity receptor genes in the family Felidae
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36056773
DOI
10.1111/tan.14803
Knihovny.cz E-zdroje
- Klíčová slova
- Felidae, comparative genomics, natural cytotoxicity receptor genes,
- MeSH
- alely MeSH
- buňky NK MeSH
- Felidae * genetika metabolismus MeSH
- fylogeneze MeSH
- kočky MeSH
- nukleotidy MeSH
- receptor 1 spouštějící přirozenou cytotoxicitu * genetika MeSH
- receptory spouštějící přirozenou cytotoxicitu genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nukleotidy MeSH
- receptor 1 spouštějící přirozenou cytotoxicitu * MeSH
- receptory spouštějící přirozenou cytotoxicitu MeSH
Natural killer (NK) cells belong to the innate immune system. The germline-encoded natural killer cell receptors represent activating and inhibitory receptors regulating multiple NK cell activities. The natural cytotoxicity receptors (NCRs) are activating natural cytotoxicity triggering receptors 1, 2, and 3 (NKp46, NKp44, and NKp30), encoded by the genes NCR1, NCR2, and NCR3, respectively. NCRs may be expressed in different cell types engaged in mechanisms of innate and adaptive immunity. The family Felidae, comprising the domestic cat and a wide variety of free-ranging species represents a well-suited model for biomedical and evolutionary studies. We characterized the NCR1, NCR2, and NCR3 genes in a panel of felid species. We confirmed the presence of potentially functional genes NCR1, NCR2, and NCR3 in all species. All three genes are conserved within the family and are similar to other phylogenetically related mammalian families. The NCR1 and NCR2 phylogenetic trees based on both nucleotide and protein sequences corresponded to the current zoological taxonomy, with some exceptions suggesting effects of different selection pressures in some species. Highly conserved NCR3 sequences did not allow a robust phylogenetic analysis. Most interspecific differences both at the nucleotide and protein level were found in NCR2. Within species, the most polymorphic CDS was detected in NCR1. Selection analyses indicated the effects of purifying selection on individual amino acid sites in all three genes. In stray cats, a rather high intraspecific diversity was observed.
Department of Animal Genetics VETUNI Brno Brno Czech Republic
Research Group Animal Immunogenomics CEITEC VETUNI Brno Brno Czech Republic
Research Institute of Wildlife Ecology VETMEDUNI Vienna Vienna Austria
Zobrazit více v PubMed
Barrow AD, Martin CJ, Colonna M. The natural cytotoxicity receptors in health and disease. Front Immunol. 2019;10:909. doi:10.3389/fimmu.2019.00909
Guethlein LA, Norman PJ, Hilton HG, Parham P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev. 2015;267(1):259-282. doi:10.1111/imr.12326
Hao L, Klein J, Nei M. Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals. Proc Natl Acad Sci U S A. 2006;103(9):3192-3197. doi:10.1073/pnas.0511280103
Kelley J, Walter L, Trowsdale J. Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet. 2005;1(2):e27. doi:10.1371/journal.pgen.0010027
Vermeulen BL, Devriendt B, Olyslaegers DA, et al. Natural killer cells: frequency, phenotype and function in healthy cats. Vet Immunol Immunopathol. 2012;150(1-2):69-78. doi:10.1016/j.vetimm.2012.08.010
Barrs VR. Feline Panleukopenia: a re-emergent disease. Vet Clin North Am Small Anim Pract. 2019;49(4):651-670. doi:10.1016/j.cvsm.2019.02.006
Hartmann K. Feline infectious peritonitis. Vet Clin North Am Small Anim Pract. 2005;35(1):39-79. doi:10.1016/j.cvsm.2004.10.011
Kruse PH, Matta J, Ugolini S, Vivier E. Natural cytotoxicity receptors and their ligands. Immunol Cell Biol. 2014;92(3):221-229. doi:10.1038/icb.2013.98
Hudspeth K, Silva-Santos B, Mavilio D. Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. Front Immunol. 2013;4:69. doi:10.3389/fimmu.2013.00069
Pazina T, Shemesh A, Brusilovsky M, Porgador A, Campbell KS. Regulation of the functions of natural cytotoxicity receptors by interactions with diverse ligands and alterations in splice variant expression. Front Immunol. 2017;8:369. doi:10.3389/fimmu.2017.00369
Shemesh A, Brusilovsky M, Kundu K, Ottolenghi A, Campbell K, Porgador A. Splice variants of human natural cytotoxicity receptors: novel innate immune checkpoints. Cancer Immunol Immunother. 2018;67:1871-1883. doi:10.1007/s00262-017-2104-x
Siewiera J, Gouilly J, Hocine HR, et al. Natural cytotoxicity receptor splice variants orchestrate the distinct functions of human natural killer cell subtypes. Nat Commun. 2015;6:10183. doi:10.1038/ncomms10183
Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44-49. doi:10.1126/science.1198687
Parham P, Moffett A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol. 2013;13(2):133-144. doi:10.1038/nri3370
Hollyoake M, Campbell R, Aguado B. NKp30 (NCR3) is a pseudogene in 12 inbred and wild mouse strains, but an expressed gene in Mus caroli. Mol Biol Evol. 2005;22:1661-1672. doi:10.1093/molbev/msi162
Bubenikova J, Vrabelova J, Stejskalova K, et al. Candidate gene markers associated with fecal shedding of the feline enteric coronavirus (FECV). Pathogens. 2020;9(11):958. doi:10.3390/pathogens9110958
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30(15):2114-2120. doi:10.1093/bioinformatics/btu170
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics; 2013;1303:3997. Accessed October 16, 2020. http://arxiv.org/abs/1303.3997
Breese MR, Liu Y. NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets. Bioinforma Oxf Engl. 2013;29(4):494-496. doi:10.1093/bioinformatics/bts731
McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303. doi:10.1101/gr.107524.110
Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinforma Oxf Engl. 2016;32(2):292-294. doi:10.1093/bioinformatics/btv566
Poplin R, Ruano-Rubio V, DePristo MA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2018;2018:201178. doi:10.1101/201178
Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568-576. doi:10.1101/gr.129684.111
Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156-2158. doi:10.1093/bioinformatics/btr330
Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. Variant review with the integrative genomics viewer. Cancer Res. 2017;77(21):e31-e34. doi:10.1158/0008-5472.CAN-17-0337
Hall T. BioEdit: a user-friendly biological sequence alignment program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98.
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299-3302. doi:10.1093/molbev/msx248
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. doi:10.1093/molbev/msy096
De Maria A, Ugolotti E, Rutjens E, et al. NKp44 expression, phylogenesis and function in non-human primate NK cells. Int Immunol. 2009;21(3):245-255. doi:10.1093/intimm/dxn144
Heinrich SK, Wachter B, Aschenborn OHK, et al. Feliform carnivores have a distinguished constitutive innate immune response. Biol Open. 2016;5(5):550-555. doi:10.1242/bio.014902
Heinrich SK, Hofer H, Courtiol A, et al. Cheetahs have a stronger constitutive innateimmunity than leopards. Sci Rep. 2017;7:44837. doi:10.1038/srep44837
Gazit R, Gruda R, Elboim M, et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol. 2006;7(5):517-523. doi:10.1038/ni1322
Charpak-Amikam Y, Kubsch T, Seidel E, et al. Human cytomegalovirus escapes immune recognition by NK cells through the downregulation of B7-H6 by the viral genes US18 and US20. Sci Rep. 2017;7(1):8661. doi:10.1038/s41598-017-08866-2
Mavoungou E, Held J, Mewono L, Kremsner PG. A Duffy binding-like domain is involved in the NKp30-mediated recognition of plasmodium falciparum-parasitized erythrocytes by natural killer cells. J Infect Dis. 2007;195(10):1521-1531. doi:10.1086/515579
Miletic A, Lenartic M, Popovic B, et al. NCR1-deficiency diminishes the generation of protective murine cytomegalovirus antibodies by limiting follicular helper T-cell maturation. Eur J Immunol. 2017;47(9):1443-1456. doi:10.1002/eji.201646763
Bubenikova J, Vychodilova L, Stejskalova K, et al. The population diversity of candidate genes for resistance/susceptibility to coronavirus infection in domestic cats: an inter-breed comparison. Pathogens. 2021;10(6):778. doi:10.3390/pathogens10060778
Kennedy MA. Feline infectious peritonitis: update on pathogenesis, diagnostics, and treatment. Vet Clin North Am Small Anim Pract. 2020;50(5):1001-1011. doi:10.1016/j.cvsm.2020.05.002
Simmonds P, Williams S, Harvala H. Understanding the outcomes of COVID-19-does the current model of an acute respiratory infection really fit? J Gen Virol. 2020;102(3):001545. doi:10.1099/jgv.0.001545