The natural cytotoxicity receptor genes in the family Felidae

. 2022 Dec ; 100 (6) : 597-609. [epub] 20220916

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36056773

Natural killer (NK) cells belong to the innate immune system. The germline-encoded natural killer cell receptors represent activating and inhibitory receptors regulating multiple NK cell activities. The natural cytotoxicity receptors (NCRs) are activating natural cytotoxicity triggering receptors 1, 2, and 3 (NKp46, NKp44, and NKp30), encoded by the genes NCR1, NCR2, and NCR3, respectively. NCRs may be expressed in different cell types engaged in mechanisms of innate and adaptive immunity. The family Felidae, comprising the domestic cat and a wide variety of free-ranging species represents a well-suited model for biomedical and evolutionary studies. We characterized the NCR1, NCR2, and NCR3 genes in a panel of felid species. We confirmed the presence of potentially functional genes NCR1, NCR2, and NCR3 in all species. All three genes are conserved within the family and are similar to other phylogenetically related mammalian families. The NCR1 and NCR2 phylogenetic trees based on both nucleotide and protein sequences corresponded to the current zoological taxonomy, with some exceptions suggesting effects of different selection pressures in some species. Highly conserved NCR3 sequences did not allow a robust phylogenetic analysis. Most interspecific differences both at the nucleotide and protein level were found in NCR2. Within species, the most polymorphic CDS was detected in NCR1. Selection analyses indicated the effects of purifying selection on individual amino acid sites in all three genes. In stray cats, a rather high intraspecific diversity was observed.

Zobrazit více v PubMed

Barrow AD, Martin CJ, Colonna M. The natural cytotoxicity receptors in health and disease. Front Immunol. 2019;10:909. doi:10.3389/fimmu.2019.00909

Guethlein LA, Norman PJ, Hilton HG, Parham P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol Rev. 2015;267(1):259-282. doi:10.1111/imr.12326

Hao L, Klein J, Nei M. Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals. Proc Natl Acad Sci U S A. 2006;103(9):3192-3197. doi:10.1073/pnas.0511280103

Kelley J, Walter L, Trowsdale J. Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet. 2005;1(2):e27. doi:10.1371/journal.pgen.0010027

Vermeulen BL, Devriendt B, Olyslaegers DA, et al. Natural killer cells: frequency, phenotype and function in healthy cats. Vet Immunol Immunopathol. 2012;150(1-2):69-78. doi:10.1016/j.vetimm.2012.08.010

Barrs VR. Feline Panleukopenia: a re-emergent disease. Vet Clin North Am Small Anim Pract. 2019;49(4):651-670. doi:10.1016/j.cvsm.2019.02.006

Hartmann K. Feline infectious peritonitis. Vet Clin North Am Small Anim Pract. 2005;35(1):39-79. doi:10.1016/j.cvsm.2004.10.011

Kruse PH, Matta J, Ugolini S, Vivier E. Natural cytotoxicity receptors and their ligands. Immunol Cell Biol. 2014;92(3):221-229. doi:10.1038/icb.2013.98

Hudspeth K, Silva-Santos B, Mavilio D. Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. Front Immunol. 2013;4:69. doi:10.3389/fimmu.2013.00069

Pazina T, Shemesh A, Brusilovsky M, Porgador A, Campbell KS. Regulation of the functions of natural cytotoxicity receptors by interactions with diverse ligands and alterations in splice variant expression. Front Immunol. 2017;8:369. doi:10.3389/fimmu.2017.00369

Shemesh A, Brusilovsky M, Kundu K, Ottolenghi A, Campbell K, Porgador A. Splice variants of human natural cytotoxicity receptors: novel innate immune checkpoints. Cancer Immunol Immunother. 2018;67:1871-1883. doi:10.1007/s00262-017-2104-x

Siewiera J, Gouilly J, Hocine HR, et al. Natural cytotoxicity receptor splice variants orchestrate the distinct functions of human natural killer cell subtypes. Nat Commun. 2015;6:10183. doi:10.1038/ncomms10183

Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331(6013):44-49. doi:10.1126/science.1198687

Parham P, Moffett A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol. 2013;13(2):133-144. doi:10.1038/nri3370

Hollyoake M, Campbell R, Aguado B. NKp30 (NCR3) is a pseudogene in 12 inbred and wild mouse strains, but an expressed gene in Mus caroli. Mol Biol Evol. 2005;22:1661-1672. doi:10.1093/molbev/msi162

Bubenikova J, Vrabelova J, Stejskalova K, et al. Candidate gene markers associated with fecal shedding of the feline enteric coronavirus (FECV). Pathogens. 2020;9(11):958. doi:10.3390/pathogens9110958

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30(15):2114-2120. doi:10.1093/bioinformatics/btu170

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics; 2013;1303:3997. Accessed October 16, 2020. http://arxiv.org/abs/1303.3997

Breese MR, Liu Y. NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets. Bioinforma Oxf Engl. 2013;29(4):494-496. doi:10.1093/bioinformatics/bts731

McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-1303. doi:10.1101/gr.107524.110

Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinforma Oxf Engl. 2016;32(2):292-294. doi:10.1093/bioinformatics/btv566

Poplin R, Ruano-Rubio V, DePristo MA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2018;2018:201178. doi:10.1101/201178

Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568-576. doi:10.1101/gr.129684.111

Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156-2158. doi:10.1093/bioinformatics/btr330

Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. Variant review with the integrative genomics viewer. Cancer Res. 2017;77(21):e31-e34. doi:10.1158/0008-5472.CAN-17-0337

Hall T. BioEdit: a user-friendly biological sequence alignment program for windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98.

Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299-3302. doi:10.1093/molbev/msx248

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. doi:10.1093/molbev/msy096

De Maria A, Ugolotti E, Rutjens E, et al. NKp44 expression, phylogenesis and function in non-human primate NK cells. Int Immunol. 2009;21(3):245-255. doi:10.1093/intimm/dxn144

Heinrich SK, Wachter B, Aschenborn OHK, et al. Feliform carnivores have a distinguished constitutive innate immune response. Biol Open. 2016;5(5):550-555. doi:10.1242/bio.014902

Heinrich SK, Hofer H, Courtiol A, et al. Cheetahs have a stronger constitutive innateimmunity than leopards. Sci Rep. 2017;7:44837. doi:10.1038/srep44837

Gazit R, Gruda R, Elboim M, et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol. 2006;7(5):517-523. doi:10.1038/ni1322

Charpak-Amikam Y, Kubsch T, Seidel E, et al. Human cytomegalovirus escapes immune recognition by NK cells through the downregulation of B7-H6 by the viral genes US18 and US20. Sci Rep. 2017;7(1):8661. doi:10.1038/s41598-017-08866-2

Mavoungou E, Held J, Mewono L, Kremsner PG. A Duffy binding-like domain is involved in the NKp30-mediated recognition of plasmodium falciparum-parasitized erythrocytes by natural killer cells. J Infect Dis. 2007;195(10):1521-1531. doi:10.1086/515579

Miletic A, Lenartic M, Popovic B, et al. NCR1-deficiency diminishes the generation of protective murine cytomegalovirus antibodies by limiting follicular helper T-cell maturation. Eur J Immunol. 2017;47(9):1443-1456. doi:10.1002/eji.201646763

Bubenikova J, Vychodilova L, Stejskalova K, et al. The population diversity of candidate genes for resistance/susceptibility to coronavirus infection in domestic cats: an inter-breed comparison. Pathogens. 2021;10(6):778. doi:10.3390/pathogens10060778

Kennedy MA. Feline infectious peritonitis: update on pathogenesis, diagnostics, and treatment. Vet Clin North Am Small Anim Pract. 2020;50(5):1001-1011. doi:10.1016/j.cvsm.2020.05.002

Simmonds P, Williams S, Harvala H. Understanding the outcomes of COVID-19-does the current model of an acute respiratory infection really fit? J Gen Virol. 2020;102(3):001545. doi:10.1099/jgv.0.001545

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Comparative genomics of the Leukocyte Receptor Complex in carnivores

. 2023 ; 14 () : 1197687. [epub] 20230510

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...