Spectral Transition for Dirac Operators with Electrostatic δ -Shell Potentials Supported on the Straight Line

. 2022 ; 94 (3) : 33. [epub] 20220830

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36062080

In this note the two dimensional Dirac operator A η with an electrostatic δ -shell interaction of strength η ∈ R supported on a straight line is studied. We observe a spectral transition in the sense that for the critical interaction strengths η = ± 2 the continuous spectrum of A η inside the spectral gap of the free Dirac operator A 0 collapses abruptly to a single point.

Zobrazit více v PubMed

Abramowitz M, Stegun I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Washington, D.C.: Wiley; 1984.

Arrizabalaga N, Mas A, Vega L. Shell interactions for Dirac operators. J. Math. Pures Appl. 2014;102:617–639. doi: 10.1016/j.matpur.2013.12.006. DOI

Arrizabalaga N, Mas A, Vega L. Shell interactions for Dirac operators: on the point spectrum and the confinement. SIAM J. Math. Anal. 2015;47:1044–1069. doi: 10.1137/14097759X. DOI

Barseghyan D, Exner P. A regular version of Smilansky model. J. Math. Phys. 2014;55:042104. doi: 10.1063/1.4870602. DOI

Barseghyan D, Exner P. A magnetic version of the Smilansky-Solomyak model. J. Phys. A. 2017;50:485203. doi: 10.1088/1751-8121/aa9234. DOI

Barseghyan D, Exner P, Khrabustovskyi A, Tater M. Spectral analysis of a class of Schrödinger operators exhibiting a parameter-dependent spectral transition. J. Phys. A. 2016;49:165302. doi: 10.1088/1751-8113/49/16/165302. DOI

Behrndt J, Exner P, Holzmann M, Lotoreichik V. On the spectral properties of Dirac operators with electrostatic DOI

Behrndt J, Exner P, Holzmann M, Lotoreichik V. On Dirac operators in DOI

Behrndt J , Hassi S, de Snoo HSV. Boundary Value Problems, Weyl Functions, and Differential Operators. Monographs in Mathematics 108. Cham: Birkhäuser/Springer; 2020.

Behrndt J, Holzmann M. On Dirac operators with electrostatic DOI

Behrndt J, Holzmann M, Mas A. Self-adjoint Dirac operators on domains in PubMed DOI PMC

Behrndt J , Holzmann M, Ourmières-Bonafos T, Pankrashkin K. Two-dimensional Dirac operators with singular interactions supported on closed curves. J. Funct. Anal. 2020;279:108700. doi: 10.1016/j.jfa.2020.108700. DOI

Behrndt J, Krejčiřík D. An indefinite Laplacian on a rectangle. J. Anal. Math. 2018;134:501–522. doi: 10.1007/s11854-018-0015-1. DOI

Behrndt J, Langer M. Boundary value problems for elliptic partial differential operators on bounded domains. J. Funct. Anal. 2007;243(2):536–565. doi: 10.1016/j.jfa.2006.10.009. DOI

Behrndt J, Rohleder J. Spectral analysis of selfadjoint elliptic differential operators, Dirichlet-to-Neumann maps, and abstract Weyl functions. Adv. Math. 2015;285:1301–1338. doi: 10.1016/j.aim.2015.08.016. DOI

Behrndt J, Rohleder J. Inverse problems with partial data for elliptic operators on unbounded Lipschitz domains. Inverse Prob. 2020;36:035009. doi: 10.1088/1361-6420/ab603d. DOI

Benguria RD, Fournais S, Stockmeyer E, Van Den Bosch H. Self-adjointness of two-dimensional Dirac operators on domains. Ann. Henri Poincaré. 2017;18:1371–1383. doi: 10.1007/s00023-017-0554-5. DOI

Benhellal B. Spectral properties of the Dirac operator coupled with DOI

Brüning, J., Geyler, V., Pankrashkin, K.: Spectra of self-adjoint extensions and applications to solvable Schrödinger operators. Rev. Math. Phys. 20, 1–70 (2008)

Cacciapuoti C, Pankrashkin K, Posilicano A. Self-adjoint indefinite Laplacians. J. Anal. Math. 2019;139:155–177. doi: 10.1007/s11854-019-0057-z. DOI

Cassano, B., Lotoreichik, V., Mas, A., Tušek, M.: General

Derkach VA, Malamud MM. Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 1991;95:1–95. doi: 10.1016/0022-1236(91)90024-Y. DOI

Derkach VA, Malamud MM. The extension theory of Hermitian operators and the moment problem. J. Math. Sci. 1995;73:141–242. doi: 10.1007/BF02367240. DOI

Gruber M, Leitner M. Spontaneous edge currents for the Dirac equation in two space dimensions. Lett. Math. Phys. 2006;75:25–37. doi: 10.1007/s11005-005-0036-4. DOI

Hassi S, de Snoo HSV. Some interpolation problems of Nevanlinna-Pick type. The Krein-Langer method. Oper. Theory Adv. Appl. 1998;106:201–216.

Holzmann M. A note on the three dimensional Dirac operator with zigzag type boundary conditions. Complex Anal. Oper. Theory. 2021;15:47. doi: 10.1007/s11785-021-01090-x. DOI

Ourmières-Bonafos T, Vega L. A strategy for self-adjointness of Dirac operators: application to the MIT bag model and DOI

Reed M, Simon B. Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. New York: Academic Press; 1975.

Solomyak M. On a differential operator appearing in the theory of irreversible quantum graphs. Waves Random Media. 2004;14:173–185. doi: 10.1088/0959-7174/14/1/018. DOI

Solomyak M. On the discrete spectrum of a family of differential operators. Funct. Anal. Appl. 2004;38:217–223. doi: 10.1023/B:FAIA.0000042806.71352.1b. DOI

Thaller B. The Dirac Equation. Texts and Monographs in Physics. Berlin: Springer; 1992.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...