Spectral Transition for Dirac Operators with Electrostatic δ -Shell Potentials Supported on the Straight Line
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36062080
PubMed Central
PMC9427928
DOI
10.1007/s00020-022-02711-6
PII: 2711
Knihovny.cz E-zdroje
- Klíčová slova
- Boundary triple, Dirac operator, Singular potential, Spectral transition,
- Publikační typ
- časopisecké články MeSH
In this note the two dimensional Dirac operator A η with an electrostatic δ -shell interaction of strength η ∈ R supported on a straight line is studied. We observe a spectral transition in the sense that for the critical interaction strengths η = ± 2 the continuous spectrum of A η inside the spectral gap of the free Dirac operator A 0 collapses abruptly to a single point.
Zobrazit více v PubMed
Abramowitz M, Stegun I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Washington, D.C.: Wiley; 1984.
Arrizabalaga N, Mas A, Vega L. Shell interactions for Dirac operators. J. Math. Pures Appl. 2014;102:617–639. doi: 10.1016/j.matpur.2013.12.006. DOI
Arrizabalaga N, Mas A, Vega L. Shell interactions for Dirac operators: on the point spectrum and the confinement. SIAM J. Math. Anal. 2015;47:1044–1069. doi: 10.1137/14097759X. DOI
Barseghyan D, Exner P. A regular version of Smilansky model. J. Math. Phys. 2014;55:042104. doi: 10.1063/1.4870602. DOI
Barseghyan D, Exner P. A magnetic version of the Smilansky-Solomyak model. J. Phys. A. 2017;50:485203. doi: 10.1088/1751-8121/aa9234. DOI
Barseghyan D, Exner P, Khrabustovskyi A, Tater M. Spectral analysis of a class of Schrödinger operators exhibiting a parameter-dependent spectral transition. J. Phys. A. 2016;49:165302. doi: 10.1088/1751-8113/49/16/165302. DOI
Behrndt J, Exner P, Holzmann M, Lotoreichik V. On the spectral properties of Dirac operators with electrostatic DOI
Behrndt J, Exner P, Holzmann M, Lotoreichik V. On Dirac operators in DOI
Behrndt J , Hassi S, de Snoo HSV. Boundary Value Problems, Weyl Functions, and Differential Operators. Monographs in Mathematics 108. Cham: Birkhäuser/Springer; 2020.
Behrndt J, Holzmann M. On Dirac operators with electrostatic DOI
Behrndt J, Holzmann M, Mas A. Self-adjoint Dirac operators on domains in PubMed DOI PMC
Behrndt J , Holzmann M, Ourmières-Bonafos T, Pankrashkin K. Two-dimensional Dirac operators with singular interactions supported on closed curves. J. Funct. Anal. 2020;279:108700. doi: 10.1016/j.jfa.2020.108700. DOI
Behrndt J, Krejčiřík D. An indefinite Laplacian on a rectangle. J. Anal. Math. 2018;134:501–522. doi: 10.1007/s11854-018-0015-1. DOI
Behrndt J, Langer M. Boundary value problems for elliptic partial differential operators on bounded domains. J. Funct. Anal. 2007;243(2):536–565. doi: 10.1016/j.jfa.2006.10.009. DOI
Behrndt J, Rohleder J. Spectral analysis of selfadjoint elliptic differential operators, Dirichlet-to-Neumann maps, and abstract Weyl functions. Adv. Math. 2015;285:1301–1338. doi: 10.1016/j.aim.2015.08.016. DOI
Behrndt J, Rohleder J. Inverse problems with partial data for elliptic operators on unbounded Lipschitz domains. Inverse Prob. 2020;36:035009. doi: 10.1088/1361-6420/ab603d. DOI
Benguria RD, Fournais S, Stockmeyer E, Van Den Bosch H. Self-adjointness of two-dimensional Dirac operators on domains. Ann. Henri Poincaré. 2017;18:1371–1383. doi: 10.1007/s00023-017-0554-5. DOI
Benhellal B. Spectral properties of the Dirac operator coupled with DOI
Brüning, J., Geyler, V., Pankrashkin, K.: Spectra of self-adjoint extensions and applications to solvable Schrödinger operators. Rev. Math. Phys. 20, 1–70 (2008)
Cacciapuoti C, Pankrashkin K, Posilicano A. Self-adjoint indefinite Laplacians. J. Anal. Math. 2019;139:155–177. doi: 10.1007/s11854-019-0057-z. DOI
Cassano, B., Lotoreichik, V., Mas, A., Tušek, M.: General
Derkach VA, Malamud MM. Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 1991;95:1–95. doi: 10.1016/0022-1236(91)90024-Y. DOI
Derkach VA, Malamud MM. The extension theory of Hermitian operators and the moment problem. J. Math. Sci. 1995;73:141–242. doi: 10.1007/BF02367240. DOI
Gruber M, Leitner M. Spontaneous edge currents for the Dirac equation in two space dimensions. Lett. Math. Phys. 2006;75:25–37. doi: 10.1007/s11005-005-0036-4. DOI
Hassi S, de Snoo HSV. Some interpolation problems of Nevanlinna-Pick type. The Krein-Langer method. Oper. Theory Adv. Appl. 1998;106:201–216.
Holzmann M. A note on the three dimensional Dirac operator with zigzag type boundary conditions. Complex Anal. Oper. Theory. 2021;15:47. doi: 10.1007/s11785-021-01090-x. DOI
Ourmières-Bonafos T, Vega L. A strategy for self-adjointness of Dirac operators: application to the MIT bag model and DOI
Reed M, Simon B. Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. New York: Academic Press; 1975.
Solomyak M. On a differential operator appearing in the theory of irreversible quantum graphs. Waves Random Media. 2004;14:173–185. doi: 10.1088/0959-7174/14/1/018. DOI
Solomyak M. On the discrete spectrum of a family of differential operators. Funct. Anal. Appl. 2004;38:217–223. doi: 10.1023/B:FAIA.0000042806.71352.1b. DOI
Thaller B. The Dirac Equation. Texts and Monographs in Physics. Berlin: Springer; 1992.