Continuum of sensory profiles in diabetes mellitus patients with and without neuropathy and pain

. 2022 Nov ; 26 (10) : 2198-2212. [epub] 20220915

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36069121

BACKGROUND: Quantitative sensory testing (QST) assesses the functional integrity of small and large nerve fibre afferents and central somatosensory pathways; QST was assumed to provide insight into the mechanisms of neuropathy. We analysed QST profiles and phenotypes in patients with diabetes mellitus to study whether these could differentiate patients with and without pain and neuropathy. METHODS: A standardized QST protocol was performed and 'loss and gain of function' abnormalities were analysed in four groups of subjects: diabetic patients with painful (pDSPN; n = 220) and non-painful distal symmetric polyneuropathy (nDSPN; n = 219), diabetic patients without neuropathy (DM; n = 23) and healthy non-diabetic subjects (n = 37). Based on the QST findings, diabetic subjects were further stratified into four predefined prototypic phenotypes: sensory loss (SL), thermal hyperalgesia (TH), mechanical hyperalgesia (MH) and healthy individuals. RESULTS: Patients in the pDSPN group showed the greatest hyposensitivity ('loss of function'), and DM patients showed the lowest, with statistically significant increases in thermal, thermal pain, mechanical and mechanical pain sensory thresholds. Accordingly, the frequency of the SL phenotype was significantly higher in the pDSPN subgroup (41.8%), than expected (p < 0.0042). The proportion of 'gain of function' abnormalities was low in both pDSPN and nDSPN patients without significant differences. CONCLUSIONS: There is a continuum in the sensory profiles of diabetic patients, with a more pronounced sensory loss in pDSPN group probably reflecting somatosensory nerve fibre degeneration. An analysis of 'gain of function' abnormalities (allodynia, hyperalgesia) did not offer a key to understanding the pathophysiology of spontaneous diabetic peripheral neuropathic pain. SIGNIFICANCE: This article, using quantitative sensory testing profiles in large cohorts of diabetic patients with and without polyneuropathy and pain, presents a continuum in the sensory profiles of diabetic patients, with more pronounced 'loss of function' abnormalities in painful polyneuropathy patients. Painful diabetic polyneuropathy probably represents a 'more progressed' type of neuropathy with more pronounced somatosensory nerve fibre degeneration. The proportion of 'gain of function' sensory abnormalities was low, and these offer limited understanding of pathophysiological mechanisms of spontaneous neuropathic pain.

Zobrazit více v PubMed

Baron, R. , Forster, M. , & Binder, A. (2012). Subgrouping of patients with neuropathic pain according to pain‐related sensory abnormalities: A first step to a stratified treatment approach. Lancet Neurology, 11, 999–1005. 10.1016/S1474-4422(12)70189-8 PubMed DOI

Baron, R. , Maier, C. , Attal, N. , Binder, A. , Bouhassira, D. , Cruccu, G. , Finnerup, N. B. , Haanpää, M. , Hansson, P. , Hüllemann, P. , Jensen, T. S. , Freynhagen, R. , Kennedy, J. D. , Magerl, W. , Mainka, T. , Reimer, M. , Rice, A. S. C. , Segerdahl, M. , Serra, J. , … Treede, R. D. (2017). Peripheral neuropathic pain: a mechanism‐related organizing principle based on sensory profiles. Pain, 158, 261–272. 10.1097/j.pain.0000000000000753 PubMed DOI PMC

Baumgartner, U. , Magerl, W. , Klein, T. , Hopf, H. C. , & Treede, R. D. (2002). Neurogenic hyperalgesia versus painful hypoalgesia: two distinct mechanisms of neuropathic pain. Pain, 96, 141–151. 10.1016/S0304-3959(01)00438-9 PubMed DOI

Beck, A. T. , Steer, R. A. , & Brown, G. (1996). Beck Depression Inventory–II (2nd ed.). Psychological corporation. 10.1037/t00742-000 DOI

Bordeleau, M. , Barron, D. , Léonard, G. , & Backonja, M. (2021). Realigning the role of quantitative sensory testing in sensory profiling of patients with and without neuropathic pain. Pain, 162, 2780. 10.1097/j.pain.0000000000002378 PubMed DOI

Bouhassira, D. , Attal, N. , Fermanian, J. , Alchaar, H. , Gautron, M. , Masquelier, E. , Rostaing, S. , Lanteri‐Minet, M. , Collin, E. , Grisart, J. , & Boureau, F. (2004). Development and validation of the neuropathic pain symptom inventory. Pain, 108, 248–257. 10.1016/j.pain.2003.12.024 PubMed DOI

Bril, V. , Tomioka, S. , Buchanan, R. A. , & Perkins, B. A. (2009). Reliability and validity of the modified Toronto Clinical Neuropathy Score in diabetic sensorimotor polyneuropathy. Diabetic Medicine, 26, 240–246. 10.1111/j.1464-5491.2009.02667.x PubMed DOI PMC

Demant, D. T. , Lund, K. , Vollert, J. , Maier, C. , Segerdahl, M. , Finnerup, N. B. , Jensen, T. S. , & Sindrup, S. H. (2014). The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, doubleblind, placebo‐controlled phenotype‐stratified study. Pain, 155, 2263–2273. 10.1016/j.pain.2014.08.014 PubMed DOI

Fields, H. L. , Rowbotham, M. , & Baron, R. (1998). Postherpetic neuralgia: Irritable nociceptors and deafferentation. Neurobiology of Disease, 5, 209–227. 10.1006/nbdi.1998.0204 PubMed DOI

Finnerup, N. B. , Haroutounian, S. , Kamerman, P. , Baron, R. , Bennett, D. L. H. , Bouhassira, D. , Cruccu, G. , Freeman, R. , Hansson, P. , Nurmikko, T. , Raja, S. N. , Rice, A. S. C. , Serra, J. , Smith, B. H. , Treede, R. D. , & Jensen, T. S. (2016). Neuropathic pain: an updated grading system for research and clinical practice. Pain, 157, 1599–1606. 10.1097/j.pain.0000000000000492 PubMed DOI PMC

Forstenpointner, J. , Ruscheweyh, R. , Attal, N. , Baron, R. , Bouhassira, D. , Enax‐Krumova, E. K. , Finnerup, N. B. , Freynhagen, R. , Gierthmühlen, J. , Hansson, P. , Jensen, T. S. , Maier, C. , Rice, A. S. C. , Segerdahl, M. , Tölle, T. , Treede, R. D. , & Vollert, J. (2021). No pain, still gain (of function): the relation between sensory profiles and the presence or absence of self‐reported pain in a large multicenter cohort of patients with neuropathy. Pain, 162, 718–727. 10.1097/j.pain.0000000000002058 PubMed DOI

Haroun, O. M. O. , Vollert, J. , Lockwood, D. N. , Bennett, D. L. H. , Pai, V. V. , Shetty, V. , Wakade, A. V. , Khodke, A. S. , Schilder, A. , Pfau, D. , Enax‐Krumova, E. K. , Maier, C. , Treede, R. D. , & Rice, A. S. C. (2019). Clinical characteristics of neuropathic pain in leprosy and associated somatosensory profiles: a deep phenotyping study in India. PAIN Reports, 4, e743. 10.1097/PR9.0000000000000743 PubMed DOI PMC

Krämer, H. H. , Schmelzl, M. R. , Birklein, F. , & Bickel, A. (2004). Electrically stimulated axon reflexes are diminished in diabetic small fiber neuropathies. Diabetes, 53, 769–774. 10.2337/diabetes.53.3.769 PubMed DOI

Maier, C. A. , Baron, R. , Tölle, T. R. , Binder, A. , Birbaumer, N. , Birklein, F. , Gierthmühlen, J. , Flor, H. , Geber, C. , Huge, V. , Krumova, E. K. , Landwehrmeyer, G. B. , Magerl, W. , Maihöfner, C. , Richter, H. , Rolke, R. , Scherens, A. , Schwarz, A. , Sommer, C. , … Treede, R. D. (2010). Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): Somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain, 150, 439–450. 10.1016/j.pain.2010.05.002 PubMed DOI

Merkies, I. , Schmitz, P. , van der Meche, F. , Samijn, J. , van Doorn, P. , & Inflammatory Neuropathy Cause and Treatment (INCAT) Group . (2002). Clinimetric evaluation of a new overall disability scale in immune mediated polyneuropathies. Journal of Neurology, Neurosurgery and Psychiatry, 72, 596–601. 10.1136/jnnp.72.5.596 PubMed DOI PMC

Phillips, T. J. , Brown, M. , Ramirez, J. D. , Perkins, J. , Woldeamanuel, Y. W. , Williams, A. C. , Orengo, C. , Bennett, D. L. , Bodi, I. , Cox, S. , Maier, C. , Krumova, E. K. , & Rice, A. S. (2014). Sensory, psychological, and metabolic dysfunction in HIV‐associated peripheral neuropathy: a cross‐sectional deep profiling study. Pain, 155, 1846–1860. 10.1016/j.pain.2014.06.014 PubMed DOI PMC

Raputova, J. , Srotova, I. , Vlckova, E. , Sommer, C. , Üçeyler, N. , Birklein, F. , Rittner, H. L. , Rebhorn, C. , Adamova, B. , Kovalova, I. , Kralickova Nekvapilova, E. , Forer, L. , Belobradkova, J. , Olsovsky, J. , Weber, P. , Dusek, L. , Jarkovsky, J. , & Bednarik, J. (2017). Sensory phenotype and risk factors for painful diabetic neuropathy: a cross‐sectional observational study. Pain, 158(12), 2340–2353. 10.1097/j.pain.0000000000001034 PubMed DOI PMC

Schmelz, M. (2021a). Reply to Vollert. Pain, 162, 1274–1275. 10.1097/j.pain.0000000000002135 PubMed DOI

Schmelz, M. (2021b). What can we learn from the failure of quantitative sensory testing? Pain, 162, 663–664. 10.1097/j.pain.0000000000002059 PubMed DOI

Spielberger, C. , Gorsuch, R. , Lushene, R. , Vagg, P. , & Jacobs, G. (1983). Manual for the State‐Trait Anxiety Inventory (Form Y1–Y2). Consulting Psychologists Press.

Sullivan, M. J. L. , Bishop, S. , & Pivik, J. (1995). The pain catastrophizing scale: Development and validation. Psychological Assessment, 7, 524–532. 10.1037/1040–3590.7.4.524 DOI

Themistocleous, A. C. , Ramirez, J. D. , Shillo, P. R. , Lees, J. G. , Selvarajah, D. , Orengo, C. , Tesfaye, S. , Rice, A. S. C. , & Bennett, D. L. H. (2016). The Pain in Neuropathy Study (PiNS): A cross‐sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain, 157, 1132–1145. 10.1097/j.pain.0000000000000491 PubMed DOI PMC

Treede, R. D. , Meyer, R. A. , Raja, S. N. , & Campbell, J. N. (1992). Peripheral and central mechanisms of cutaneous hyperalgesia. Progress in Neurobiology, 38, 397–421. 10.1113/jphysiol.1995.sp020619 PubMed DOI

Üçeyler, N. , Vollert, J. , Broll, B. , Riediger, N. , Langjahr, M. , Saffer, N. , Schubert, A. L. , Siedler, G. , & Sommer, C. (2018). Sensory profiles and skin innervation of patients with painful and painless neuropathies. Pain, 159, 1867–1876. 10.1097/j.pain.0000000000001287 PubMed DOI

Vollert, J. , Forstenpointner, J. , Enax‐Krumova, E. K. , Gierthmuhlen, J. , Tolle, T. , Treede, R. D. , & Baron, R. (2021). The need for previous knowledge does not render quantitative sensory testing a “failure” but part of a larger picture of the relationship between nociception and pain. Pain, 162, 1273–1274. 10.1097/j.pain.0000000000002138 PubMed DOI

Vollert, J. , Maier, C. , Attal, N. , Bennett, D. L. H. , Bouhassira, D. , Enax‐Krumova, E. K. , Finnerup, N. B. , Freynhagen, R. , Gierthmühlen, J. , Haanpää, M. , Hansson, P. , Hüllemann, P. , Jensen, T. S. , Magerl, W. , Ramirez, J. D. , Rice, A. S. C. , Schuh‐Hofer, S. , Segerdahl, M. , Serra, J. , … Baron, R. (2017). Stratifying patients with peripheral neuropathic pain based on sensory profiles: algorithm and sample size recommendations. Pain, 158, 1446–1455. 10.1097/j.pain.0000000000000935 PubMed DOI PMC

Vollert, J. , & Schmelz, M. (2021). Reply to Bordeleau et al. Pain, 162, 2780. 10.1097/j.pain.0000000000002377 PubMed DOI

Von Korff, M. , Ormel, J. , Keefe, F. , & Dworkin, S. (1992). Grading the severity of chronic pain. Pain, 50, 133–149. 10.1016/0304-3959(92)90154-4 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...