Circulating tumor DNA in Hodgkin lymphoma
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
PRIMUS/17/MED/9; UNCE/MED/016; SVV260521
Univerzita Karlova v Praze
Cooperatio
Univerzita Karlova v Praze
NU22-03-00182
Agentura Pro Zdravotnický Výzkum České Republiky
MH CZ-DRO
Ministerstvo Zdravotnictví Ceské Republiky
00064165
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
36074181
PubMed Central
PMC9546971
DOI
10.1007/s00277-022-04949-x
PII: 10.1007/s00277-022-04949-x
Knihovny.cz E-zdroje
- Klíčová slova
- Circulating tumor DNA, Genomic profile, Hodgkin lymphoma, Risk factors, ctDNA,
- MeSH
- cirkulující nádorová DNA * genetika MeSH
- DNA nádorová genetika MeSH
- fosfatidylinositol-3-kinasy MeSH
- Hodgkinova nemoc * diagnóza genetika MeSH
- lidé MeSH
- mutace MeSH
- nádorové biomarkery genetika MeSH
- NF-kappa B MeSH
- protoonkogenní proteiny c-akt MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cirkulující nádorová DNA * MeSH
- DNA nádorová MeSH
- nádorové biomarkery MeSH
- NF-kappa B MeSH
- protoonkogenní proteiny c-akt MeSH
Somatic mutations of genes involved in NF-κB, PI3K/AKT, NOTCH, and JAK/STAT signaling pathways play an important role in the pathogenesis of Hodgkin lymphoma (HL). HL tumor cells form only about 5% of the tumor mass; however, it was shown that HL tumor-derived DNA could be detected in the bloodstream. This circulating tumor DNA (ctDNA) reflects the genetic profile of HL tumor cells and can be used for qualitative and quantitative analysis of tumor-specific somatic DNA mutations within the concept of liquid biopsy. Overall, the most frequently mutated gene in HL is STAT6; however, the exact spectrum of mutations differs between individual HL histological subtypes. Importantly, reduction of ctDNA plasma levels after initial treatment is highly correlated with prognosis. Therefore, ctDNA shows great promise as a novel tool for non-invasive tumor genome analysis for biomarker driven therapy as well as for superior minimal residual disease monitoring and treatment resistance detection. Here, we summarize the recent advancements of ctDNA analysis in HL with focus on ctDNA detection methodologies, genetic profiling of HL and its clonal evolution, and the emerging prognostic value of ctDNA.
1st Department of Medicine Hematology General University Hospital Prague Czech Republic
BIOCEV 1st Faculty of Medicine Charles University Prumyslova 595 25250 Vestec Czech Republic
Zobrazit více v PubMed
Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390. doi: 10.1182/blood-2016-01-643569. PubMed DOI PMC
Kanzler H, Küppers R, Hansmann ML, et al. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med. 1996;184(4):1495–1505. doi: 10.1084/jem.184.4.1495. PubMed DOI PMC
Küppers R, Engert A, Hansmann ML. Hodgkin lymphoma. J Clin Investig. 2012;122(10):3439–3447. doi: 10.1172/jci61245. PubMed DOI PMC
Mathas S, Hartmann S, Küppers R. Hodgkin lymphoma: pathology and biology. Semin Hematol. 2016;53(3):139–147. doi: 10.1053/j.seminhematol.2016.05.007. PubMed DOI
Dusek L, Muzik J, Maluskova D, et al. Cancer incidence and mortality in the Czech Republic. Klin Onkol. 2014;27(6):406–423. doi: 10.14735/amko2014406. PubMed DOI
Connors JM, Cozen W, Steidl C, et al. Hodgkin lymphoma. Nat Rev Dis Primers. 2020;6(1):61. doi: 10.1038/s41572-020-0189-6. PubMed DOI
Borchmann P, Plütschow A, Kobe C, et al. PET-guided omission of radiotherapy in early-stage unfavourable Hodgkin lymphoma (GHSG HD17): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(2):223–234. doi: 10.1016/s1470-2045(20)30601-x. PubMed DOI
Casasnovas RO, Bouabdallah R, Brice P, et al. PET-adapted treatment for newly diagnosed advanced Hodgkin lymphoma (AHL2011): a randomised, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 2019;20(2):202–215. doi: 10.1016/s1470-2045(18)30784-8. PubMed DOI
Fuchs M, Goergen H, Kobe C, et al. Positron emission tomography-guided treatment in early-stage favorable hodgkin lymphoma: final results of the international, randomized phase III HD16 trial by the German Hodgkin study group. J Clin Oncol. 2019;37(31):2835–2845. doi: 10.1200/jco.19.00964. PubMed DOI
Kral Z, Michalka J, Mocikova H, et al. Treatment of relapsed/refractory Hodgkin lymphoma: real-world data from the Czech Republic and Slovakia. J Cancer. 2019;10(21):5041–5048. doi: 10.7150/jca.29308. PubMed DOI PMC
Mocikova H, Markova J, Gaherova L et al [Treatment of relapsed and refractory Hodgkin lymphoma - recommendations of the Czech Hodgkin lymphoma study group]. Klin Onkol 29 (5):342–346. 10.14735/amko2016342 PubMed
Mocikova H, Sykorova A, Stepankova P, et al. Treatment and prognosis of relapsed or refractory Hodgkin lymphoma patients ineligible for stem cell transplantation. Klin Onkol. 2014;27(6):424–428. doi: 10.14735/amko2014424. PubMed DOI
Josting A, Franklin J, May M, et al. New prognostic score based on treatment outcome of patients with relapsed Hodgkin’s lymphoma registered in the database of the German Hodgkin’s lymphoma study group. J Clin Oncol. 2002;20(1):221–230. doi: 10.1200/jco.2002.20.1.221. PubMed DOI
Moskowitz CH, Matasar MJ, Zelenetz AD, et al. Normalization of pre-ASCT, FDG-PET imaging with second-line, non-cross-resistant, chemotherapy programs improves event-free survival in patients with Hodgkin lymphoma. Blood. 2012;119(7):1665–1670. doi: 10.1182/blood-2011-10-388058. PubMed DOI PMC
Moskowitz CH, Nimer SD, Zelenetz AD, et al. A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: analysis by intent to treat and development of a prognostic model. Blood. 2001;97(3):616–623. doi: 10.1182/blood.v97.3.616. PubMed DOI
Cuccaro A, Bartolomei F, Cupelli E, et al. Prognostic factors in hodgkin lymphoma. Mediterr J Hematol Infect Dis. 2014;6(1):e2014053. doi: 10.4084/mjhid.2014.053. PubMed DOI PMC
Bröckelmann PJ, Engert A. The GHSG approach to treating Hodgkin’s lymphoma. Curr Hematol Malig Rep. 2015;10(3):256–265. doi: 10.1007/s11899-015-0262-5. PubMed DOI
Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin's Disease. N Engl J Med. 1998;339(21):1506–1514. doi: 10.1056/nejm199811193392104. PubMed DOI
Bari A, Marcheselli R, Sacchi S, et al. The classic prognostic factors in advanced Hodgkin’s lymphoma patients are losing their meaning at the time of pet-guided treatments. Ann Hematol. 2020;99(2):277–282. doi: 10.1007/s00277-019-03893-7. PubMed DOI PMC
Eichenauer DA, Engert A, Dreyling M (2011) Hodgkin's lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 22(Suppl 6):vi55-58. 10.1093/annonc/mdr37 PubMed
Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–3068. doi: 10.1200/jco.2013.54.8800. PubMed DOI PMC
Cheson BD, Ansell S, Schwartz L, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128(21):2489–2496. doi: 10.1182/blood-2016-05-718528. PubMed DOI
Hutchings M, Loft A, Hansen M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107(1):52–59. doi: 10.1182/blood-2005-06-2252. PubMed DOI
Kanoun S, Rossi C, Berriolo-Riedinger A, et al. Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2014;41(9):1735–1743. doi: 10.1007/s00259-014-2783-x. PubMed DOI
Aldin A, Umlauff L, Estcourt LJ, et al. Interim PET-results for prognosis in adults with Hodgkin lymphoma: a systematic review and meta-analysis of prognostic factor studies. Cochrane Database Syst Rev. 2019;9:CD012643. doi: 10.1002/14651858.CD012643.pub2. PubMed DOI PMC
Adams HJA, Kwee TC. Reply: interim PET in Hodgkin lymphoma: is it so useless? J Nucl Med. 2017;58(7):1180–1182. doi: 10.2967/jnumed.117.192294. PubMed DOI
Raemaekers JM, André MP, Federico M, et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014;32(12):1188–1194. doi: 10.1200/jco.2013.51.9298. PubMed DOI
Radford J, Illidge T, Counsell N, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372(17):1598–1607. doi: 10.1056/NEJMoa1408648. PubMed DOI
André MPE, Girinsky T, Federico M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2017;35(16):1786–1794. doi: 10.1200/jco.2016.68.6394. PubMed DOI
Borchmann P, Goergen H, Kobe C, et al. PET-guided treatment in patients with advanced-stage Hodgkin’s lymphoma (HD18): final results of an open-label, international, randomised phase 3 trial by the German Hodgkin study group. Lancet. 2018;390(10114):2790–2802. doi: 10.1016/s0140-6736(17)32134-7. PubMed DOI
Engert A, Haverkamp H, Kobe C, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–1799. doi: 10.1016/s0140-6736(11)61940-5. PubMed DOI
Johnson P, Federico M, Kirkwood A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–2429. doi: 10.1056/NEJMoa1510093. PubMed DOI PMC
Balaj L, Lessard R, Dai L, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180. doi: 10.1038/ncomms1180. PubMed DOI PMC
Lehmann-Werman R, Neiman D, Zemmour H, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci USA. 2016;113(13):E1826–1834. doi: 10.1073/pnas.1519286113. PubMed DOI PMC
Mouliere F, El Messaoudi S, Pang D, et al. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol. 2014;8(5):927–941. doi: 10.1016/j.molonc.2014.02.005. PubMed DOI PMC
Hudecova I, Smith CG, Hänsel-Hertsch R, et al. Characteristics, origin, and potential for cancer diagnostics of ultrashort plasma cell-free DNA. Genome Res. 2022;32(2):215–227. doi: 10.1101/gr.275691.121. PubMed DOI PMC
Burnham P, Kim MS, Agbor-Enoh S, et al. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma. Sci Rep. 2016;6:27859. doi: 10.1038/srep27859. PubMed DOI PMC
Fettke H, Kwan EM, Azad AA. Cell-free DNA in cancer: current insights. Cell Oncol (Dordr) 2019;42(1):13–28. doi: 10.1007/s13402-018-0413-5. PubMed DOI
Sisson BA, Uvalic J, Kelly K, et al. Technical and regulatory considerations for taking liquid biopsy to the clinic: validation of the JAX PlasmaMonitor(TM) assay. Biomark Insights. 2019;14:1177271919826545. doi: 10.1177/1177271919826545. PubMed DOI PMC
Oshi M, Murthy V, Takahashi H, et al. Urine as a source of liquid biopsy for cancer. Cancers. 2021;13(11):2652. doi: 10.3390/cancers13112652. PubMed DOI PMC
Wang Z, Zhang L, Li L, et al. Sputum cell-free DNA: valued surrogate sample for detection of EGFR mutation in patients with advanced lung adenocarcinoma. J Mol Diagn. 2020;22(7):934–942. doi: 10.1016/j.jmoldx.2020.04.208. PubMed DOI
Sabela B, Marta C, Laura E, et al. Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica. 2020;106(2):513–521. doi: 10.3324/haematol.2019.241208. PubMed DOI PMC
de Kock R, Knoops C, Baselmans M, et al. Sensitive cell-free tumor DNA analysis in supernatant pleural effusions supports therapy selection and disease monitoring of lung cancer patients. Cancer Treat Res Commun. 2021;29:100449. doi: 10.1016/j.ctarc.2021.100449. PubMed DOI
Cui Y, Kim HS, Cho ES, et al. Longitudinal detection of somatic mutations in saliva and plasma for the surveillance of oral squamous cell carcinomas. PLoS ONE. 2021;16(9):e0256979. doi: 10.1371/journal.pone.0256979. PubMed DOI PMC
Deans ZC, Butler R, Cheetham M, et al. IQN path ASBL report from the first European cfDNA consensus meeting: expert opinion on the minimal requirements for clinical ctDNA testing. Virchows Arch. 2019;474(6):681–689. doi: 10.1007/s00428-019-02571-3. PubMed DOI PMC
Jung M, Klotzek S, Lewandowski M, et al. Changes in concentration of DNA in serum and plasma during storage of blood samples. Clin Chem. 2003;49(6 Pt 1):1028–1029. doi: 10.1373/49.6.1028. PubMed DOI
van Ginkel JH, van den Broek DA, van Kuik J, et al. Preanalytical blood sample workup for cell-free DNA analysis using droplet digital PCR for future molecular cancer diagnostics. Cancer Med. 2017;6(10):2297–2307. doi: 10.1002/cam4.1184. PubMed DOI PMC
Risberg B, Tsui DWY, Biggs H, et al. Effects of collection and processing procedures on plasma circulating cell-free DNA from cancer patients. J Mol Diagn. 2018;20(6):883–892. doi: 10.1016/j.jmoldx.2018.07.005. PubMed DOI PMC
Jain S, Lin SY, Song W, et al. Urine-based liquid biopsy for nonurological cancers. Genet Test Mol Biomarkers. 2019;23(4):277–283. doi: 10.1089/gtmb.2018.0189. PubMed DOI PMC
Mutter JA, Alig S, Lauer EM, et al. Profiling of circulating tumor DNA for noninvasive disease detection, risk stratification, and MRD monitoring in patients with CNS lymphoma. Blood. 2021;138(Supplement 1):6–6. doi: 10.1182/blood-2021-149644. PubMed DOI
Bailey MH, Tokheim C, Porta-Pardo E, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173(2):371–385.e318. doi: 10.1016/j.cell.2018.02.060. PubMed DOI PMC
Zhong Q, Bhattacharya S, Kotsopoulos S, et al. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip. 2011;11(13):2167–2174. doi: 10.1039/c1lc20126c. PubMed DOI
Lea B. Somatic mutations of cell-free circulating DNA detected by targeted next-generation sequencing and digital droplet PCR in classical Hodgkin lymphoma”. Leuk Lymphoma. 2019;60(2):498–502. doi: 10.1080/10428194.2018.1492123. PubMed DOI
Appay R, Fina F, Barets D, et al. Multiplexed droplet digital PCR assays for the simultaneous screening of major genetic alterations in tumors of the central nervous system. Front Oncol. 2020;10:579762. doi: 10.3389/fonc.2020.579762. PubMed DOI PMC
Cavalli M, De Novi LA, Della Starza I, et al. Comparative analysis between RQ-PCR and digital droplet PCR of BCL2/IGH gene rearrangement in the peripheral blood and bone marrow of early stage follicular lymphoma. Br J Haematol. 2017;177(4):588–596. doi: 10.1111/bjh.14616. PubMed DOI
Wang Q, Yang X, He Y, et al. Droplet digital PCR for absolute quantification of EML4-ALK gene rearrangement in lung adenocarcinoma. J Mol Diagn. 2015;17(5):515–520. doi: 10.1016/j.jmoldx.2015.04.002. PubMed DOI
Camus V, Viennot M, Lequesne J, et al. Targeted genotyping of circulating tumor DNA for classical Hodgkin lymphoma monitoring: a prospective study. Haematologica. 2021;106(1):154–162. doi: 10.3324/haematol.2019.237719. PubMed DOI PMC
Newman AM, Lovejoy AF, Klass DM, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34(5):547–555. doi: 10.1038/nbt.3520. PubMed DOI PMC
Kennedy SR, Schmitt MW, Fox EJ, et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat Protoc. 2014;9(11):2586–2606. doi: 10.1038/nprot.2014.170. PubMed DOI PMC
Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–554. doi: 10.1038/nm.3519. PubMed DOI PMC
Kurtz DM, Soo J, Co Ting Keh L, et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat Biotechnol. 2021;39(12):1537–1547. doi: 10.1038/s41587-021-00981-w. PubMed DOI PMC
Wang HW, Balakrishna JP, Pittaluga S, et al. Diagnosis of Hodgkin lymphoma in the modern era. Br J Haematol. 2019;184(1):45–59. doi: 10.1111/bjh.15614. PubMed DOI PMC
Camus V, Stamatoullas A, Mareschal S, et al. Detection and prognostic value of recurrent exportin 1 mutations in tumor and cell-free circulating DNA of patients with classical Hodgkin lymphoma. Haematologica. 2016;101(9):1094–1101. doi: 10.3324/haematol.2016.145102. PubMed DOI PMC
Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. Leukemia. 2021;35(4):968–981. doi: 10.1038/s41375-021-01204-6. PubMed DOI PMC
Reichel J, Chadburn A, Rubinstein PG, et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood. 2015;125(7):1061–1072. doi: 10.1182/blood-2014-11-610436. PubMed DOI
Tiacci E, Ladewig E, Schiavoni G, et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood. 2018;131(22):2454–2465. doi: 10.1182/blood-2017-11-814913. PubMed DOI PMC
Wienand K, Chapuy B, Stewart C, et al. Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv. 2019;3(23):4065–4080. doi: 10.1182/bloodadvances.2019001012. PubMed DOI PMC
Bessi L, Viailly PJ, Bohers E, et al. Somatic mutations of cell-free circulating DNA detected by targeted next-generation sequencing and digital droplet PCR in classical Hodgkin lymphoma. Leuk Lymphoma. 2019;60(2):498–502. doi: 10.1080/10428194.2018.1492123. PubMed DOI
Desch AK, Hartung K, Botzen A, et al. Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma. Leukemia. 2019 doi: 10.1038/s41375-019-0541-6. PubMed DOI
Steidl C, Shah SP, Woolcock BW, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011;471(7338):377–381. doi: 10.1038/nature09754. PubMed DOI PMC
Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–2697. doi: 10.1200/jco.2016.66.4482. PubMed DOI PMC
Spina V, Bruscaggin A, Cuccaro A, et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood. 2018;131(22):2413–2425. doi: 10.1182/blood-2017-11-812073. PubMed DOI
Vockerodt M, Morgan SL, Kuo M, et al. The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin’s Reed-Sternberg-like phenotype. J Pathol. 2008;216(1):83–92. doi: 10.1002/path.2384. PubMed DOI
Hartmann S, Schuhmacher B, Rausch T, et al. Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma. Leukemia. 2016;30(4):844–853. doi: 10.1038/leu.2015.328. PubMed DOI
Wlodarska I, Nooyen P, Maes B, et al. Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood. 2003;101(2):706–710. doi: 10.1182/blood-2002-05-1592. PubMed DOI
Wlodarska I, Stul M, De Wolf-Peeters C, et al. Heterogeneity of BCL6 rearrangements in nodular lymphocyte predominant Hodgkin’s lymphoma. Haematologica. 2004;89(8):965–972. PubMed
Mani H, Jaffe ES. Hodgkin lymphoma: an update on its biology with new insights into classification. Clin Lymphoma Myeloma. 2009;9(3):206–216. doi: 10.3816/CLM.2009.n.042. PubMed DOI PMC
Mottok A, Renne C, Willenbrock K, et al. Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood. 2007;110(9):3387–3390. doi: 10.1182/blood-2007-03-082511. PubMed DOI
Schumacher MA, Schmitz R, Brune V, et al. Mutations in the genes coding for the NF-kappaB regulating factors IkappaBalpha and A20 are uncommon in nodular lymphocyte-predominant Hodgkin’s lymphoma. Haematologica. 2010;95(1):153–157. doi: 10.3324/haematol.2009.010157. PubMed DOI PMC
Franke S, Wlodarska I, Maes B, et al. Comparative genomic hybridization pattern distinguishes T-cell/histiocyte-rich B-cell lymphoma from nodular lymphocyte predominance Hodgkin’s lymphoma. Am J Pathol. 2002;161(5):1861–1867. doi: 10.1016/s0002-9440(10)64462-8. PubMed DOI PMC
Rudiger T, Gascoyne RD, Jaffe ES, et al. Workshop on the relationship between nodular lymphocyte predominant Hodgkin’s lymphoma and T cell/histiocyte-rich B cell lymphoma. Ann Oncol. 2002;13(Suppl 1):44–51. doi: 10.1093/annonc/13.s1.44. PubMed DOI
Hartmann S, Döring C, Vucic E, et al. Array comparative genomic hybridization reveals similarities between nodular lymphocyte predominant Hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma. Br J Haematol. 2015;169(3):415–422. doi: 10.1111/bjh.13310. PubMed DOI
Desch AK, Hartung K, Botzen A, et al. Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma. Leukemia. 2020;34(1):151–166. doi: 10.1038/s41375-019-0541-6. PubMed DOI
Alcoceba M, García-Álvarez M, Chillón MC, et al. Liquid biopsy: a non-invasive approach for Hodgkin lymphoma genotyping. Br J Haematol. 2021;195(4):542–551. doi: 10.1111/bjh.17719. PubMed DOI
Sobesky S, Mammadova L, Cirillo M, et al. In-depth cell-free DNA sequencing reveals genomic landscape of Hodgkin’s lymphoma and facilitates ultrasensitive residual disease detection. Med. 2021;2(10):1171–1193.e1111. doi: 10.1016/j.medj.2021.09.002. PubMed DOI
Di Trani M, Rizzo E, Calabretta E, et al. Assesment of circulating tumor DNA in patients with relapsed/refractory Hodgkin lymphoma: early identification of pattern of mutations associated with response or resistance to PD-1 inhibitros, Abstract Book: 25th Congress of the European Hematology Association Virtual Edition, 2020. HemaSphere. 2020;4:606. doi: 10.1097/hs9.0000000000000404. DOI
Shi Y, Su H, Song Y, et al. Circulating tumor DNA predicts response in Chinese patients with relapsed or refractory classical hodgkin lymphoma treated with sintilimab. EBioMedicine. 2020;54:102731. doi: 10.1016/j.ebiom.2020.102731. PubMed DOI PMC
Rossi D, Diop F, Spaccarotella E, et al. Diffuse large B-cell lymphoma genotyping on the liquid biopsy. Blood. 2017;129(14):1947–1957. doi: 10.1182/blood-2016-05-719641. PubMed DOI
Di Trani M, Rizzo E, Locatelli S et al (2019) Longitudinal assessment of circulating tumor mutational burden using a next-generation sequencing cancer gene panel: a potential biomarker of response to programmed cell death 1 (PD-1) blockade in patients with relapsed/refractory classical Hodgkin lymphoma. Blood 134. 10.1182/blood-2019-131096
Decazes P, Camus V, Bohers E, et al. Correlations between baseline (18)F-FDG PET tumour parameters and circulating DNA in diffuse large B cell lymphoma and Hodgkin lymphoma. EJNMMI Res. 2020;10(1):120. doi: 10.1186/s13550-020-00717-y. PubMed DOI PMC