Circulating tumor DNA in Hodgkin lymphoma

. 2022 Nov ; 101 (11) : 2393-2403. [epub] 20220908

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36074181

Grantová podpora
PRIMUS/17/MED/9; UNCE/MED/016; SVV260521 Univerzita Karlova v Praze
Cooperatio Univerzita Karlova v Praze
NU22-03-00182 Agentura Pro Zdravotnický Výzkum České Republiky
MH CZ-DRO Ministerstvo Zdravotnictví Ceské Republiky
00064165 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 36074181
PubMed Central PMC9546971
DOI 10.1007/s00277-022-04949-x
PII: 10.1007/s00277-022-04949-x
Knihovny.cz E-zdroje

Somatic mutations of genes involved in NF-κB, PI3K/AKT, NOTCH, and JAK/STAT signaling pathways play an important role in the pathogenesis of Hodgkin lymphoma (HL). HL tumor cells form only about 5% of the tumor mass; however, it was shown that HL tumor-derived DNA could be detected in the bloodstream. This circulating tumor DNA (ctDNA) reflects the genetic profile of HL tumor cells and can be used for qualitative and quantitative analysis of tumor-specific somatic DNA mutations within the concept of liquid biopsy. Overall, the most frequently mutated gene in HL is STAT6; however, the exact spectrum of mutations differs between individual HL histological subtypes. Importantly, reduction of ctDNA plasma levels after initial treatment is highly correlated with prognosis. Therefore, ctDNA shows great promise as a novel tool for non-invasive tumor genome analysis for biomarker driven therapy as well as for superior minimal residual disease monitoring and treatment resistance detection. Here, we summarize the recent advancements of ctDNA analysis in HL with focus on ctDNA detection methodologies, genetic profiling of HL and its clonal evolution, and the emerging prognostic value of ctDNA.

Zobrazit více v PubMed

Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–2390. doi: 10.1182/blood-2016-01-643569. PubMed DOI PMC

Kanzler H, Küppers R, Hansmann ML, et al. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med. 1996;184(4):1495–1505. doi: 10.1084/jem.184.4.1495. PubMed DOI PMC

Küppers R, Engert A, Hansmann ML. Hodgkin lymphoma. J Clin Investig. 2012;122(10):3439–3447. doi: 10.1172/jci61245. PubMed DOI PMC

Mathas S, Hartmann S, Küppers R. Hodgkin lymphoma: pathology and biology. Semin Hematol. 2016;53(3):139–147. doi: 10.1053/j.seminhematol.2016.05.007. PubMed DOI

Dusek L, Muzik J, Maluskova D, et al. Cancer incidence and mortality in the Czech Republic. Klin Onkol. 2014;27(6):406–423. doi: 10.14735/amko2014406. PubMed DOI

Connors JM, Cozen W, Steidl C, et al. Hodgkin lymphoma. Nat Rev Dis Primers. 2020;6(1):61. doi: 10.1038/s41572-020-0189-6. PubMed DOI

Borchmann P, Plütschow A, Kobe C, et al. PET-guided omission of radiotherapy in early-stage unfavourable Hodgkin lymphoma (GHSG HD17): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(2):223–234. doi: 10.1016/s1470-2045(20)30601-x. PubMed DOI

Casasnovas RO, Bouabdallah R, Brice P, et al. PET-adapted treatment for newly diagnosed advanced Hodgkin lymphoma (AHL2011): a randomised, multicentre, non-inferiority, phase 3 study. Lancet Oncol. 2019;20(2):202–215. doi: 10.1016/s1470-2045(18)30784-8. PubMed DOI

Fuchs M, Goergen H, Kobe C, et al. Positron emission tomography-guided treatment in early-stage favorable hodgkin lymphoma: final results of the international, randomized phase III HD16 trial by the German Hodgkin study group. J Clin Oncol. 2019;37(31):2835–2845. doi: 10.1200/jco.19.00964. PubMed DOI

Kral Z, Michalka J, Mocikova H, et al. Treatment of relapsed/refractory Hodgkin lymphoma: real-world data from the Czech Republic and Slovakia. J Cancer. 2019;10(21):5041–5048. doi: 10.7150/jca.29308. PubMed DOI PMC

Mocikova H, Markova J, Gaherova L et al [Treatment of relapsed and refractory Hodgkin lymphoma - recommendations of the Czech Hodgkin lymphoma study group]. Klin Onkol 29 (5):342–346. 10.14735/amko2016342 PubMed

Mocikova H, Sykorova A, Stepankova P, et al. Treatment and prognosis of relapsed or refractory Hodgkin lymphoma patients ineligible for stem cell transplantation. Klin Onkol. 2014;27(6):424–428. doi: 10.14735/amko2014424. PubMed DOI

Josting A, Franklin J, May M, et al. New prognostic score based on treatment outcome of patients with relapsed Hodgkin’s lymphoma registered in the database of the German Hodgkin’s lymphoma study group. J Clin Oncol. 2002;20(1):221–230. doi: 10.1200/jco.2002.20.1.221. PubMed DOI

Moskowitz CH, Matasar MJ, Zelenetz AD, et al. Normalization of pre-ASCT, FDG-PET imaging with second-line, non-cross-resistant, chemotherapy programs improves event-free survival in patients with Hodgkin lymphoma. Blood. 2012;119(7):1665–1670. doi: 10.1182/blood-2011-10-388058. PubMed DOI PMC

Moskowitz CH, Nimer SD, Zelenetz AD, et al. A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: analysis by intent to treat and development of a prognostic model. Blood. 2001;97(3):616–623. doi: 10.1182/blood.v97.3.616. PubMed DOI

Cuccaro A, Bartolomei F, Cupelli E, et al. Prognostic factors in hodgkin lymphoma. Mediterr J Hematol Infect Dis. 2014;6(1):e2014053. doi: 10.4084/mjhid.2014.053. PubMed DOI PMC

Bröckelmann PJ, Engert A. The GHSG approach to treating Hodgkin’s lymphoma. Curr Hematol Malig Rep. 2015;10(3):256–265. doi: 10.1007/s11899-015-0262-5. PubMed DOI

Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin's Disease. N Engl J Med. 1998;339(21):1506–1514. doi: 10.1056/nejm199811193392104. PubMed DOI

Bari A, Marcheselli R, Sacchi S, et al. The classic prognostic factors in advanced Hodgkin’s lymphoma patients are losing their meaning at the time of pet-guided treatments. Ann Hematol. 2020;99(2):277–282. doi: 10.1007/s00277-019-03893-7. PubMed DOI PMC

Eichenauer DA, Engert A, Dreyling M (2011) Hodgkin's lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 22(Suppl 6):vi55-58. 10.1093/annonc/mdr37 PubMed

Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–3068. doi: 10.1200/jco.2013.54.8800. PubMed DOI PMC

Cheson BD, Ansell S, Schwartz L, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128(21):2489–2496. doi: 10.1182/blood-2016-05-718528. PubMed DOI

Hutchings M, Loft A, Hansen M, et al. FDG-PET after two cycles of chemotherapy predicts treatment failure and progression-free survival in Hodgkin lymphoma. Blood. 2006;107(1):52–59. doi: 10.1182/blood-2005-06-2252. PubMed DOI

Kanoun S, Rossi C, Berriolo-Riedinger A, et al. Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2014;41(9):1735–1743. doi: 10.1007/s00259-014-2783-x. PubMed DOI

Aldin A, Umlauff L, Estcourt LJ, et al. Interim PET-results for prognosis in adults with Hodgkin lymphoma: a systematic review and meta-analysis of prognostic factor studies. Cochrane Database Syst Rev. 2019;9:CD012643. doi: 10.1002/14651858.CD012643.pub2. PubMed DOI PMC

Adams HJA, Kwee TC. Reply: interim PET in Hodgkin lymphoma: is it so useless? J Nucl Med. 2017;58(7):1180–1182. doi: 10.2967/jnumed.117.192294. PubMed DOI

Raemaekers JM, André MP, Federico M, et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014;32(12):1188–1194. doi: 10.1200/jco.2013.51.9298. PubMed DOI

Radford J, Illidge T, Counsell N, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med. 2015;372(17):1598–1607. doi: 10.1056/NEJMoa1408648. PubMed DOI

André MPE, Girinsky T, Federico M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2017;35(16):1786–1794. doi: 10.1200/jco.2016.68.6394. PubMed DOI

Borchmann P, Goergen H, Kobe C, et al. PET-guided treatment in patients with advanced-stage Hodgkin’s lymphoma (HD18): final results of an open-label, international, randomised phase 3 trial by the German Hodgkin study group. Lancet. 2018;390(10114):2790–2802. doi: 10.1016/s0140-6736(17)32134-7. PubMed DOI

Engert A, Haverkamp H, Kobe C, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–1799. doi: 10.1016/s0140-6736(11)61940-5. PubMed DOI

Johnson P, Federico M, Kirkwood A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–2429. doi: 10.1056/NEJMoa1510093. PubMed DOI PMC

Balaj L, Lessard R, Dai L, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180. doi: 10.1038/ncomms1180. PubMed DOI PMC

Lehmann-Werman R, Neiman D, Zemmour H, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci USA. 2016;113(13):E1826–1834. doi: 10.1073/pnas.1519286113. PubMed DOI PMC

Mouliere F, El Messaoudi S, Pang D, et al. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol. 2014;8(5):927–941. doi: 10.1016/j.molonc.2014.02.005. PubMed DOI PMC

Hudecova I, Smith CG, Hänsel-Hertsch R, et al. Characteristics, origin, and potential for cancer diagnostics of ultrashort plasma cell-free DNA. Genome Res. 2022;32(2):215–227. doi: 10.1101/gr.275691.121. PubMed DOI PMC

Burnham P, Kim MS, Agbor-Enoh S, et al. Single-stranded DNA library preparation uncovers the origin and diversity of ultrashort cell-free DNA in plasma. Sci Rep. 2016;6:27859. doi: 10.1038/srep27859. PubMed DOI PMC

Fettke H, Kwan EM, Azad AA. Cell-free DNA in cancer: current insights. Cell Oncol (Dordr) 2019;42(1):13–28. doi: 10.1007/s13402-018-0413-5. PubMed DOI

Sisson BA, Uvalic J, Kelly K, et al. Technical and regulatory considerations for taking liquid biopsy to the clinic: validation of the JAX PlasmaMonitor(TM) assay. Biomark Insights. 2019;14:1177271919826545. doi: 10.1177/1177271919826545. PubMed DOI PMC

Oshi M, Murthy V, Takahashi H, et al. Urine as a source of liquid biopsy for cancer. Cancers. 2021;13(11):2652. doi: 10.3390/cancers13112652. PubMed DOI PMC

Wang Z, Zhang L, Li L, et al. Sputum cell-free DNA: valued surrogate sample for detection of EGFR mutation in patients with advanced lung adenocarcinoma. J Mol Diagn. 2020;22(7):934–942. doi: 10.1016/j.jmoldx.2020.04.208. PubMed DOI

Sabela B, Marta C, Laura E, et al. Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica. 2020;106(2):513–521. doi: 10.3324/haematol.2019.241208. PubMed DOI PMC

de Kock R, Knoops C, Baselmans M, et al. Sensitive cell-free tumor DNA analysis in supernatant pleural effusions supports therapy selection and disease monitoring of lung cancer patients. Cancer Treat Res Commun. 2021;29:100449. doi: 10.1016/j.ctarc.2021.100449. PubMed DOI

Cui Y, Kim HS, Cho ES, et al. Longitudinal detection of somatic mutations in saliva and plasma for the surveillance of oral squamous cell carcinomas. PLoS ONE. 2021;16(9):e0256979. doi: 10.1371/journal.pone.0256979. PubMed DOI PMC

Deans ZC, Butler R, Cheetham M, et al. IQN path ASBL report from the first European cfDNA consensus meeting: expert opinion on the minimal requirements for clinical ctDNA testing. Virchows Arch. 2019;474(6):681–689. doi: 10.1007/s00428-019-02571-3. PubMed DOI PMC

Jung M, Klotzek S, Lewandowski M, et al. Changes in concentration of DNA in serum and plasma during storage of blood samples. Clin Chem. 2003;49(6 Pt 1):1028–1029. doi: 10.1373/49.6.1028. PubMed DOI

van Ginkel JH, van den Broek DA, van Kuik J, et al. Preanalytical blood sample workup for cell-free DNA analysis using droplet digital PCR for future molecular cancer diagnostics. Cancer Med. 2017;6(10):2297–2307. doi: 10.1002/cam4.1184. PubMed DOI PMC

Risberg B, Tsui DWY, Biggs H, et al. Effects of collection and processing procedures on plasma circulating cell-free DNA from cancer patients. J Mol Diagn. 2018;20(6):883–892. doi: 10.1016/j.jmoldx.2018.07.005. PubMed DOI PMC

Jain S, Lin SY, Song W, et al. Urine-based liquid biopsy for nonurological cancers. Genet Test Mol Biomarkers. 2019;23(4):277–283. doi: 10.1089/gtmb.2018.0189. PubMed DOI PMC

Mutter JA, Alig S, Lauer EM, et al. Profiling of circulating tumor DNA for noninvasive disease detection, risk stratification, and MRD monitoring in patients with CNS lymphoma. Blood. 2021;138(Supplement 1):6–6. doi: 10.1182/blood-2021-149644. PubMed DOI

Bailey MH, Tokheim C, Porta-Pardo E, et al. Comprehensive characterization of cancer driver genes and mutations. Cell. 2018;173(2):371–385.e318. doi: 10.1016/j.cell.2018.02.060. PubMed DOI PMC

Zhong Q, Bhattacharya S, Kotsopoulos S, et al. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip. 2011;11(13):2167–2174. doi: 10.1039/c1lc20126c. PubMed DOI

Lea B. Somatic mutations of cell-free circulating DNA detected by targeted next-generation sequencing and digital droplet PCR in classical Hodgkin lymphoma”. Leuk Lymphoma. 2019;60(2):498–502. doi: 10.1080/10428194.2018.1492123. PubMed DOI

Appay R, Fina F, Barets D, et al. Multiplexed droplet digital PCR assays for the simultaneous screening of major genetic alterations in tumors of the central nervous system. Front Oncol. 2020;10:579762. doi: 10.3389/fonc.2020.579762. PubMed DOI PMC

Cavalli M, De Novi LA, Della Starza I, et al. Comparative analysis between RQ-PCR and digital droplet PCR of BCL2/IGH gene rearrangement in the peripheral blood and bone marrow of early stage follicular lymphoma. Br J Haematol. 2017;177(4):588–596. doi: 10.1111/bjh.14616. PubMed DOI

Wang Q, Yang X, He Y, et al. Droplet digital PCR for absolute quantification of EML4-ALK gene rearrangement in lung adenocarcinoma. J Mol Diagn. 2015;17(5):515–520. doi: 10.1016/j.jmoldx.2015.04.002. PubMed DOI

Camus V, Viennot M, Lequesne J, et al. Targeted genotyping of circulating tumor DNA for classical Hodgkin lymphoma monitoring: a prospective study. Haematologica. 2021;106(1):154–162. doi: 10.3324/haematol.2019.237719. PubMed DOI PMC

Newman AM, Lovejoy AF, Klass DM, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34(5):547–555. doi: 10.1038/nbt.3520. PubMed DOI PMC

Kennedy SR, Schmitt MW, Fox EJ, et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat Protoc. 2014;9(11):2586–2606. doi: 10.1038/nprot.2014.170. PubMed DOI PMC

Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–554. doi: 10.1038/nm.3519. PubMed DOI PMC

Kurtz DM, Soo J, Co Ting Keh L, et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat Biotechnol. 2021;39(12):1537–1547. doi: 10.1038/s41587-021-00981-w. PubMed DOI PMC

Wang HW, Balakrishna JP, Pittaluga S, et al. Diagnosis of Hodgkin lymphoma in the modern era. Br J Haematol. 2019;184(1):45–59. doi: 10.1111/bjh.15614. PubMed DOI PMC

Camus V, Stamatoullas A, Mareschal S, et al. Detection and prognostic value of recurrent exportin 1 mutations in tumor and cell-free circulating DNA of patients with classical Hodgkin lymphoma. Haematologica. 2016;101(9):1094–1101. doi: 10.3324/haematol.2016.145102. PubMed DOI PMC

Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. Leukemia. 2021;35(4):968–981. doi: 10.1038/s41375-021-01204-6. PubMed DOI PMC

Reichel J, Chadburn A, Rubinstein PG, et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood. 2015;125(7):1061–1072. doi: 10.1182/blood-2014-11-610436. PubMed DOI

Tiacci E, Ladewig E, Schiavoni G, et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood. 2018;131(22):2454–2465. doi: 10.1182/blood-2017-11-814913. PubMed DOI PMC

Wienand K, Chapuy B, Stewart C, et al. Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv. 2019;3(23):4065–4080. doi: 10.1182/bloodadvances.2019001012. PubMed DOI PMC

Bessi L, Viailly PJ, Bohers E, et al. Somatic mutations of cell-free circulating DNA detected by targeted next-generation sequencing and digital droplet PCR in classical Hodgkin lymphoma. Leuk Lymphoma. 2019;60(2):498–502. doi: 10.1080/10428194.2018.1492123. PubMed DOI

Desch AK, Hartung K, Botzen A, et al. Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma. Leukemia. 2019 doi: 10.1038/s41375-019-0541-6. PubMed DOI

Steidl C, Shah SP, Woolcock BW, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011;471(7338):377–381. doi: 10.1038/nature09754. PubMed DOI PMC

Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–2697. doi: 10.1200/jco.2016.66.4482. PubMed DOI PMC

Spina V, Bruscaggin A, Cuccaro A, et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood. 2018;131(22):2413–2425. doi: 10.1182/blood-2017-11-812073. PubMed DOI

Vockerodt M, Morgan SL, Kuo M, et al. The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin’s Reed-Sternberg-like phenotype. J Pathol. 2008;216(1):83–92. doi: 10.1002/path.2384. PubMed DOI

Hartmann S, Schuhmacher B, Rausch T, et al. Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma. Leukemia. 2016;30(4):844–853. doi: 10.1038/leu.2015.328. PubMed DOI

Wlodarska I, Nooyen P, Maes B, et al. Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood. 2003;101(2):706–710. doi: 10.1182/blood-2002-05-1592. PubMed DOI

Wlodarska I, Stul M, De Wolf-Peeters C, et al. Heterogeneity of BCL6 rearrangements in nodular lymphocyte predominant Hodgkin’s lymphoma. Haematologica. 2004;89(8):965–972. PubMed

Mani H, Jaffe ES. Hodgkin lymphoma: an update on its biology with new insights into classification. Clin Lymphoma Myeloma. 2009;9(3):206–216. doi: 10.3816/CLM.2009.n.042. PubMed DOI PMC

Mottok A, Renne C, Willenbrock K, et al. Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood. 2007;110(9):3387–3390. doi: 10.1182/blood-2007-03-082511. PubMed DOI

Schumacher MA, Schmitz R, Brune V, et al. Mutations in the genes coding for the NF-kappaB regulating factors IkappaBalpha and A20 are uncommon in nodular lymphocyte-predominant Hodgkin’s lymphoma. Haematologica. 2010;95(1):153–157. doi: 10.3324/haematol.2009.010157. PubMed DOI PMC

Franke S, Wlodarska I, Maes B, et al. Comparative genomic hybridization pattern distinguishes T-cell/histiocyte-rich B-cell lymphoma from nodular lymphocyte predominance Hodgkin’s lymphoma. Am J Pathol. 2002;161(5):1861–1867. doi: 10.1016/s0002-9440(10)64462-8. PubMed DOI PMC

Rudiger T, Gascoyne RD, Jaffe ES, et al. Workshop on the relationship between nodular lymphocyte predominant Hodgkin’s lymphoma and T cell/histiocyte-rich B cell lymphoma. Ann Oncol. 2002;13(Suppl 1):44–51. doi: 10.1093/annonc/13.s1.44. PubMed DOI

Hartmann S, Döring C, Vucic E, et al. Array comparative genomic hybridization reveals similarities between nodular lymphocyte predominant Hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma. Br J Haematol. 2015;169(3):415–422. doi: 10.1111/bjh.13310. PubMed DOI

Desch AK, Hartung K, Botzen A, et al. Genotyping circulating tumor DNA of pediatric Hodgkin lymphoma. Leukemia. 2020;34(1):151–166. doi: 10.1038/s41375-019-0541-6. PubMed DOI

Alcoceba M, García-Álvarez M, Chillón MC, et al. Liquid biopsy: a non-invasive approach for Hodgkin lymphoma genotyping. Br J Haematol. 2021;195(4):542–551. doi: 10.1111/bjh.17719. PubMed DOI

Sobesky S, Mammadova L, Cirillo M, et al. In-depth cell-free DNA sequencing reveals genomic landscape of Hodgkin’s lymphoma and facilitates ultrasensitive residual disease detection. Med. 2021;2(10):1171–1193.e1111. doi: 10.1016/j.medj.2021.09.002. PubMed DOI

Di Trani M, Rizzo E, Calabretta E, et al. Assesment of circulating tumor DNA in patients with relapsed/refractory Hodgkin lymphoma: early identification of pattern of mutations associated with response or resistance to PD-1 inhibitros, Abstract Book: 25th Congress of the European Hematology Association Virtual Edition, 2020. HemaSphere. 2020;4:606. doi: 10.1097/hs9.0000000000000404. DOI

Shi Y, Su H, Song Y, et al. Circulating tumor DNA predicts response in Chinese patients with relapsed or refractory classical hodgkin lymphoma treated with sintilimab. EBioMedicine. 2020;54:102731. doi: 10.1016/j.ebiom.2020.102731. PubMed DOI PMC

Rossi D, Diop F, Spaccarotella E, et al. Diffuse large B-cell lymphoma genotyping on the liquid biopsy. Blood. 2017;129(14):1947–1957. doi: 10.1182/blood-2016-05-719641. PubMed DOI

Di Trani M, Rizzo E, Locatelli S et al (2019) Longitudinal assessment of circulating tumor mutational burden using a next-generation sequencing cancer gene panel: a potential biomarker of response to programmed cell death 1 (PD-1) blockade in patients with relapsed/refractory classical Hodgkin lymphoma. Blood 134. 10.1182/blood-2019-131096

Decazes P, Camus V, Bohers E, et al. Correlations between baseline (18)F-FDG PET tumour parameters and circulating DNA in diffuse large B cell lymphoma and Hodgkin lymphoma. EJNMMI Res. 2020;10(1):120. doi: 10.1186/s13550-020-00717-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...