Decreased Epicardial CTRP3 mRNA Levels in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease Undergoing Elective Cardiac Surgery: A Possible Association with Coronary Atherosclerosis

. 2022 Sep 01 ; 23 (17) : . [epub] 20220901

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36077376

Grantová podpora
LX22NPO5104 National Institute for Research of Metabolic and Cardiovascular Diseases
NV19-02-00118 Institute of Clinical and Experimental Medicine

(1) Background: C1q TNF-related protein 3 (CTRP3) is an adipokine with anti-inflammatory and cardioprotective properties. In our study, we explored changes in serum CTRP3 and its gene expression in epicardial (EAT) and subcutaneous (SAT) adipose tissue in patients with and without coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) undergoing elective cardiac surgery. (2) Methods: SAT, EAT, and blood samples were collected at the start and end of surgery from 34 patients: (i) 11 without CAD or T2DM, (ii) 14 with CAD and without T2DM, and (iii) 9 with both CAD and T2DM. mRNA levels of CTRP3 were assessed by quantitative reverse transcription PCR. Circulating levels of CTRP3 and other factors were measured using ELISA and Luminex Multiplex commercial kits. (3) Results: Baseline plasma levels of TNF-α and IL6 did not differ among the groups and increased at the end of surgery. Baseline circulating levels of CTRP3 did not differ among the groups and decreased after surgery. In contrast, baseline CTRP3 mRNA levels in EAT were significantly decreased in CAD/T2DM group, while no differences were found for TNF-α and IL6 gene expression. (4) Conclusions: Our data suggest that decreased EAT mRNA levels of CTRP3 could contribute to higher risk of atherosclerosis in patients with CAD and T2DM.

Zobrazit více v PubMed

Le Jemtel T.H., Samson R., Ayinapudi K., Singh T., Oparil S. Epicardial Adipose Tissue and Cardiovascular Disease. Curr. Hypertens. Rep. 2019;21:36. doi: 10.1007/s11906-019-0939-6. PubMed DOI

Vyas V., Blythe H., Wood E.G., Sandhar B., Sarker S.J., Balmforth D., Ambekar S.G., Yap J., Edmondson S.J., Di Salvo C., et al. Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation. JCI Insight. 2021;6:e145495. doi: 10.1172/jci.insight.145495. PubMed DOI PMC

Gao W., Liu H., Yuan J., Wu C., Huang D., Ma Y., Zhu J., Ma L., Guo J., Shi H., et al. Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. J. Cell. Mol. Med. 2016;20:2318–2327. doi: 10.1111/jcmm.12923. PubMed DOI PMC

Herrero-Fernandez B., Gomez-Bris R., Somovilla-Crespo B., Gonzalez-Granado J.M. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int. J. Mol. Sci. 2019;20:5293. doi: 10.3390/ijms20215293. PubMed DOI PMC

Marchio P., Guerra-Ojeda S., Vila J.M., Aldasoro M., Victor V.M., Mauricio M.D. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxid. Med. Cell. Longev. 2019;2019:8563845. doi: 10.1155/2019/8563845. PubMed DOI PMC

Lee D.Y., Chiu J.J. Atherosclerosis and flow: Roles of epigenetic modulation in vascular endothelium. J. Biomed. Sci. 2019;26:56. doi: 10.1186/s12929-019-0551-8. PubMed DOI PMC

Strohbach A., Pennewitz M., Glaubitz M., Palankar R., Gross S., Lorenz F., Materzok I., Rong A., Busch M.C., Felix S.B., et al. The apelin receptor influences biomechanical and morphological properties of endothelial cells. J. Cell. Physiol. 2018;233:6250–6261. doi: 10.1002/jcp.26496. PubMed DOI

Boen J.R.A., Gevaert A.B., De Keulenaer G.W., Van Craenenbroeck E.M., Segers V.F.M. The role of endothelial miRNAs in myocardial biology and disease. J. Mol. Cell. Cardiol. 2020;138:75–87. doi: 10.1016/j.yjmcc.2019.11.151. PubMed DOI

Sun H.J., Wu Z.Y., Nie X.W., Bian J.S. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front. Pharmacol. 2019;10:1568. doi: 10.3389/fphar.2019.01568. PubMed DOI PMC

Patel V.B., Shah S., Verma S., Oudit G.Y. Epicardial adipose tissue as a metabolic transducer: Role in heart failure and coronary artery disease. Heart Fail. Rev. 2017;22:889–902. doi: 10.1007/s10741-017-9644-1. PubMed DOI

Iacobellis G., Corradi D., Sharma A.M. Epicardial adipose tissue: Anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2005;2:536–543. doi: 10.1038/ncpcardio0319. PubMed DOI

Matloch Z., Kotulak T., Haluzik M. The role of epicardial adipose tissue in heart disease. Physiol. Res. 2016;65:23–32. doi: 10.33549/physiolres.933036. PubMed DOI

Matloch Z., Cinkajzlova A., Mraz M., Haluzik M. The Role of Inflammation in Epicardial Adipose Tissue in Heart Diseases. Curr. Pharm. Des. 2018;24:297–309. doi: 10.2174/1381612824666180110102125. PubMed DOI

Wong G.W., Wang J., Hug C., Tsao T.S., Lodish H.F. A family of Acrp30/adiponectin structural and functional paralogs. Proc. Natl. Acad. Sci. USA. 2004;101:10302–10307. doi: 10.1073/pnas.0403760101. PubMed DOI PMC

Kishore U., Gaboriaud C., Waters P., Shrive A.K., Greenhough T.J., Reid K.B., Sim R.B., Arlaud G.J. C1q and tumor necrosis factor superfamily: Modularity and versatility. Trends Immunol. 2004;25:551–561. doi: 10.1016/j.it.2004.08.006. PubMed DOI

Hofmann C., Chen N., Obermeier F., Paul G., Buchler C., Kopp A., Falk W., Schaffler A. C1q/TNF-related protein-3 (CTRP-3) is secreted by visceral adipose tissue and exerts antiinflammatory and antifibrotic effects in primary human colonic fibroblasts. Inflamm. Bowel Dis. 2011;17:2462–2471. doi: 10.1002/ibd.21647. PubMed DOI

Fadaei R., Moradi N., Baratchian M., Aghajani H., Malek M., Fazaeli A.A., Fallah S. Association of C1q/TNF-Related Protein-3 (CTRP3) and CTRP13 Serum Levels with Coronary Artery Disease in Subjects with and without Type 2 Diabetes Mellitus. PLoS ONE. 2016;11:e0168773. doi: 10.1371/journal.pone.0168773. PubMed DOI PMC

Petersen P.S., Wolf R.M., Lei X., Peterson J.M., Wong G.W. Immunomodulatory roles of CTRP3 in endotoxemia and metabolic stress. Physiol. Rep. 2016;4:e12735. doi: 10.14814/phy2.12735. PubMed DOI PMC

Schmid A., Kopp A., Hanses F., Karrasch T., Schaffler A. C1q/TNF-related protein-3 (CTRP-3) attenuates lipopolysaccharide (LPS)-induced systemic inflammation and adipose tissue Erk-1/-2 phosphorylation in mice in vivo. Biochem. Biophys. Res. Commun. 2014;452:8–13. doi: 10.1016/j.bbrc.2014.06.054. PubMed DOI

Chen L., Qin L., Liu X., Meng X. CTRP3 Alleviates Ox-LDL-Induced Inflammatory Response and Endothelial Dysfunction in Mouse Aortic Endothelial Cells by Activating the PI3K/Akt/eNOS Pathway. Inflammation. 2019;42:1350–1359. doi: 10.1007/s10753-019-00996-1. PubMed DOI

Corradi D., Maestri R., Callegari S., Pastori P., Goldoni M., Luong T.V., Bordi C. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc. Pathol. 2004;13:313–316. doi: 10.1016/j.carpath.2004.08.005. PubMed DOI

Bluher M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2013;27:163–177. doi: 10.1016/j.beem.2013.02.005. PubMed DOI

Luo L., Liu M. Adipose tissue in control of metabolism. J. Endocrinol. 2016;231:R77–R99. doi: 10.1530/JOE-16-0211. PubMed DOI PMC

Bluher M. Are there still healthy obese patients? Curr. Opin. Endocrinol. Diabetes Obes. 2012;19:341–346. doi: 10.1097/MED.0b013e328357f0a3. PubMed DOI

Masoodian S.M., Toolabi K., Omidifar A., Zabihi H., Rahimipour A., Shanaki M. Increased mRNA Expression of CTRP3 and CTRP9 in Adipose Tissue from Obese Women: Is it Linked to Obesity-Related Parameters and mRNA Expression of Inflammatory Cytokines? Rep. Biochem. Mol. Biol. 2020;9:71–81. doi: 10.29252/rbmb.9.1.71. PubMed DOI PMC

Yaribeygi H., Rashidfarrokhi F., Atkin S.L., Sahebkar A. C1q/TNF-related protein-3 and glucose homeostasis. Diabetes Metab. Syndr. 2019;13:1923–1927. doi: 10.1016/j.dsx.2019.04.047. PubMed DOI

Peterson J.M., Wei Z., Wong G.W. C1q/TNF-related protein-3 (CTRP3), a novel adipokine that regulates hepatic glucose output. J. Biol. Chem. 2010;285:39691–39701. doi: 10.1074/jbc.M110.180695. PubMed DOI PMC

Choi K.M., Hwang S.Y., Hong H.C., Yang S.J., Choi H.Y., Yoo H.J., Lee K.W., Nam M.S., Park Y.S., Woo J.T., et al. C1q/TNF-related protein-3 (CTRP-3) and pigment epithelium-derived factor (PEDF) concentrations in patients with type 2 diabetes and metabolic syndrome. Diabetes. 2012;61:2932–2936. doi: 10.2337/db12-0217. PubMed DOI PMC

Ban B., Bai B., Zhang M., Hu J., Ramanjaneya M., Tan B.K., Chen J. Low serum cartonectin/CTRP3 concentrations in newly diagnosed type 2 diabetes mellitus: In vivo regulation of cartonectin by glucose. PLoS ONE. 2014;9:e112931. doi: 10.1371/journal.pone.0112931. PubMed DOI PMC

Deng W., Li C., Zhang Y., Zhao J., Yang M., Tian M., Li L., Zheng Y., Chen B., Yang G. Serum C1q/TNF-related protein-3 (CTRP3) levels are decreased in obesity and hypertension and are negatively correlated with parameters of insulin resistance. Diabetol. Metab. Syndr. 2015;7:33. doi: 10.1186/s13098-015-0029-0. PubMed DOI PMC

Qu H., Deng M., Wang H., Wei H., Liu F., Wu J., Deng H. Plasma CTRP-3 concentrations in Chinese patients with obesity and type II diabetes negatively correlate with insulin resistance. J. Clin. Lipidol. 2015;9:289–294. doi: 10.1016/j.jacl.2015.03.006. PubMed DOI

Moradi N., Fadaei R., Khamseh M.E., Nobakht A., Rezaei M.J., Aliakbary F., Vatannejad A., Hosseini J. Serum levels of CTRP3 in diabetic nephropathy and its relationship with insulin resistance and kidney function. PLoS ONE. 2019;14:e0215617. doi: 10.1371/journal.pone.0215617. PubMed DOI PMC

Flehmig G., Scholz M., Kloting N., Fasshauer M., Tonjes A., Stumvoll M., Youn B.S., Bluher M. Identification of adipokine clusters related to parameters of fat mass, insulin sensitivity and inflammation. PLoS ONE. 2014;9:e99785. doi: 10.1371/journal.pone.0099785. PubMed DOI PMC

Li X., Jiang L., Yang M., Wu Y., Sun S., Sun J. GLP-1 receptor agonist increases the expression of CTRP3, a novel adipokine, in 3T3-L1 adipocytes through PKA signal pathway. J. Endocrinol. Investig. 2015;38:73–79. doi: 10.1007/s40618-014-0156-8. PubMed DOI

Uyar I.S., Onal S., Uysal A., Ozdemir U., Burma O., Bulut V. Evaluation of systemic inflammatory response in cardiovascular surgery via interleukin-6, interleukin-8, and neopterin. Heart Surg. Forum. 2014;17:E13-17. doi: 10.1532/HSF98.2013267. PubMed DOI

Koch A., Weiskirchen R., Zimmermann H.W., Sanson E., Trautwein C., Tacke F. Relevance of serum leptin and leptin-receptor concentrations in critically ill patients. Mediat. Inflamm. 2010;2010:473540. doi: 10.1155/2010/473540. PubMed DOI PMC

Koch A., Sanson E., Voigt S., Helm A., Trautwein C., Tacke F. Serum adiponectin upon admission to the intensive care unit may predict mortality in critically ill patients. J. Crit. Care. 2011;26:166–174. doi: 10.1016/j.jcrc.2010.07.015. PubMed DOI

Koch A., Sanson E., Helm A., Voigt S., Trautwein C., Tacke F. Regulation and prognostic relevance of serum ghrelin concentrations in critical illness and sepsis. Crit. Care. 2010;14:R94. doi: 10.1186/cc9029. PubMed DOI PMC

Yagmur E., Buergerhausen D., Koek G.H., Weiskirchen R., Trautwein C., Koch A., Tacke F. Elevated CTRP1 Plasma Concentration Is Associated with Sepsis and Pre-Existing Type 2 Diabetes Mellitus in Critically Ill Patients. J. Clin. Med. 2019;8:661. doi: 10.3390/jcm8050661. PubMed DOI PMC

Yagmur E., Otto S., Koek G.H., Weiskirchen R., Trautwein C., Koch A., Tacke F. Decreased CTRP3 Plasma Concentrations Are Associated with Sepsis and Predict Mortality in Critically Ill Patients. Diagnostics. 2019;9:63. doi: 10.3390/diagnostics9020063. PubMed DOI PMC

Kopp A., Bala M., Buechler C., Falk W., Gross P., Neumeier M., Scholmerich J., Schaffler A. C1q/TNF-related protein-3 represents a novel and endogenous lipopolysaccharide antagonist of the adipose tissue. Endocrinology. 2010;151:5267–5278. doi: 10.1210/en.2010-0571. PubMed DOI

Weigert J., Neumeier M., Schaffler A., Fleck M., Scholmerich J., Schutz C., Buechler C. The adiponectin paralog CORS-26 has anti-inflammatory properties and is produced by human monocytic cells. FEBS Lett. 2005;579:5565–5570. doi: 10.1016/j.febslet.2005.09.022. PubMed DOI

Yi W., Sun Y., Yuan Y., Lau W.B., Zheng Q., Wang X., Wang Y., Shang X., Gao E., Koch W.J., et al. C1q/tumor necrosis factor-related protein-3, a newly identified adipokine, is a novel antiapoptotic, proangiogenic, and cardioprotective molecule in the ischemic mouse heart. Circulation. 2012;125:3159–3169. doi: 10.1161/CIRCULATIONAHA.112.099937. PubMed DOI PMC

Wu D., Lei H., Wang J.Y., Zhang C.L., Feng H., Fu F.Y., Li L., Wu L.L. CTRP3 attenuates post-infarct cardiac fibrosis by targeting Smad3 activation and inhibiting myofibroblast differentiation. J. Mol. Med. 2015;93:1311–1325. doi: 10.1007/s00109-015-1309-8. PubMed DOI

Dolezalova R., Lacinova Z., Dolinkova M., Kleiblova P., Haluzikova D., Housa D., Papezova H., Haluzik M. Changes of endocrine function of adipose tissue in anorexia nervosa: Comparison of circulating levels versus subcutaneous mRNA expression. Clin. Endocrinol. 2007;67:674–678. doi: 10.1111/j.1365-2265.2007.02944.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...