Tear matrix metalloproteinase-9 levels may help to follow a ocular surface injury in lagophthalmic eyes

. 2022 ; 17 (9) : e0274173. [epub] 20220909

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36084126

The preocular tear film is critically important for maintaining healthy ocular surface. In lagophthalmos, increased evaporation and tear film instability can occur. The level of tear matrix metalloproteinase 9 (MMP-9) is considered as a possible marker of ocular surface damage and inflammation. The aim of this study was to evaluate the possible usefulness of measuring tear film levels of MMP-9 in patients with lagophthalmos. Sixteen adult patients with unilateral lagophthalmos due to cerebellopontine angle mass surgery were included. Basic clinical examination including tear film osmolarity, degree of lagophthalmos, ocular surface sensitivity testing, corneal fluorescein staining, and tear break-up time (TBUT) were performed. Furthermore, tear MMP-9 quantification was performed and the values from lagophthalmic and contralateral healthy eye were compared. Possible correlations between tear MMP-9 levels and other parameters were analyzed. The Oxford score was higher in lagophthalmic eyes in comparison to healthy eyes. TBUT and corneal sensitivity were lower in lagophthalmic eyes. There was no difference in osmolarity between the two groups. Tear MMP-9 values were higher in lagophthalmic eyes. A higher MMP-9 value was associated with an increase in ocular surface fluorescein staining and a decrease of TBUT in lagophthalmic eyes. Tear MMP-9 may be used for monitoring ocular surface damage, contribute to early detection of inflammation progression and facilitate treatment adjustments.

Zobrazit více v PubMed

Stern M, Gao J, Siemasko K, Beuerman R, Pflugfelder S. The role of the lacrimal functional unit in the pathophysiology of dry eye. Experimental Eye Research. 2004;vol. 78: 409–416. doi: 10.1016/j.exer.2003.09.003 PubMed DOI

Stahl U, Willcox M, Stapleton F. Osmolality and tear film dynamics. Clinical and Experimental Optometry. 2012;vol. 95: 3–11. doi: 10.1111/j.1444-0938.2011.00634.x PubMed DOI

Craig J, Nichols K, Akpek E, Caffery B, Dua H, Joo C, et al.. TFOS DEWS II Definition and Classification Report. The Ocular Surface. 2017;vol. 15: 276–283. doi: 10.1016/j.jtos.2017.05.008 PubMed DOI

Bron A, de Paiva C, Chauhan S, Bonini S, Gabison E, Jain S, et al.. TFOS DEWS II pathophysiology report. The Ocular Surface. 2017;vol. 15: 438–510. doi: 10.1016/j.jtos.2017.05.011 PubMed DOI

Patel V, Daya S, Lake D, Malhotra R. Blink Lagophthalmos and Dry Eye Keratopathy in Patients with Non-facial Palsy: Clinical Features and Management with Upper Eyelid Loading. Ophthalmology. 2011;vol. 118: 197–202. doi: 10.1016/j.ophtha.2010.04.037 PubMed DOI

Dartt D. Neural regulation of lacrimal gland secretory processes: Relevance in dry eye diseases. Progress in Retinal and Eye Research. 2009;vol. 28: 155–177. doi: 10.1016/j.preteyeres.2009.04.003 PubMed DOI PMC

Shoari A, Kanavi M, Rasaee M. Inhibition of matrix metalloproteinase-9 for the treatment of dry eye syndrome; a review study. Experimental Eye Research. 2021;vol. 205. doi: 10.1016/j.exer.2021.108523 PubMed DOI

Ganesalingam K, Ismail S, Sherwin T, Craig J. Molecular evidence for the role of inflammation in dry eye disease. Clinical and Experimental Optometry. 2019;vol. 102: 446–454. doi: 10.1111/cxo.12849 PubMed DOI

Versura P, Campos E. TearLab ® Osmolarity System for diagnosing dry eye. Expert Review of Molecular Diagnostics. 2014;vol. 13: 119–129. doi: 10.1586/erm.12.142 PubMed DOI

Versura P, Profazio V, Campos E. Performance of Tear Osmolarity Compared to Previous Diagnostic Tests for Dry Eye Diseases. Current Eye Research. 2010;vol. 35: 553–564. doi: 10.3109/02713683.2010.484557 PubMed DOI

Reddy V, Patel S, Hodge D, Leavitt J. Corneal Sensitivity, Blink Rate, and Corneal Nerve Density in Progressive Supranuclear Palsy and Parkinson Disease. Cornea. 2013;vol. 32: 631–635. doi: 10.1097/ICO.0b013e3182574ade PubMed DOI

Wolffsohn J, Arita R, Chalmers R, Djalilian A, Dogru M, Dumbleton K, et al.. TFOS DEWS II Diagnostic Methodology report. The Ocular Surface. 2017;vol. 15: 539–574. doi: 10.1016/j.jtos.2017.05.001 PubMed DOI

Bron A, Evans V, Smith J. Grading Of Corneal and Conjunctival Staining in the Context of Other Dry Eye Tests. Cornea. 2003;vol. 22: 640–650. doi: 10.1097/00003226-200310000-00008 PubMed DOI

Sohrab M, Abugo U, Grant M, Merbs S. Management of the Eye in Facial Paralysis. Facial Plastic Surgery. 2015;vol. 31: 140–144. doi: 10.1055/s-0035-1549292 PubMed DOI

Nowak-Gospodarowicz I, Rękas M. Predicting Factors Influencing Visual Function of the Eye in Patients with Unresolved Facial Nerve Palsy after Upper Eyelid Gold Weight Loading. Journal of Clinical Medicine. 2021;vol. 10. doi: 10.3390/jcm10040578 PubMed DOI PMC

Baudouin C, Irkeç M, Messmer E, Benítez-del-Castillo J, Bonini S, Figueiredo F, et al.. Clinical impact of inflammation in dry eye disease: proceedings of the ODISSEY group meeting. Acta Ophthalmologica. 2018;vol. 96: 111–119. doi: 10.1111/aos.13436 PubMed DOI PMC

Braun R, King-Smith P, Begley C, Li L, Gewecke N. Dynamics and function of the tear film in relation to the blink cycle. Progress in Retinal and Eye Research. 2015;vol. 45: 132–164. doi: 10.1016/j.preteyeres.2014.11.001 PubMed DOI PMC

Albietz J. Dry eye: an update on clinical diagnosis, management and promising new treatments. Clinical and Experimental Optometry. 2001;vol. 84: 4–18. doi: 10.1111/j.1444-0938.2001.tb04930.x PubMed DOI

Lemp M, Bron A, Baudouin C, Benítez del Castillo J, Geffen D, Tauber J, et al.. Tear Osmolarity in the Diagnosis and Management of Dry Eye Disease. American Journal of Ophthalmology. 2011;vol. 151: 792–798.e1. doi: 10.1016/j.ajo.2010.10.032 PubMed DOI

Thulasi P, Djalilian A. Update in Current Diagnostics and Therapeutics of Dry Eye Disease. Ophthalmology. 2017;vol. 124: S27–S33. doi: 10.1016/j.ophtha.2017.07.022 PubMed DOI PMC

Harrison W, Begley C, Liu H, Chen M, Garcia M, Smith J. Menisci and Fullness of the Blink in Dry Eye. Optometry and Vision Science. 2008;vol. 85: 706–714. doi: 10.1097/OPX.0b013e318181ae02 PubMed DOI

Píšová A, Chovanec M, Betka, Ferrová K, Burdová M, Odehnal M, et al.. [The Tear Osmolarity of PATIENTS with Lagophthalmos]. Cesk Slov Oftalmol. 2016;72: 172–6. PubMed

Szalai E, Berta A, Szekanecz Z, Szûcs G, Módis L. Evaluation of Tear Osmolarity in Non-Sjögren and Sjögren Syndrome Dry Eye Patients With the TearLab System. Cornea. 2012;vol. 31: 867–871. doi: 10.1097/ICO.0b013e3182532047 PubMed DOI

Sullivan B, Crews L, Messmer E, Foulks G, Nichols K, Baenninger P, et al.. Correlations between commonly used objective signs and symptoms for the diagnosis of dry eye disease: clinical implications. Acta Ophthalmologica. 2014;vol. 92: 161–166. doi: 10.1111/aos.12012 PubMed DOI

Mahelková G, Veselá V, Štangová P, Židlická A, Dotřelová D, Fales I, et al.. [Tear Osmolarity in Patients with Severe Dry Eye Syndrome Before and After Autologous Serum Treatment: a Comparison with Tear Osmolarity in Healthy Volunteers]. Cesk Slov Oftalmol. 2015;71: 184–188. PubMed

Pflugfelder S, Farley W, Luo L, Chen L, de Paiva C, Olmos L, et al.. Matrix Metalloproteinase-9 Knockout Confers Resistance to Corneal Epithelial Barrier Disruption in Experimental Dry Eye. The American Journal of Pathology. 2005;vol. 166: 61–71. doi: 10.1016/S0002-9440(10)62232-8 PubMed DOI PMC

Corrales R, Stern M, De Paiva C, Welch J, Li D, Pflugfelder S. Desiccating Stress Stimulates Expression of Matrix Metalloproteinases by the Corneal Epithelium. Investigative Opthalmology & Visual Science. 2006;vol. 47. doi: 10.1167/iovs.05-1382 PubMed DOI

Fernández I, López-Miguel A, Enríquez-de-Salamanca A, Tesón M, Stern M, González-García M, et al.. Response profiles to a controlled adverse desiccating environment based on clinical and tear molecule changes. The Ocular Surface. 2019;vol. 17: 502–515. doi: 10.1016/j.jtos.2019.03.009 PubMed DOI

Jamerson E, Elhusseiny A, ElSheikh R, Eleiwa T, El Sayed Y. Role of Matrix Metalloproteinase 9 in Ocular Surface Disorders. Eye & Contact Lens: Science & Clinical Practice. 2020;vol. 46: S57–S63. doi: 10.1097/ICL.0000000000000668 PubMed DOI

Chotikavanich S, de Paiva C, Li D, Chen J, Bian F, Farley W, et al.. Production and Activity of Matrix Metalloproteinase-9 on the Ocular Surface Increase in Dysfunctional Tear Syndrome. Investigative Opthalmology & Visual Science. 2009;vol. 50. doi: 10.1167/iovs.08-2476 PubMed DOI PMC

Kaufman H. The Practical Detection of MMP-9 Diagnoses Ocular Surface Disease and May Help Prevent Its Complications. Cornea. 2013;vol. 32: 211–216. doi: 10.1097/ICO.0b013e3182541e9a PubMed DOI

Soifer M, Mousa H, Stinnett S, Galor A, Perez V. Matrix metalloproteinase 9 positivity predicts long term decreased tear production. The Ocular Surface. 2021;vol. 19: 270–274. doi: 10.1016/j.jtos.2020.10.003 PubMed DOI

Yamaguchi T, Calvacanti B, Cruzat A, Qazi Y, Ishikawa S, Osuka A, et al.. Correlation Between Human Tear Cytokine Levels and Cellular Corneal Changes in Patients With Bacterial Keratitis by In Vivo Confocal Microscopy. Investigative Opthalmology & Visual Science. 2014;vol. 55. doi: 10.1167/iovs.14-15411 PubMed DOI PMC

Markoulli M, Papas E, Cole N, Holden B. The Diurnal Variation of Matrix Metalloproteinase-9 and Its Associated Factors in Human Tears. Investigative Opthalmology & Visual Science. 2012;vol. 53. doi: 10.1167/iovs.11-8365 PubMed DOI

Starr EC, Dana R, Pflugfelder SC, Holland EJ, Zhang S, Owen D, et al.. Dry eye disease flares: A rapid evidence assessment. The Ocular Surface. 2021;22:51–59 doi: 10.1016/j.jtos.2021.07.001 PubMed DOI

Master A, Kontzias A, Huang L, Huang W, Tsioulias A, Zarabi S, et al.. The transcriptome of rabbit conjunctiva in dry eye disease: Large-scale changes and similarity to the human dry eye. PLOS ONE. 2021;vol. 16. doi: 10.1371/journal.pone.0254036 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...