High-Throughput, Parallel Flow Cytometry Screening of Hundreds of Cell Surface Antigens Using Fluorescent Barcoding
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- Cell surface phenotyping, Fluorescent cell barcoding, High-throughput screening, Multicolor flow cytometry,
- MeSH
- antigeny povrchové * MeSH
- biologické markery analýza MeSH
- fluorescenční barviva MeSH
- průtoková cytometrie MeSH
- výzkum * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny povrchové * MeSH
- biologické markery MeSH
- fluorescenční barviva MeSH
Multicolor flow cytometry allows for analysis of tens of cellular parameters in millions of cells at a single-cell resolution within minutes. The lack of technologies that would facilitate feasible and relatively cheap profiling of such a number of cells with an antibody-based approach led us to the development of a high-throughput cytometry-based platform for surface profiling. We coupled the fluorescent cell barcoding with preexisting, commercially available screening tools to analyze cell surface fingerprint at a large scale. This powerful approach will help to identify novel biomarkers and druggable targets and facilitate the discovery of new concepts in immunology, oncology, and developmental biology.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Human Oncology and Pathogenesis Program Memorial Sloan Kettering Cancer Center New York NY USA
International Clinical Research Center St Anne's University Hospital in Brno Brno Czech Republic
Zobrazit více v PubMed
Krutzik PO, Clutter MR, Trejo A, Nolan GP (2011) Fluorescent cell barcoding for multiplex flow cytometry. Curr Protocol Cytom:Chapter 6. https://doi.org/10.1002/0471142956.cy0631s55
Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3:361–368. https://doi.org/10.1038/nmeth872 PubMed DOI
Hartmann FJ, Simonds EF, Bendall SC (2018) A universal live cell barcoding-platform for multiplexed human single cell analysis. Sci Rep 8. https://doi.org/10.1038/s41598-018-28791-2
Giudice V, Feng X, Kajigaya S et al (2017) Optimization and standardization of fluorescent cell barcoding for multiplexed flow cytometric phenotyping. Cytometry A 91:694–703. https://doi.org/10.1002/cyto.a.23162 PubMed DOI PMC
Manohar S, Shah P, Biswas S et al (2019) Combining fluorescent cell barcoding and flow cytometry-based phospho-ERK1/2 detection at short time scales in adherent cells. Cytometry A 95:192–200. https://doi.org/10.1002/cyto.a.23602 PubMed DOI
Remšík J, Fedr R, Navrátil J et al (2018) Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer. Br J Cancer 118:813–819. https://doi.org/10.1038/bjc.2017.497 PubMed DOI PMC
Remšík J, Pícková M, Vacek O et al (2020) TGF-β regulates Sca-1 expression and plasticity of pre-neoplastic mammary epithelial stem cells. Sci Rep 10. https://doi.org/10.1038/s41598-020-67827-4
Drápela S, Kvokačková B, Fedr R, et al. (2021) Pre-existing cell subpopulations in primary prostate cancers display surface fingerprint of docetaxel-resistant cells Running title: Surface fingerprint reflects docetaxel resistance in prostate cancer bioRxiv 2021.01.28.428577. https://doi.org/10.1101/2021.01.28.428577
Amir E a D, Lee B, Badoual P et al (2019) Development of a comprehensive antibody staining database using a standardized analytics pipeline. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01315