Dynamic Species Distribution Modeling Reveals the Pivotal Role of Human-Mediated Long-Distance Dispersal in Plant Invasion
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
DSI-NRF Centre of Excellence for Invasion Biology
89967
Millennium Trust, the National Research Foundation of South Africa
CZ.02.2.69/0.0/0.0/18_053/0017850
Mobility 2020 project (Ministry of Education, Youth and Sports of the Czech Republic)
RVO 67985939
long-term research development project (Czech Academy of Sciences)
PubMed
36138772
PubMed Central
PMC9495778
DOI
10.3390/biology11091293
PII: biology11091293
Knihovny.cz E-resources
- Keywords
- Bayesian inference, biological invasions, citizen science, human-mediated dispersal, long-distance dispersal, matrix population models, population dynamics, presence-only data, species distribution models,
- Publication type
- Journal Article MeSH
Plant invasions generate massive ecological and economic costs worldwide. Predicting their spatial dynamics is crucial to the design of effective management strategies and the prevention of invasions. Earlier studies highlighted the crucial role of long-distance dispersal in explaining the speed of many invasions. In addition, invasion speed depends highly on the duration of its lag phase, which may depend on the scaling of fecundity with age, especially for woody plants, even though empirical proof is still rare. Bayesian dynamic species distribution models enable the fitting of process-based models to partial and heterogeneous observations using a state-space modeling approach, thus offering a tool to test such hypotheses on past invasions over large spatial scales. We use such a model to explore the roles of long-distance dispersal and age-structured fecundity in the transient invasion dynamics of Plectranthus barbatus, a woody plant invader in South Africa. Our lattice-based model accounts for both short and human-mediated long-distance dispersal, as well as age-structured fecundity. We fitted our model on opportunistic occurrences, accounting for the spatio-temporal variations of the sampling effort and the variable detection rates across datasets. The Bayesian framework enables us to integrate a priori knowledge on demographic parameters and control identifiability issues. The model revealed a massive wave of spatial spread driven by human-mediated long-distance dispersal during the first decade and a subsequent drastic population growth, leading to a global equilibrium in the mid-1990s. Without long-distance dispersal, the maximum population would have been equivalent to 30% of the current equilibrium population. We further identified the reproductive maturity at three years old, which contributed to the lag phase before the final wave of population growth. Our results highlighted the importance of the early eradication of weedy horticultural alien plants around urban areas to hamper and delay the invasive spread.
See more in PubMed
Pyšek P., Křivánek M., Jarošík V. Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology. 2009;90:2734–2744. doi: 10.1890/08-0857.1. PubMed DOI
Haubrock P.J., Cuthbert R.N., Tricarico E., Diagne C., Courchamp F., Gozlan R.E. The recorded economic costs of alien invasive species in Italy. NeoBiota. 2021;67:247. doi: 10.3897/neobiota.67.57747. DOI
Renault D., Manfrini E., Leroy B., Diagne C., Ballesteros-Mejia L., Angulo E., Courchamp F. Biological invasions in France: Alarming costs and even more alarming knowledge gaps. NeoBiota. 2021;67:191. doi: 10.3897/neobiota.67.59134. DOI
Cuthbert R.N., Bartlett A.C., Turbelin A.J., Haubrock P.J., Diagne C., Pattison Z., Catford J.A. Economic costs of biological invasions in the United Kingdom. NeoBiota. 2021;67:299–328. doi: 10.3897/neobiota.67.59743. DOI
Haubrock P.J., Turbelin A.J., Cuthbert R.N., Novoa A., Taylor N.G., Angulo E., Courchamp F. Economic costs of invasive alien species across Europe. NeoBiota. 2021;67:153–190. doi: 10.3897/neobiota.67.58196. DOI
Seebens H., Blackburn T.M., Dyer E.E., Genovesi P., Hulme P.E., Jeschke J.M., Essl F. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:1–9. doi: 10.1038/ncomms14435. PubMed DOI PMC
Rouget M., Robertson M.P., Wilson J.R., Hui C., Essl F., Renteria J.L., Richardson D.M. Invasion debt–quantifying future biological invasions. Divers. Distrib. 2016;22:445–456. doi: 10.1111/ddi.12408. DOI
Kowarik I. Time lags in biological invasions with regard to the success and failure of alien species. Plant Invasions Gen. Asp. Spec. Probl. 1995:15–38.
Wilson J.R., Panetta F.D., Lindgren C. Detecting and Responding to Alien Plant Incursions. Cambridge University Press; Cambridge, UK: 2016.
Encarnação J., Teodósio M.A., Morais P. Citizen science and biological invasions: A review. Front. Environ. Sci. 2021;8:303. doi: 10.3389/fenvs.2020.602980. DOI
Hui C., Richardson D.M. Invasion Dynamics. Oxford University Press; Oxford, UK: 2017.
Elith J. Predicting distributions of invasive species. Invasive Species Risk Assess. Manag. 2017;10:93–129.
Thomas C.D. Climate, climate change and range boundaries. Divers. Distrib. 2010;16:488–495. doi: 10.1111/j.1472-4642.2010.00642.x. DOI
Häkkinen H., Hodgson D., Early R. Plant naturalizations are constrained by temperature but released by precipitation. Glob. Ecol. Biogeogr. 2021;31:504–521. doi: 10.1111/geb.13443. DOI
Roura-Pascual N., Bas J.M., Thuiller W., Hui C., Krug R.M., Brotons L. From introduction to equilibrium: Reconstructing the invasive pathways of the Argentine ant in a Mediterranean region. Glob. Change Biol. 2009;15:2101–2115. doi: 10.1111/j.1365-2486.2009.01907.x. DOI
Donaldson J.E., Hui C., Richardson D.M., Robertson M.P., Webber B.L., Wilson J.R. Invasion trajectory of alien trees: The role of introduction pathway and planting history. Glob. Change Biol. 2014;20:1527–1537. doi: 10.1111/gcb.12486. PubMed DOI
Melbourne B.A., Hastings A. Highly variable spread rates in replicated biological invasions: Fundamental limits to predictability. Science. 2009;325:1536–1539. doi: 10.1126/science.1176138. PubMed DOI
Drenovsky R.E., Grewell B.J., D’antonio C.M., Funk J.L., James J.J., Molinari N., Richards C.L. A functional trait perspective on plant invasion. Ann. Bot. 2012;110:141–153. doi: 10.1093/aob/mcs100. PubMed DOI PMC
Daehler C.C. Variation in self-fertility and the reproductive advantage of self-fertility for an invading plant (Spartina alterniflora) Evol. Ecol. 1998;12:553–568. doi: 10.1023/A:1006556709662. DOI
Pyšek P. Is there a taxonomic pattern to plant invasions? Oikos. 1998;82:282–294. doi: 10.2307/3546968. DOI
Schurr F.M., Pagel J., Cabral J.S., Groeneveld J., Bykova O., O’Hara R.B., Zimmermann N.E. How to understand species’ niches and range dynamics: A demographic research agenda for biogeography. J. Biogeogr. 2012;39:2146–2162. doi: 10.1111/j.1365-2699.2012.02737.x. DOI
Louvrier J., Papaïx J., Duchamp C., Gimenez O. A mechanistic–statistical species distribution model to explain and forecast wolf (Canis lupus) colonization in South-Eastern France. Spat. Stat. 2020;36:100428. doi: 10.1016/j.spasta.2020.100428. DOI
Roques L., Desbiez C., Berthier K., Soubeyrand S., Walker E., Klein E.K., Papaïx J. Emerging strains of watermelon mosaic virus in Southeastern France: Model-based estimation of the dates and places of introduction. Sci. Rep. 2021;11:1–11. doi: 10.1038/s41598-021-86314-y. PubMed DOI PMC
Rejmánek M., Richardson D.M. What attributes make some plant species more invasive? Ecology. 1996;77:1655–1661. doi: 10.2307/2265768. DOI
Higgins S.I., Richardson D.M. Predicting plant migration rates in a changing world: The role of long-distance dispersal. Am. Nat. 1999;153:464–475. doi: 10.1086/303193. PubMed DOI
Caswell H., Lensink R., Neubert M.G. Demography and dispersal: Life table response experiments for invasion speed. Ecology. 2003;84:1968–1978. doi: 10.1890/02-0100. DOI
Pemberton R.W., Liu H. Marketing time predicts naturalization of horticultural plants. Ecology. 2009;90:69–80. doi: 10.1890/07-1516.1. PubMed DOI
Castro-Díez P., Godoy O., Saldaña A., Richardson D.M. Predicting invasiveness of Australian acacias on the basis of their native climatic affinities, life history traits and human use. Divers. Distrib. 2011;17:934–945.
Caswell H. Matrix Population Models. Volume 1 Sinauer; Sunderland, MA, USA: 2000.
Stott I., Townley S., Hodgson D.J. A framework for studying transient dynamics of population projection matrix models. Ecol. Lett. 2011;14:959–970. doi: 10.1111/j.1461-0248.2011.01659.x. PubMed DOI
Qiu T., Aravena M.C., Andrus R., Ascoli D., Bergeron Y., Berretti R., Clark J.S. Is there tree senescence? The fecundity evidence. Proc. Natl. Acad. Sci. USA. 2021;118:e2106130118. doi: 10.1073/pnas.2106130118. PubMed DOI PMC
Wilson J.R.U., Richardson D.M., Rouget M., Procheş Ş., Amis M.A., Henderson L., Thuiller W. Residence time and potential range: Crucial considerations in modelling plant invasions. Divers. Distrib. 2007;13:11–22. doi: 10.1111/j.1366-9516.2006.00302.x. DOI
Caley P., Groves R.H., Barker R. Estimating the invasion success of introduced plants. Divers. Distrib. 2008;14:196–203. doi: 10.1111/j.1472-4642.2007.00440.x. DOI
Williamson M., Dehnen-Schmutz K., Kühn I., Hill M., Klotz S., Milbau A., Pyšek P. The distribution of range sizes of native and alien plants in four European countries and the effects of residence time. Divers. Distrib. 2009;15:158–166. doi: 10.1111/j.1472-4642.2008.00528.x. DOI
Cook A., Marion G., Butler A., Gibson G. Bayesian inference for the spatio-temporal invasion of alien species. Bull. Math. Biol. 2007;69:2005–2025. doi: 10.1007/s11538-007-9202-4. PubMed DOI
Clark J.S., Scher C.L., Swift M. The emergent interactions that govern biodiversity change. Proc. Natl. Acad. Sci. USA. 2020;117:17074–17083. doi: 10.1073/pnas.2003852117. PubMed DOI PMC
West M., Harrison P.J. Bayesian Forecasting and Dynamic Models. 2nd ed. Springer; New York, NY, USA: 1997.
Miller D.A., Pacifici K., Sanderlin J.S., Reich B.J. The recent past and promising future for data integration methods to estimate species’ distributions. Methods Ecol. Evol. 2019;10:22–37. doi: 10.1111/2041-210X.13110. DOI
Hastie T., Fithian W. Inference from presence-only data; the ongoing controversy. Ecography. 2013;36:864–867. doi: 10.1111/j.1600-0587.2013.00321.x. PubMed DOI PMC
Alasbahi R.H., Melzig M.F. Plectranthus barbatus: A review of phytochemistry, ethnobotanical uses and pharmacology-Part 1. Planta Med. 2010;76:653–661. doi: 10.1055/s-0029-1240898. PubMed DOI
Phillips L.A., Greer C.W., Farrell R.E., Germida J.J. Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Appl. Soil Ecol. 2009;42:9–17. doi: 10.1016/j.apsoil.2009.01.002. DOI
Botella C., Joly A., Monestiez P., Bonnet P., Munoz F. Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection. PLoS ONE. 2020;15:e0232078. doi: 10.1371/journal.pone.0232078. PubMed DOI PMC
Loveland T.R., Reed B.C., Brown J.F., Ohlen D.O., Zhu Z., Yang L.W.M.J., Merchant J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000;21:1303–1330. doi: 10.1080/014311600210191. DOI
Harris I., Jones P.D., Osborn T.J., Lister D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014;34:623–642. doi: 10.1002/joc.3711. DOI
Fick S.E., Hijmans R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Bellard C., Thuiller W., Leroy B., Genovesi P., Bakkenes M., Courchamp F. Will climate change promote future invasions? Glob. Chang. Biol. 2013;19:3740–3748. doi: 10.1111/gcb.12344. PubMed DOI PMC
Araújo M.B., Pearson R.G., Thuiller W., Erhard M. Validation of species–climate impact models under climate change. Glob. Chang. Biol. 2005;11:1504–1513. doi: 10.1111/j.1365-2486.2005.01000.x. DOI
Chalmandrier L., Hartig F., Laughlin D.C., Lischke H., Pichler M., Stouffer D.B., Pellissier L. Linking functional traits and demography to model species-rich communities. Nat. Commun. 2021;12:1–9. doi: 10.1038/s41467-021-22630-1. PubMed DOI PMC
McLean P., Gallien L., Wilson J.R.U., Gaertner M., Richardson D.M. Small urban centres as launching sites for plant invasions in natural areas: Insights from South Africa. Biol. Invasions. 2017;19:3541–3555. doi: 10.1007/s10530-017-1600-4. DOI
Potgieter L.J., Douwes E., Gaertner M., Measey G.J., Paap T., Richardson D.M. Biological invasions in South Africa’s urban ecosystems: Patterns, processes, impacts and management. In: Van Wilgen B.W., Measey J., Richardson D.M., Wilson J.R.U., Zengeya T.A., editors. Biological Invasions in South Africa. Springer; Berlin/Heidelberg, Germany: 2020. pp. 275–309.
Pages M., Fischer A., van der Wal R., Lambin X. Empowered communities or “cheap labour”? Engaging volunteers in the rationalised management of invasive alien species in Great Britain. J. Environ. Manag. 2019;229:102–111. doi: 10.1016/j.jenvman.2018.06.053. PubMed DOI
Catterall S., Cook A.R., Marion G., Butler A., Hulme P.E. Accounting for uncertainty in colonisation times: A novel approach to modelling the spatio-temporal dynamics of alien invasions using distribution data. Ecography. 2012;35:901–911. doi: 10.1111/j.1600-0587.2011.07190.x. DOI
Groom Q., Adriaens T., Bertolino S., Poelen J.H., Reeder D., Richardson D.M., Simmons N. Holistic understanding of contemporary ecosystems requires integration of data on domesticated, captive, and cultivated organisms. [(accessed on 29 August 2022)];Biodivers. Data J. 2021 9:e65371. doi: 10.3897/BDJ.9.e65371. Available online: https://bdj.pensoft.net/article/65371/ PubMed DOI PMC
Li E., Parker S.S., Pauly G.B., Randall J.M., Brown B.V., Cohen B.S. An urban biodiversity assessment framework that combines an urban habitat classification scheme and citizen science data. Front. Ecol. Evol. 2019;7:277. doi: 10.3389/fevo.2019.00277. DOI
Aikio S., Duncan R.P., Hulme P.E. Lag-phases in alien plant invasions: Separating the facts from the artefacts. Oikos. 2010;119:370–378. doi: 10.1111/j.1600-0706.2009.17963.x. DOI
Nelson G., Ellis S. The history and impact of digitization and digital data mobilization on biodiversity research. Philos. Trans. R. Soc. B. 2019;374:20170391. doi: 10.1098/rstb.2017.0391. PubMed DOI PMC
Randin C.F., Dirnböck T., Dullinger S., Zimmermann N.E., Zappa M., Guisan A. Are niche-based species distribution models transferable in space? J. Biogeogr. 2006;33:1689–1703. doi: 10.1111/j.1365-2699.2006.01466.x. DOI
Elliott-Graves A. The problem of prediction in invasion biology. Biol. Philos. 2016;31:373–393. doi: 10.1007/s10539-015-9504-0. DOI
Cole D.J. Parameter Redundancy and Identifiability. Chapman and Hall; London, UK: 2020. Bayesian Identifiability; pp. 101–153.
MacKenzie D.I., Nichols J.D., Lachman G.B., Droege S., Royle J.A., Langtimm C.A. Estimating site occupancy rates when detection probabilities are less than one. Ecology. 2002;83:2248–2255. doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2. DOI
Rosenthal J.S. Optimal proposal distributions and adaptive MCMC. Handb. Markov Chain. Monte Carlo. 2011;4:93–112.
Hartig F. BayesianTools: General-Purpose MCMC and SMC Samplers and Tools for Bayesian Statistics. 2017. [(accessed on 29 August 2022)]. R package version 0.1-7. CRAN. Available online: https://cran.r-project.org/web/packages/BayesianTools/index.html.
Rosenthal M., Glew R. Medical Biochemistry. 1st ed. Wiley; Hoboken, NJ, USA: 2011. [(accessed on 29 August 2022)]. Original work published 2011. Available online: https://www.perlego.com/book/1008615/medical-biochemistry-pdf.
Brooks S.P., Gelman A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998;7:434–455.
Jiménez-Valverde A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 2012;21:498–507. doi: 10.1111/j.1466-8238.2011.00683.x. DOI