The HLS19-COM-P, a New Instrument for Measuring Communicative Health Literacy in Interaction with Physicians: Development and Validation in Nine European Countries
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36141865
PubMed Central
PMC9517091
DOI
10.3390/ijerph191811592
PII: ijerph191811592
Knihovny.cz E-resources
- Keywords
- Calgary-Cambridge Guide framework (C-CG), HLS19, Rasch analysis, communicative health literacy, confirmatory factor analysis, data collection modes, measurement, physician–patient communication,
- MeSH
- Communication MeSH
- Physicians * MeSH
- Humans MeSH
- Surveys and Questionnaires MeSH
- Psychometrics MeSH
- Reproducibility of Results MeSH
- Health Literacy * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Sufficient communicative health literacy (COM-HL) is important for patients actively participating in dialogue with physicians, expressing their needs and desires for treatment, and asking clarifying questions. There is a lack of instruments combining communication and HL proficiency. Hence, the aim was to establish an instrument with sufficient psychometric properties for measuring COM-HL. METHODS: The HLS19-COM-P instrument was developed based on a conceptual framework integrating HL with central communicative tasks. Data were collected using different data collection modes in nine countries from December 2019 to January 2021 (n = 18,674). Psychometric properties were assessed using Rasch analysis and confirmatory factor analysis. Cronbach's alpha and Person separation index were considered for reliability. RESULTS: The 11-item version (HLS19-COM-P-Q11) and its short version of six items (HLS19-COM-P-Q6) fit sufficiently the unidimensional partial credit Rasch model, obtained acceptable goodness-of-fit indices and high reliability. Two items tend to under-discriminate. Few items displayed differential item functioning (DIF) across person factors, and there was no consistent pattern in DIF across countries. All items had ordered response categories. CONCLUSIONS: The HLS19-COM-P instrument was well accepted in nine countries, in different data collection modes, and could be used to measure COM-HL.
Communication Unit National Institute of Public Health Trubarjeva 2 1000 Ljubljana Slovenia
Czech Health Literacy Institute Sokolská 490 31 120 00 Prague Czech Republic
Department of Public Health and Epidemiology Sciensano 1050 Brussels Belgium
See more in PubMed
Berkman N.D., Sheridan S.L., Donahue K.E., Halpern D.J., Crotty K. Low health literacy and health outcomes: An updated systematic review. Ann. Intern. Med. 2011;155:97. doi: 10.7326/0003-4819-155-2-201107190-00005. PubMed DOI
Levin-Zamir D., Baron-Epel O.B., Cohen V., Elhayany A. The association of health literacy with health behavior, socioeconomic indicators, and self-assessed health from a national adult survey in Israel. J. Health Commun. 2016;21:61–68. doi: 10.1080/10810730.2016.1207115. PubMed DOI
The HLS19 Consortium of the WHO Action Network M-POHL . International Report on the Methodology, Results and recommendations of the European Health Literacy Population Survey 2019–2021 (HLS19) of M-POHL. Austrian National Public Health Institute; Vienna, Austria: 2021.
Vandenbosch J., Van den Broucke S., Vancorenland S., Avalosse H., Verniest R., Callens M. Health literacy and the use of healthcare services in Belgium. J. Epidemiol. Community Health. 2016;70:1032–1038. doi: 10.1136/jech-2015-206910. PubMed DOI
Sørensen K., Pelikan J.M., Rothlin F., Ganahl K., Slonska Z., Doyle G., Fullam J., Kondilis B., Agrafiotis D., Uiters E., et al. Health literacy in Europe: Comparative results of the European health literacy survey (HLS-EU) Eur. J. Public Health. 2015;25:1053–1058. doi: 10.1093/eurpub/ckv043. PubMed DOI PMC
Schaeffer D., Berens E.-M., Gille S., Griese L., Klinger J., de Sombre S., Vogt D., Hurrelmann K. Gesundheitskompetenz der Bevölkerung in Deutschland vor und während der Corona Pandemie: Ergebnisse des HLS-GER 2. Universität Bielefeld; Bielefeld, Germany: 2021. DOI
Clever S.L., Jin L., Levinson W., Meltzer D.O. Does doctor–patient communication affect patient satisfaction with hospital care? Results of an analysis with a novel instrumental variable. Health Serv. Res. 2008;43:1505–1519. doi: 10.1111/j.1475-6773.2008.00849.x. PubMed DOI PMC
Langewitz W., Conen D., Nübling M., Weber H. Kommunikation ist wesentlich-Defizite der Betreuung im Krankenhaus aus der Sicht von Patienten und Patientinnen. PPmP-Psychother. Psychosom. Med. Psychol. 2002;52:348–354. doi: 10.1055/s-2002-33079. PubMed DOI
Stahl K., Nadj-Kittler M. Zentrale Faktoren der Patienten-und Mitarbeiterzufriedenheit. Picker Institut Deutschland gGmbH; Hamburg, Germany: 2013.
Mead N., Bower P. Patient-centred consultations and outcomes in primary care: A review of the literature. Patient Educ. Couns. 2002;48:51–61. doi: 10.1016/S0738-3991(02)00099-X. PubMed DOI
Sator M., Nowak P., Menz F. Verbesserung der Gesprächsqualität in der Krankenversorgung–Praxismodelle und Entwicklungsinitiativen. Gesundheit Österreich GmbH; Vienna, Austria: 2015.
Street R.L., Makoul G., Arora N.K., Epstein R.M. How does communication heal? Pathways linking clinician–patient communication to health outcomes. Patient Educ. Couns. 2008;74:295–301. doi: 10.1016/j.pec.2008.11.015. PubMed DOI
Chen X., Hay J.L., Waters E.A., Kiviniemi M.T., Biddle C., Schofield E., Li Y., Kaphingst K., Orom H. Health literacy and use and trust in health information. J. Health Commun. 2018;23:724–734. doi: 10.1080/10810730.2018.1511658. PubMed DOI PMC
Paasche-Orlow M.K., Wolf M.S. The causal pathways linking health literacy to health outcomes. Am. J. Health Behav. 2007;31:S19–S26. doi: 10.5993/AJHB.31.s1.4. PubMed DOI
Van der Heide I., Poureslami I., Mitic W., Shum J., Rootman I., FitzGerald J.M. Health literacy in chronic disease management: A matter of interaction. J. Clin. Epidemiol. 2018;102:134–138. doi: 10.1016/j.jclinepi.2018.05.010. PubMed DOI
Castro C.M., Wilson C., Wang F., Schillinger D. Babel babble: Physicians’ use of unclarified medical jargon with patients. Am. J. Health Behav. 2007;31:S85–S95. doi: 10.5993/AJHB.31.s1.11. PubMed DOI
Schillinger D., Bindman A., Wang F., Stewart A., Piette J. Functional health literacy and the quality of physician–patient communication among diabetes patients. Patient Educ. Couns. 2004;52:315–323. doi: 10.1016/S0738-3991(03)00107-1. PubMed DOI
Katz M.G., Jacobson T.A., Veledar E., Kripalani S. Patient literacy and question-asking behavior during the medical encounter: A mixed-methods analysis. J. Gen. Intern. Med. 2007;22:782–786. doi: 10.1007/s11606-007-0184-6. PubMed DOI PMC
Smith S.K., Nutbeam D., McCaffery K.J. Insights into the concept and measurement of health literacy from a study of shared decision-making in a low literacy population. J. Health Psychol. 2013;18:1011–1022. doi: 10.1177/1359105312468192. PubMed DOI
Griese L., Berens E.-M., Nowak P., Pelikan J.M., Schaeffer D. Challenges in Navigating the Health Care System: Development of an Instrument Measuring Navigation Health Literacy. Int. J. Environ. Res. Public Health. 2020;17:5731. doi: 10.3390/ijerph17165731. PubMed DOI PMC
Griese L., Schaeffer D., Berens E.-M. Navigational health literacy among people with chronic illness. Chronic Illn. 2022:1–12. doi: 10.1177/17423953211073368. PubMed DOI
Nutbeam D. Health literacy as a public health goal: A challenge for contemporary health education and communication strategies into the 21st century. Health Promot. Int. 2000;15:259–267. doi: 10.1093/heapro/15.3.259. DOI
Nutbeam D. The evolving concept of health literacy. Soc. Sci. Med. 2008;67:2072–2078. doi: 10.1016/j.socscimed.2008.09.050. PubMed DOI
Nutbeam D. Defining and measuring health literacy: What can we learn from literacy studies? Int. J. Public Health. 2009;54:303–305. doi: 10.1007/s00038-009-0050-x. PubMed DOI
Sørensen K., Van den Broucke S., Fullam J., Doyle G., Pelikan J., Slonska Z., Brand H. Health literacy and public health: A systematic review and integration of definitions and models. BMC Public Health. 2012;12:80. doi: 10.1186/1471-2458-12-80. PubMed DOI PMC
HLS-EU Consortium Comparative Report of Health Literacy in Eight EU Member States. The European Health Literacy Survey HLS-EU (First Revisesed and Extended Version. Date 22 July 2014). 2012. [(accessed on 17 June 2022)]. Available online: http://www.health-literacy.eu.
Nowak P., Finbråten H.S., Biro E., Bøggild H., Charafeddine R., Mancini J., Griebler R., Griese L., Kucera Z., Link T., et al. Communicative Health Literacy with physicians in health care services. In: The HLS19 Consortium of the WHO Action Network M-POHL, editor. International Report on the Methodology, Results, and Recommendations of the European Health Literacy Population Survey 2019–2021 (HLS19) of M-POHL. Austrian National Public Health Institute; Vienna, Austria: 2021. pp. 233–274.
Nouri S.S., Rudd R.E. Health literacy in the “oral exchange”: An important element of patient–provider communication. Patient Educ. Couns. 2015;98:565–571. doi: 10.1016/j.pec.2014.12.002. PubMed DOI
Ishikawa H., Takeuchi T., Yano E. Measuring functional, communicative, and critical health literacy among diabetic patients. Diabetes Care. 2008;31:874–879. doi: 10.2337/dc07-1932. PubMed DOI
Chinn D., McCarthy C. All Aspects of Health Literacy Scale (AAHLS): Developing a tool to measure functional, communicative and critical health literacy in primary healthcare settings. Patient Educ. Couns. 2013;90:247–253. doi: 10.1016/j.pec.2012.10.019. PubMed DOI
O’Hara J., Hawkins M., Batterham R., Dodson S., Osborne R.H., Beauchamp A. Conceptualisation and development of the conversational health literacy assessment tool (CHAT) BMC Health Serv. Res. 2018;18:199. doi: 10.1186/s12913-018-3037-6. PubMed DOI PMC
Silverman J., Kurtz S., Draper J. Skills for Communication with Patients. 3rd ed. Radcliffe Publishing Ltd.; London, UK: 2013.
Iversen E.D., Wolderslund M.O., Kofoed P.-E., Gulbrandsen P., Poulsen H., Cold S., Ammentorp J. Codebook for rating clinical communication skills based on the Calgary-Cambridge Guide. BMC Med. Educ. 2020;20:140. doi: 10.1186/s12909-020-02050-3. PubMed DOI PMC
Sørensen K., Van den Broucke S., Pelikan J.M., Fullam J., Doyle G., Slonska Z., Kondilis B., Stoffels V., Osborne R.H., Brand H. Measuring health literacy in populations: Illuminating the design and development process of the European Health Literacy Survey Questionnaire (HLS-EU-Q) BMC Public Health. 2013;13:948. doi: 10.1186/1471-2458-13-948. PubMed DOI PMC
Gebhardt E. Ph.D. Thesis. University of Melbourne; Melbourne, Australia: 2016. Latent Path Models within an IRT Framework.
Petrillo J., Cano S.J., McLeod L.D., Coon C.D. Using classical test theory, item response theory, and Rasch measurement theory to evaluate patient-reported outcome measures: A comparison of worked examples. Value Health. 2015;18:25–34. doi: 10.1016/j.jval.2014.10.005. PubMed DOI
Wilson M., Allen D.D., Li J.C. Improving measurement in health education and health behavior research using item response modeling: Comparison with the classical test theory approach. Health Educ. Res. 2006;21((Suppl. 1)):i19–i32. doi: 10.1093/her/cyl053. PubMed DOI
Kreiner S. The Rasch model for dichotomous items. In: Christensen K.B., Kreiner S., Mesbah M., editors. Rasch Models in Health. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2013. pp. 5–25.
Guttersrud Ø., Le C., Pettersen K.S., Finbråten H.S. Rasch Analyses of Data Collected in 17 Countries—A Technical Report to Support Decision-Making within the M-POHL Consortium, Oslo, Norway. 2021. [(accessed on 1 July 2022)]. p. 37. Available online: https://m-pohl.net/sites/m-pohl.net/files/inline-files/Guttersrud%20et%20al_Rasch%20analyses%20of%20data%20colllected%20in%2017%20countries_2021_0.pdf.
Frisbie D.A. Reliability of Scores From Teacher-Made Tests. Educ. Meas. Issues Pract. 1988;7:25–35. doi: 10.1111/j.1745-3992.1988.tb00422.x. DOI
Green S.B., Yang Y. Reliability of summed item scores using structural equation modeling: An alternative to coefficient alpha. Psychometrika. 2009;74:155–167. doi: 10.1007/s11336-008-9099-3. DOI
Ahmad S., Zulkurnain N.N.A., Khairushalimi F.I. Assessing the validity and reliability of a measurement model in Structural Equation Modeling (SEM) Br. J. Math. Comput. Sci. 2016;15:1–8. doi: 10.9734/BJMCS/2016/25183. PubMed DOI
Masters G.N. A Rasch model for partial credit scoring. Psychometrika. 1982;47:149–174. doi: 10.1007/BF02296272. DOI
Rasch G. Probabilistic Models for Some Intelligence and Attainment Tests. Expanded ed. University of Chicago Press; Chicago, IL, USA: 1960.
Tennant A., Conaghan P.G. The Rasch measurement model in rheumatology: What is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis Care Res. 2007;57:1358–1362. doi: 10.1002/art.23108. PubMed DOI
Hagell P. Testing rating scale unidimensionality using the principal component analysis (PCA)/t-test protocol with the Rasch model: The primacy of theory over statistics. Open J. Stat. 2014;4:456–465. doi: 10.4236/ojs.2014.46044. DOI
Horton M., Marais I., Christensen K.B. Dimensionality. In: Christensen K.B., Kreiner S., Mesbah M., editors. Rasch Models in Health. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2013. pp. 137–157.
Smith E.V. Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. J. Appl. Meas. 2002;3:205–231. PubMed
Beaujean A.A. Latent Variable Modeling Using R: A Step-by-Step Guide. Routledge; New York, NY, USA: 2014.
Kline R.B. Principles and Practice of Structural Equation Modeling. Guilford Publications; New York, NY, USA: 2015.
Rosseel Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012;48:1–36. doi: 10.18637/jss.v048.i02. DOI
Schumacker R.E., Lomax R.G. A beginner′s Guide to Structural Equation Modeling. 3rd ed. Routledge; New York, NY, USA: 2010.
Hu L.T., Bentler P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Modeling Multidiscip. J. 1999;6:1–55. doi: 10.1080/10705519909540118. DOI
Wright B.D., Linacre J.M. Reasonable mean-square fit values. Rasch Meas. Trans. 1994;8:370.
Marais I. Local Dependence. In: Christensen K.B., Kreiner S., Mesbah M., editors. Rasch Models in Health. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2013. pp. 111–130.
Hagquist C., Bruce M., Gustavsson J.P. Using the Rasch model in nursing research: An introduction and illustrative example. Int. J. Nurs. Stud. 2009;46:380–393. doi: 10.1016/j.ijnurstu.2008.10.007. PubMed DOI
Hagquist C. Explaining differential item functioning focusing on the crucial role of external information—An example from the measurement of adolescent mental health. BMC Med. Res. Methodol. 2019;19:185. doi: 10.1186/s12874-019-0828-3. PubMed DOI PMC
Andrich D., Marais I. A Course in Rasch Measurement Theory: Measuring in the Educational, Social and Health Sciences. Springer; Singapore: 2019.
Lantz B. The large sample size fallacy. Scand. J. Caring Sci. 2013;27:487–492. doi: 10.1111/j.1471-6712.2012.01052.x. PubMed DOI
Cohen L., Manion L., Morrison K. Research Methods in Education. Taylor & Francis Group; Oxford, UK: 2018.
Andrich D., Sheridan B. RUMM2030Plus. Rumm Laboratory Pty Ltd.; Duncraig, Australia: 2019.
Adams R.J., Wu M.L., Cloney D., Wilson M.R. ACER ConQuest: Generalised Item Response Modelling Software [Computer software], Version 5. Australian Council for Educational Research; Camberwell, Australia: 2020.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2013.
Adler N.E., Epel E.S., Castellazzo G., Ickovics J.R. Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy, White women. Health Psychol. 2000;19:586. doi: 10.1037/0278-6133.19.6.586. PubMed DOI
Lampert T., Hoebel J., Kuntz B., Müters S., Kroll L.E. Messung des Sozioökonomischen Status und des Subjektiven Sozialen Status in KiGGS Welle 2. Robert Koch-Institut; Berlin, Germany: 2018.
Andrich D. Rasch Models for Measurement. Volume 68 SAGE; Newsbury Park, CA, USA: 1988.
Masters G.N. Item discrimination: When more is worse. J. Educ. Meas. 1988;25:15–29. doi: 10.1111/j.1745-3984.1988.tb00288.x. DOI
Deveugele M., Derese A., van den Brink-Muinen A., Bensing J., De Maeseneer J. Consultation length in general practice: Cross sectional study in six European countries. BMJ. 2002;325:472. doi: 10.1136/bmj.325.7362.472. PubMed DOI PMC
Jiao H., Liu J., Haynie K., Woo A., Gorham J. Comparison between dichotomous and polytomous scoring of innovative items in a large-scale computerized adaptive test. Educ. Psychol. Meas. 2012;72:493–509. doi: 10.1177/0013164411422903. DOI
Fedorov V., Mannino F., Zhang R. Consequences of dichotomization. Pharm. Stat. J. Appl. Stat. Pharm. Ind. 2009;8:50–61. doi: 10.1002/pst.331. PubMed DOI
DeCoster J., Iselin A.-M.R., Gallucci M. A conceptual and empirical examination of justifications for dichotomization. Psychol. Methods. 2009;14:349. doi: 10.1037/a0016956. PubMed DOI
Bowling A. Mode of questionnaire administration can have serious effects on data quality. J. Public Health. 2005;27:281–291. doi: 10.1093/pubmed/fdi031. PubMed DOI
Braekman E., Charafeddine R., Demarest S., Drieskens S., Berete F., Gisle L., Van der Heyden J., Van Hal G. Comparing web-based versus face-to-face and paper-and-pencil questionnaire data collected through two Belgian health surveys. Int. J. Public Health. 2020;65:5–16. doi: 10.1007/s00038-019-01327-9. PubMed DOI