• This record comes from PubMed

Reactive Nitrogen Species and Male Reproduction: Physiological and Pathological Aspects

. 2022 Sep 12 ; 23 (18) : . [epub] 20220912

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Reactive nitrogen species (RNS), like reactive oxygen species (ROS), are useful for sustaining reproductive processes such as cell signaling, the regulation of hormonal biosynthesis, sperm capacitation, hyperactivation, and acrosome reaction. However, endogenous levels of RNS beyond physiological limits can impair fertility by disrupting testicular functions, reducing gonadotropin production, and compromising semen quality. Excessive RNS levels cause a variety of abnormalities in germ cells and gametes, particularly in the membranes and deoxyribonucleic acid (DNA), and severely impair the maturation and fertilization processes. Cell fragmentation and developmental blockage, usually at the two-cell stage, are also connected with imbalanced redox status of the embryo during its early developmental stage. Since high RNS levels are closely linked to male infertility and conventional semen analyses are not reliable predictors of the assisted reproductive technology (ART) outcomes for such infertility cases, it is critical to develop novel ways of assessing and treating oxidative and/or nitrosative stress-mediated male infertility. This review aims to explicate the physiological and pathological roles of RNS and their relationship with male reproduction.

See more in PubMed

Pryor W.A., Squadrito G.L. The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide. Am. J. Physiol. Lung Cell Mol. Physiol. 1995;268:699–722. doi: 10.1152/ajplung.1995.268.5.L699. PubMed DOI

Ramya T., Misro M.M., Sinha D., Nandan D., Mithal S. Altered levels of seminal nitric oxide, nitric oxide synthase, and enzymatic antioxidants and their association with sperm function in infertile subjects. Int. J. Fertil. Steril. 2011;95:135–140. doi: 10.1016/j.fertnstert.2010.06.044. PubMed DOI

Jourd’heuil D., Jourd’heuil F.L., Kutchukian P.S., Musah R.A., Wink D.A., Grisham M.B. Reaction of Superoxide and Nitric Oxide with Peroxynitrite. Implications for Peroxynitrite-mediated oxidation reactions in vivo. J. Biol. Chem. 2001;276:28799–28805. doi: 10.1074/jbc.M102341200. PubMed DOI

Eshraghian A., Taghavi S.A. Systematic review: Endocrine abnormalities in patients with liver cirrhosis. Arch. Iran. 2014;17:713–721. PubMed

Baker H.G. Reproductive effects of nontesticular illness. Endocrinol. Metab. Clin. N. Am. 1999;27:831–850. doi: 10.1016/S0889-8529(05)70043-8. PubMed DOI

Sabanegh E.S., Jr., Ragheb A.M. Male fertility after cancer. Urol. 2009;73:225–231. doi: 10.1016/j.urology.2008.08.474. PubMed DOI

Agarwal A., Sengupta P. Oxidative stress and its association with male infertility. In: Parekattil S.J., Esteves S.C., Agarwal A., editors. Male Infertility. Springer; Cham, Switzerland: 2020. pp. 57–68.

Bisht S., Faiq M., Tolahunase M., Dada R. Oxidative stress and male infertility. Nat. Rev. Urol. 2017;14:470–485. doi: 10.1038/nrurol.2017.69. PubMed DOI

Juan C.A., de la Lastra J.M.P., Plou F.J., Perez-Lebena E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021;22:4642. doi: 10.3390/ijms22094642. PubMed DOI PMC

Baker M.A., Aitken R.J. Reactive oxygen species in spermatozoa: Methods for monitoring and significance for the origins of genetic disease and infertility. Reprod. Biol. Endocrinol. 2005;3:67. doi: 10.1186/1477-7827-3-67. PubMed DOI PMC

Cornwell T.L., Arnold E.L., Boerth N.J., Lincoln T.M. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am. J. Physiol. Cell Physiol. 1994;267:1405–1413. doi: 10.1152/ajpcell.1994.267.5.C1405. PubMed DOI

Zhang H., Zheng R.L. Possible role of nitric oxide on fertile and asthenozoospermic infertile human sperm functions. Free Radic. Res. 1996;25:347–354. doi: 10.3109/10715769609149057. PubMed DOI

Pacher P., Beckman J.S., Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007;87:315–424. doi: 10.1152/physrev.00029.2006. PubMed DOI PMC

Lee N.P., Cheng C.Y. Nitric oxide/nitric oxide synthase, spermatogenesis, and tight junction dynamics. Biol. Reprod. 2004;70:267–276. doi: 10.1095/biolreprod.103.021329. PubMed DOI

Rosselli M., Keller R.J., Dubey R.K. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum. Reprod. Update. 1998;4:3–24. doi: 10.1093/humupd/4.1.3. PubMed DOI

Homa S.T., Vessey W., Perez-Miranda A., Riyait T., Agarwal A. Reactive oxygen species (ROS) in human semen: Determination of a reference range. J. Assist. Reprod. Genet. 2015;32:757–764. doi: 10.1007/s10815-015-0454-x. PubMed DOI PMC

Sezer C., Koksal I.T., Usta M.F., Gulkesen K.H., Erdogru T., Ciftcioglu A., Baykara M. Relationship between mast cell and iNOS expression in testicular tissue associated with infertility. Arch. Androl. 2005;51:149–158. doi: 10.1080/014850190518161. PubMed DOI

de Lamirande E., Gagnon C. Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic. Biol. Med. 1995;18:487–495. doi: 10.1016/0891-5849(94)00169-K. PubMed DOI

Lee N.P., Cheng C.Y. Nitric oxide and cyclic nucleotides: Their roles in junction dynamics and spermatogenesis. Adv. Exp. Med. Biol. 2008;636:172–185. PubMed

Turker K.I., Erdogru T., Gülkesen H., Sezer C., Usta M., Ciftçioglu A. The potential role of inducible nitric oxide synthase (iNOS) activity in the testicular dysfunction associated with varicocele: An experimental study. Int. Urol. Nephrol. 2004;36:67–72. PubMed

O’Bryan M.K., Zini A., Cheng C.Y., Schlegel P.N. Human sperm endothelial nitric oxide synthase expression: Correlation with sperm motility. Fertil Steril. 1998;70:1146–1147. doi: 10.1016/S0015-0282(98)00382-3. PubMed DOI

Bolanos J.P., Delgado-Esteban M., Herrero-Mendez A., Fernandez-Fernandez S., Almeida A. Regulation of glycolysis and pentose–phosphate pathway by nitric oxide: Impact on neuronal survival. Biochim. Biophys. Acta Bioenerg. 2008;1777:789–793. doi: 10.1016/j.bbabio.2008.04.011. PubMed DOI

Nobunaga T., Tokugawa Y., Hashimoto K., Kubota Y., Sawai K., Kimura T., Shimoya K., Takemura M., Matsuzaki N., Azuma C., et al. Elevated nitric oxide concentration in the seminal plasma of infertile males: Nitric oxide inhibits sperm motility. Am. J. Reprod. Immunol. 1996;36:193–197. doi: 10.1111/j.1600-0897.1996.tb00162.x. PubMed DOI

Tomlinson M.J., East S.J., Barratt C.L., Bolton A.E., Cooke I.D. Preliminary communication: Possible role of reactive nitrogen intermediates in leucocyte-mediated sperm dysfunction. Am. J. Reprod. Immunol. 1992;27:89–92. doi: 10.1111/j.1600-0897.1992.tb00730.x. PubMed DOI

Archer S. Measurement of nitric oxide in biological models. FASEB J. 1993;7:349–360. doi: 10.1096/fasebj.7.2.8440411. PubMed DOI

du Plessis S.S., Cabler S., McAlister D.A., Sabanegh E., Agarwal A. The effect of obesity on sperm disorders and male infertility. Nat. Rev. Urol. 2010;7:153–161. doi: 10.1038/nrurol.2010.6. PubMed DOI

Makker K., Agarwal A., Sharma R. Oxidative stress and male infertility. Indian J. Med. Res. 2009;129:357–368. PubMed

Koppenol W.H., Moreno J.J., Pryor W.A., Ischiropoulos H., Beckman J.S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem. Res. Toxicol. 1992;5:834–842. doi: 10.1021/tx00030a017. PubMed DOI

Hall C.N., Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide. 2009;21:92–103. doi: 10.1016/j.niox.2009.07.002. PubMed DOI PMC

Herrero M.B., de Lamirande E., Gagnon C. Nitric oxide regulates human sperm capacitation and protein-tyrosine phosphorylation in vitro. Biol. Reprod. 1999;61:575–581. doi: 10.1095/biolreprod61.3.575. PubMed DOI

Otasevic V., Korac A., Vucetic M., Macanovic B., vGaralejic E., Ivanovic-Burmazovic I., Filipovic M.R., Buzadzic B., Stancic A., Jankovic A., et al. Is manganese (II) pentaazamacrocyclic superoxide dismutase mimic beneficial for human sperm mitochondria function and motility? Antioxid. Redox. Signal. 2013;18:170–178. doi: 10.1089/ars.2012.4684. PubMed DOI PMC

de Lamirande E., Lamothe G., Villemure M. Control of superoxide and nitric oxide formation during human sperm capacitation. Free Radic. Biol. Med. 2009;46:1420–1427. doi: 10.1016/j.freeradbiomed.2009.02.022. PubMed DOI

Herrero M., Lamirande E.D., Gagnon C. Nitric oxide is a signaling molecule in spermatozoa. Curr. Pharm. Des. 2003;9:419–425. doi: 10.2174/1381612033391720. PubMed DOI

Kothari S., Thompson A., Agarwal A., du Plessis S.S. Free radicals: Their beneficial and detrimental effects on sperm function. Indian J. Exp. Biol. 2010;48:425–435. PubMed

Vignini A., Nanetti L., Buldreghini E., Moroni C., Ricciardo-Lamonica G., Mantero F., Boscaro M., Mazzanti L., Balercia G. The production of peroxynitrite by human spermatozoa may affect sperm motility through the formation of protein nitrotyrosine. Fertil. Steril. 2006;85:947–953. doi: 10.1016/j.fertnstert.2005.09.027. PubMed DOI

Cassina A., Silveira P., Cantu L., Montes J.M., Radi R., Sapiro R. Defective human sperm cells are associated with mitochondrial dysfunction and oxidant production. Biol. Reprod. 2015;93:119. doi: 10.1095/biolreprod.115.130989. PubMed DOI

Herrero M.B., de Lamirande E., Gagnon C. Tyrosine nitration in human spermatozoa: A physiological function of peroxynitrite, the reaction product of nitric oxide and superoxide. Mol. Hum. Reprod. 2001;7:913–921. doi: 10.1093/molehr/7.10.913. PubMed DOI

Rodriguez P.C., Beconi M.T. Peroxynitrite participates in mechanisms involved in capacitation of cryopreserved cattle. Anim. Reprod. Sci. 2009;110:96–107. doi: 10.1016/j.anireprosci.2007.12.017. PubMed DOI

Rosselli M., Dubey R.K., Imthurn B., Macas E., Keller P.J. Andrology: Effects of nitric oxide on human spermatozoa: Evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Hum. Reprod. 1995;10:1786–1790. doi: 10.1093/oxfordjournals.humrep.a136174. PubMed DOI

Dutta S., Sengupta P., Slama P., Roychoudhury S. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int.J. Mol. Sci. 2021;22:10043. doi: 10.3390/ijms221810043. PubMed DOI PMC

Meineke V., Frungieri M.B., Jessberger B., Vogt H.J., Mayerhofer A. Human testicular mast cells contain tryptase: Increased mast cell number and altered distribution in the testes of infertile men. Fertil. Steril. 2000;74:239–246. doi: 10.1016/S0015-0282(00)00626-9. PubMed DOI

Tarpey M.M., Beckman J.S., Ischiropoulos H., Gore J.Z., Brock T.A. Peroxynitrite stimulates vascular smooth muscle cell cyclic GMP synthesis. FEBS Lett. 1995;364:314–318. doi: 10.1016/0014-5793(95)00413-4. PubMed DOI

Schuppe H.C., Meinhardt A., Allam J.P., Bergmann M., Weidner W., Haidl G. Chronic orchitis: a neglected cause of male infertility? Andrologia. 2008;40:84–91. PubMed

Eduardo R.S., Eustache F. Male reproductive physiology. In: Skinner M.K., editor. Encyclopedia of Reproduction. 2nd ed. Volume 1. Elsevier; Waltham, MA, USA: 2018. pp. 408–416.

Dutta S., Sengupta P., Chhikara B.S. Reproductive inflammatory mediators and male infertility. Chem. Biol. Lett. 2020;7:73–74.

Irez T., Bicer S., Sahin E., Dutta S., Sengupta P. Cytokines and adipokines in the regulation of spermatogenesis and semen quality. Chem. Biol. Lett. 2020;7:131–139.

Semenzato G. Tumour necrosis factor: A cytokine with multiple biological activities. Br. J. Cancer. 1990;61:354–361. doi: 10.1038/bjc.1990.78. PubMed DOI PMC

Villalobo A. Nitric oxide and cell proliferation. FEBS J. 2006;273:2329–2346. doi: 10.1111/j.1742-4658.2006.05250.x. PubMed DOI

Ferreiro M.E., Amarilla M.S., Glienke L., Méndez C.S., González C., Jacobo P.V., Sobarzo C.M., De Laurentiis A., Ferraris M.J., Theas M.S. The inflammatory mediators TNFα and nitric oxide arrest spermatogonia GC-1 cell cycle. Reprod. Biol. 2019;19:329–339. doi: 10.1016/j.repbio.2019.11.001. PubMed DOI

Lue Y., Sinha Hikim A.P., Wang C., Leung A., Swerdloff R.S. Functional role of inducible nitric oxide synthase in the induction of male germ cell apoptosis, regulation of sperm number, and determination of testes size: Evidence from null mutant mice. Endocrinology. 2003;146:3092–3400. doi: 10.1210/en.2002-0142. PubMed DOI

Auharek S.A., Lara N.L., Avelar G.F., Sharpe R.M., França L.R. Effects of inducible nitric oxide synthase (iNOS) deficiency in mice on Sertoli cell proliferation and perinatal testis development. Int. J. Androl. 2012;35:741–751. doi: 10.1111/j.1365-2605.2012.01264.x. PubMed DOI

Sikka S.C. Relative impact of oxidative stress on male reproductive function. Curr. Med. Chem. 2001;8:851–862. doi: 10.2174/0929867013373039. PubMed DOI

Mack SR., Han HL., de Jonge CJ., Anderson RA., Zaneveld LJ. The human sperm acrosome reaction does not depend on arachidonic acid metabolism via the cyclooxygenase and lipoxygenase pathways. J. Androl. 1992;13:551–559. PubMed

Yeoman RR., Jones WD., Rizk BM. Evidence for nitric oxide regulation of hamster sperm hyperactivation. J.Androl. 1998;19:19,58–64. PubMed

Miraglia E., Rullo M.L., Bosia A., Massobrio M., Revelli A., Ghigo D. Stimulation of the nitric oxide/cyclic guanosine monophosphate signaling pathway elicits human sperm chemotaxis in vitro. Fertil. Steril. 2007;87:1059–1063. doi: 10.1016/j.fertnstert.2006.07.1540. PubMed DOI

Morielli T., O’Flaherty C. Oxidative stress impairs function and increases redox protein modifications in human spermatozoa. Reproduction. 2015;149:113–123. doi: 10.1530/REP-14-0240. PubMed DOI PMC

Donnelly E.T., Lewis S.E., Thompson W., Chakravarthy U. Sperm nitric oxide and motility: The effects of nitric oxide synthase stimulation and inhibition. Mol. Hum. Reprod. 1997;3:755–762. doi: 10.1093/molehr/3.9.755. PubMed DOI

Lamirande E.D., Gagnon C. A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int. J.Androl. 1993;6:21–25. doi: 10.1111/j.1365-2605.1993.tb01148.x. PubMed DOI

O’flaherty C., Beconi M., Beorlegui N. Effect of natural antioxidants, superoxide dismutase and hydrogen peroxide on capacitation of frozen-thawed bull spermatozoa. Andrologia. 1997;29:269–275. doi: 10.1111/j.1439-0272.1997.tb00481.x. PubMed DOI

Balercia G., Moretti S., Vignini A., Magagnini M., Mantero F., Boscaro M., Ricciardo-Lamonica G., Mazzanti L. Role of nitric oxide concentrations on human sperm motility. J. Androl. 2004;25:246–249. doi: 10.1002/j.1939-4640.2004.tb02784.x. PubMed DOI

Goud P.T., Goud A.P., Joshi N., Puscheck E., Diamond M.P., Abu-Soud H.M. Dynamics of nitric oxide, altered follicular microenvironment, and oocyte quality in women with endometriosis. Fertil. Steril. 2014;102:151–159. doi: 10.1016/j.fertnstert.2014.03.053. PubMed DOI

Bisht S., Dada R.J. Oxidative stress: Major executioner in disease pathology, role in sperm DNA damage and preventive strategies. Front. Biosci. (Schol Ed.) 2017;9:420–467. PubMed

Blesbois E., Lessire M., Grasseau I., Hallouis J.M., Hermier D. Effect of dietary fat on the fatty acid composition and fertilizing ability of fowl semen. Biol. Reprod. 1997;56:1216–1220. doi: 10.1095/biolreprod56.5.1216. PubMed DOI

Smith T.B., Dun M.D., Smith N.D., Curry B.J., Connaughton H.S., Aitken R.J. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J. Cell Sci. 2013;126:1488–1497. doi: 10.1242/jcs.121657. PubMed DOI

Aitken R.J., De Iuliis G.N., McLachlan R.I. Biological and clinical significance of DNA damage in the male germ line. Int. J. Androl. 2009;32:46–56. doi: 10.1111/j.1365-2605.2008.00943.x. PubMed DOI

Henkel R., Hajimohammad M., Stalf T., Hoogendijk C., Mehnert C., Menkveld R., Gips H., Schill W.B., Kruger T.F. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil. Steril. 2004;81:965–972. doi: 10.1016/j.fertnstert.2003.09.044. PubMed DOI

Hud N.V., Allen M.J., Downing K.H., Lee J., Balhorn R. Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic force microscopy. Biochem. Biophys. Res. Commun. 1993;193:1347–1354. doi: 10.1006/bbrc.1993.1773. PubMed DOI

Otasevic V., Stancic A., Korac A., Jankovic A., Korac B. Reactive oxygen, nitrogen, and sulfur species in human male fertility. A crossroad of cellular signaling and pathology. Biofactors. 2020;46:206–219. doi: 10.1002/biof.1535. PubMed DOI

Aitken R.J., Baker M.A., O’Bryan M. Shedding light on chemiluminescence: The application of chemiluminescence in diagnostic andrology. J. Androl. 2004;25:465. doi: 10.1002/j.1939-4640.2004.tb02815.x. PubMed DOI

Ito N., Ruegg U.T., Kudo A., Miyagoe-Suzuki Y., Takeda S.I. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat. Med. 2013;19:101–106. doi: 10.1038/nm.3019. PubMed DOI

Lenzi A., Picardo M., Gandini L., Dondero F. Lipids of the sperm plasma membrane: From polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum. Reprod. Update. 1996;2:246–256. doi: 10.1093/humupd/2.3.246. PubMed DOI

Lenzi A., Gandini L., Picardo M., Tramer F., Sandri G., Panfili E. Lipoperoxidation damage of spermatozoa polyunsaturated fatty acids (PUFA): Scavenger mechanisms and possible scavenger therapies. Front. Biosci. 2000;5:E1–E5. PubMed

Bain J. Testosterone and the aging male: To treat or not to treat? Maturitas. 2010;66:16–22. doi: 10.1016/j.maturitas.2010.01.009. PubMed DOI

Semenova A.V., Tomilova I.K., Panikratov K.D., Kadykova E.L., Basharin A.V. The role of nitric oxide in fertility disorders in men. Urologiia. 2005;6:31–36. PubMed

Kruger T.F., Menkveld R., Stander F.S., Lombard C.J., Van der Merwe J.P., van Zyl J.A., Smith K. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil. Steril. 1986;46:1118–1123. doi: 10.1016/S0015-0282(16)49891-2. PubMed DOI

Burnett A.L., Ricker D.D., Chamness S.L., Maguire M.P., Crone J.K., Bredt D.S., Snyder S.H., Chang T.S. Localization of nitric oxide synthase in the reproductive organs of the male rat. Biol. Reprod. 1995;52:1–7. doi: 10.1095/biolreprod52.1.1. PubMed DOI

Huang I., Jones J., Khorram O. Human seminal plasma nitric oxide: Correlation with sperm morphology and testosterone. Med. Sci. Monit. 2006;12:CR103–CR106. PubMed

Theam O.C., Dutta S., Sengupta P. Role of leucocytes in reproductive tract infections and male infertility. Chem. Biol. Lett. 2020;7:124–130.

Santoro G., Romeo C., Impellizzeri P., Ientile R., Cutroneo G., Trimarchi F., Pedale S., Turiaco N., Gentile C. Nitric oxide synthase patterns in normal and varicocele testis in adolescents. BJU Int. 2001;88:967–973. doi: 10.1046/j.1464-4096.2001.02446.x. PubMed DOI

Shiraishi K., Naito K. Nitric oxide produced in the testis is involved in dilatation of the internal spermatic vein that compromises spermatogenesis in infertile men with varicocele. BJU Int. 2007;99:1086–1090. doi: 10.1111/j.1464-410X.2007.06800.x. PubMed DOI

Mitropoulos D., Deliconstantinos G., Zervas A., Villiotou V., Dimopoulos C., Stavrides J. Nitric oxide synthase and xanthine oxidase activities in the spermatic vein of patients with varicocele: A potential role for nitric oxide and peroxynitrite in sperm dysfunction. J. Urol. 1996;156:1952–1958. doi: 10.1016/S0022-5347(01)65403-X. PubMed DOI

Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA. 1990;87:1620–1624. doi: 10.1073/pnas.87.4.1620. PubMed DOI PMC

Agbaje I., Rogers D.A., McVicar C.M., McClure N., Atkinson A.B., Mallidis C., Lewis S.E. Insulin dependant diabetes mellitus: Implications for male reproductive function. Hum. Reprod. 2007;22:1871–1877. doi: 10.1093/humrep/dem077. PubMed DOI

Dinulovic D., Radonjic G. Diabetes mellitus/male infertility. Arch. Androl. 1990;25:277–293. doi: 10.3109/01485019008987617. PubMed DOI

Agarwal A., Prabakaran S.A. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J. Exp. Biol. 2005;46:963–974. PubMed

Sharma R.K., Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48:835–850. doi: 10.1016/S0090-4295(96)00313-5. PubMed DOI

Agarwal A., Said T.M. Oxidative stress, DNA damage and apoptosis in male infertility: A clinical approach. BJU Int. 2005;95:503–507. doi: 10.1111/j.1464-410X.2005.05328.x. PubMed DOI

Buettner G.R. Spin trapping: ESR parameters of spin adducts. Free Radic. Biol. Med. 1987;3:259–303. doi: 10.1016/S0891-5849(87)80033-3. PubMed DOI

Mrakic-Sposta S., Gussoni M., Montorsi M., Porcelli S., Vezzoli A. Assessment of a standardized ROS production profile in humans by electron paramagnetic resonance. Oxid. Med. Cell. Longev. 2012;2012:973927. doi: 10.1155/2012/973927. PubMed DOI PMC

Mrakic-Sposta S., Gussoni M., Montorsi M., Porcelli S., Vezzoli A. A quantitative method to monitor reactive oxygen species production by electron paramagnetic resonance in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2014;2014:306179. doi: 10.1155/2014/306179. PubMed DOI PMC

Shekarriz M., Thomas A.J., Jr., Agarwal A. Incidence and level of seminal reactive oxygen species in normal men. Urology. 1995;46:103–107. doi: 10.1016/S0090-4295(95)97088-6. PubMed DOI

Sharma R.K., Pasqualotto A.E., Nelson D.R., Thomas A.J., Jr., Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001;22:575–583. PubMed

Gil-Guzman E., Ollero M., Lopez M.C., Sharma R.K., Alvarez J.G., Thomas A.J., Jr., Agarwal A. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum. Reprod. 2001;16:1922–1930. doi: 10.1093/humrep/16.9.1922. PubMed DOI

Jones D.P. Redox potential of GSH/GSSG couple: Assay and biological significance. Methods Enzymol. 2002;348:93–112. PubMed

Chirico S., Smith C., Marchant C., Mitchinson M.J., Halliwell B. Lipid peroxidation in hyperlipidaemic patients. A study of plasma using an HPLC-based thiobarbituric acid test. Free Radic. Res. Commun. 1993;19:51–57. doi: 10.3109/10715769309056498. PubMed DOI

Grotto D., Santa Maria L.D., Boeira S., Valentini J., Charao M.F., Moro A.M., Nascimento P.C., Pomblum V.J., Garcia S.C. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J. Pharm. Biomed. Anal. 2007;46:619–624. doi: 10.1016/j.jpba.2006.07.030. PubMed DOI

Shapiro H.M. Redox balance in the body: An approach to quantitation. J. Surg. Res. 1972;13:138–152. doi: 10.1016/0022-4804(72)90057-1. PubMed DOI

Rael L.T., Bar-Or R., Aumann R.M., Slone D.S., Mains C.W., Bar-Or D. Oxidation-reduction potential and paraoxonase-arylesterase activity in trauma patients. Biochem. Biophys. Res. Commun. 2007;361:561–565. doi: 10.1016/j.bbrc.2007.07.078. PubMed DOI

Agarwal A., Roychoudhury S., Sharma R., Gupta S., Majzoub A., Sabanegh E. Diagnostic application of oxidation-reduction potential assay for measurement of oxidative stress: Clinical utility in male factor infertility. Reprod. Biomed. Online. 2017;34:48–57. doi: 10.1016/j.rbmo.2016.10.008. PubMed DOI

Agarwal A., Sharma R., Roychoudhury S., du Plessis S., Sabanegh E. MiOXSYS: A novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil. Steril. 2016;106:566–573. doi: 10.1016/j.fertnstert.2016.05.013. PubMed DOI

Agarwal A., Panner Selvam M.K., Arafa M., Okada H., Homa S., Killeen A., Balaban B., Saleh R., Armagan A., Roychoudhury S., et al. Multi-center evaluation of oxidation-reduction potential by the MiOXSYS in males with abnormal semen. Asian J. Androl. 2019;21:565–569. doi: 10.4103/aja.aja_5_19. PubMed DOI PMC

Deepinder F., Agarwal A. Determination of seminal oxidants (reactive oxygen species) In: Lipshultz L.I., Howards S., Neiderberger C.S., editors. Infertility in the Male. 4th ed. Cambridge University Press; Cambridge, UK: 2009. pp. 618–632.

Agarwal A., Cocuzza M., Abdelrazik H., Sharma R.K. Oxidative stress measurement in patients with male or female factor infertility. In: Popov I., Lewin G., editors. Handbook of Chemiluminescent Methods in Oxidative Stress Assessment. Transworld Research Network; Trivandrum, India: 2008. pp. 195–218.

Kobayashi H., Gil-Guzman E., Mahran A.M., Sharma R.K., Nelson D.R., Thomas A.J., Jr., Agarwal A. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J. Androl. 2001;22:568–574. PubMed

Agarwal A., Allamaneni S.S.R., Said T.M. Chemiluminescence technique for measuring reactive oxygen species. Reprod. Biomed. Online. 2004;9:466–468. doi: 10.1016/S1472-6483(10)61284-9. PubMed DOI

Benjamin D., Sharma R.K., Moazzam A., Agarwal A. Methods for the detection of ROS in human sperm samples. In: Agarwal A., Aitken R., Alvarez J., editors. Studies on Men’s Health and Fertility. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press; New York, NY, USA: 2012. pp. 257–274.

Agarwal A., Ahmad G., Sharma R. Reference values of reactive oxygen species in seminal ejaculates using chemiluminescence assay. J. Assist. Reprod. Genet. 2015;32:1721–1729. doi: 10.1007/s10815-015-0584-1. PubMed DOI PMC

Aitken R.J., Buckingham D.W., West K.M. Reactive oxygen species and human spermatozoa: Analysis of the cellular mechanisms involved in luminol- and lucigenin-dependent chemiluminescence. J. Cell. Physiol. 1992;151:466–477. doi: 10.1002/jcp.1041510305. PubMed DOI

Kashou A.H., Sharma R., Agarwal A. Assessment of oxidative stress in sperm and semen. Methods Mol. Biol. 2013;927:351–361. PubMed

Guthrie H.D., Welch G.R. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J. Anim. Sci. 2006;84:2089–2100. doi: 10.2527/jas.2005-766. PubMed DOI

De Iuliis G.N., Wingate J.K., Koppers A.J., McLaughlin E.A., Aitken R.J. Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa. J. Clin. Endocrinol. Metab. 2006;91:1968–1975. doi: 10.1210/jc.2005-2711. PubMed DOI

Mahfouz R., Sharma R., Lackner J., Aziz N., Agarwal A. Evaluation of chemiluminescence and flow cytometry as tools in assessing production of hydrogen peroxide and superoxide anion in human spermatozoa. Fertil. Steril. 2009;92:819–827. doi: 10.1016/j.fertnstert.2008.05.087. PubMed DOI

Halliwell B., Chirico S. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 1993;57:715S–724S. doi: 10.1093/ajcn/57.5.715S. PubMed DOI

Roychoudhury S., Sharma R., Sikka S.C., Agarwal A. Diagnostic application of total antioxidant capacity in seminal plasma to assess oxidative stress in male factor infertility. J. Assist. Reprod. Genet. 2016;33:627–635. doi: 10.1007/s10815-016-0677-5. PubMed DOI PMC

Zarkovic N. 4-hydroxynonenal as a bioactive marker of pathophysiological processes. Mol. Aspects Med. 2003;24:281–291. doi: 10.1016/S0098-2997(03)00023-2. PubMed DOI

Spickett C.M. The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis. Redox Biol. 2013;1:146–152. doi: 10.1016/j.redox.2013.01.007. PubMed DOI PMC

Weber D., Milkovic L., Bennett S.J., Griffiths H.R., Zarkovic N., Grune T. Measurement of HNE-protein adducts in human plasma and serum by ELISA-Comparison of two primary antibodies. Redox Biol. 2013;1:226–233. doi: 10.1016/j.redox.2013.01.012. PubMed DOI PMC

Khosrowbeygi A., Zarghami N. Levels of oxidative stress biomarkers in seminal plasma and their relationship with seminal parameters. BMC Clin. Pathol. 2007;7:6. doi: 10.1186/1472-6890-7-6. PubMed DOI PMC

Amiri I., Sheikh N., Najafi R. Nitric oxide level in seminal plasma and its relations with sperm DNA damages. Iran Biomed. J. 2007;11:259–264. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...