Molecular actions of sex hormones in the brain and their potential treatment use in anxiety disorders
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36159923
PubMed Central
PMC9492942
DOI
10.3389/fpsyt.2022.972158
Knihovny.cz E-zdroje
- Klíčová slova
- brain structures, molecular mechanism, mood disorders, sex steroid receptors, testosterone,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Anxiety disorders are one of the most prevalent mood disorders that can lead to impaired quality of life. Current treatment of anxiety disorders has various adverse effects, safety concerns, or restricted efficacy; therefore, novel therapeutic targets need to be studied. Sex steroid hormones (SSHs) play a crucial role in the formation of brain structures, including regions of the limbic system and prefrontal cortex during perinatal development. In the brain, SSHs have activational and organizational effects mediated by either intracellular or transmembrane G-protein coupled receptors. During perinatal developmental periods, the physiological concentrations of SSHs lead to the normal development of the brain; however, the early hormonal dysregulation could result in various anxiety diorders later in life. Sex differences in the prevalence of anxiety disorders suggest that SSHs might be implicated in their development. In this review, we discuss preclinical and clinical studies regarding the role of dysregulated SSHs signaling during early brain development that modifies the risk for anxiety disorders in a sex-specific manner in adulthood. Moreover, our aim is to summarize potential molecular mechanisms by which the SSHs may affect anxiety disorders in preclinical research. Finally, the potential effects of SSHs in the treatment of anxiety disorders are discussed.
1st Faculty of Medicine Institute of Physiology Charles University Prague Czechia
Department of Psychology University of Wisconsin Milwaukee Milwaukee WI United States
Zobrazit více v PubMed
American Psychiatric Association. Mood disorder, Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Association; (2013).
Gater R, Tansella M, Korten A, Tiemens BG, Mavreas VG, Olatawura MO. Sex differences in the prevalence and detection of depressive and anxiety disorders in general health care settings: report from the World health organization collaborative study on psychological problems in general health care. Arch Gen Psychiatry. (1998) 55:405–13. 10.1001/archpsyc.55.5.405 PubMed DOI
McLean C, Asnaani A, Litz B, Hofmann S, McLean CP, Asnaani A, et al. Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J Psychiatr Res. (2011) 45:1027–35. 10.1016/j.jpsychires.2011.03.006 PubMed DOI PMC
Charlson F, van Ommeren M, Flaxman A, Cornett J, Whiteford H, Saxena S. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet. (2019) 394:240–8. 10.1016/S0140-6736(19)30934-1 PubMed DOI PMC
World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. Geneva: World Health Organization; (2017).
Crocco EA, Jaramillo S, Cruz-Ortiz C, Camfield K. Pharmacological management of anxiety disorders in the elderly. Curr Treat Options Psychiatry. (2017) 4:33–46. 10.1007/s40501-017-0102-4 PubMed DOI PMC
Garakani A, Murrough JW, Freire RC, Thom RP, Larkin K, Buono FD, et al. Pharmacotherapy of anxiety disorders: current and emerging treatment options. Front Psychiatry. (2020) 11:595584. 10.3389/fpsyt.2020.595584 PubMed DOI PMC
Laporte S, Chapelle C, Caillet P, Beyens M-N, Bellet F, Delavenne X, et al. Bleeding risk under selective serotonin reuptake inhibitor (SSRI) antidepressants: a meta-analysis of observational studies. Pharmacol Res. (2017) 118:19–32. 10.1016/j.phrs.2016.08.017 PubMed DOI
Shin D, Oh YH, Eom C-S, Park SM. Use of selective serotonin reuptake inhibitors and risk of stroke: a systematic review and meta-analysis. J Neurol. (2014) 261:686–95. 10.1007/s00415-014-7251-9 PubMed DOI
Wu Q, Bencaz AF, Hentz JG, Crowell MD. Selective serotonin reuptake inhibitor treatment and risk of fractures: a meta-analysis of cohort and case–control studies. Osteoporos Int. (2012) 23:365–75. 10.1007/s00198-011-1778-8 PubMed DOI
Khanassov V, Hu J, Reeves D, van Marwijk H. Selective serotonin reuptake inhibitor and selective serotonin and norepinephrine reuptake inhibitor use and risk of fractures in adults: a systematic review and meta-analysis. Int J Geriatr Psychiatry. (2018) 33:1688–708. 10.1002/gps.4974 PubMed DOI
Williams CL. A reevaluation of the concept of separable periods of organizational and activational actions of estrogens in development of brain and behavior. Ann N Y Acad Sci. (1986) 474:282–92. 10.1111/j.1749-6632.1986.tb28019.x PubMed DOI
Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM. Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol. (1998) 19:323–62. 10.1006/frne.1998.0171 PubMed DOI
McCarthy MM, De Vries GJ, Forger NG. 5.01 - Sexual differentiation of the brain: a fresh look at mode, mechanisms, and meaning. 3rd ed. In: Pfaff DW, Joëls M editors. Hormones, Brain and Behavior. Oxford: Academic Press; (2017). p. 3–32.
Schulz KM, Sisk CL. The organizing actions of adolescent gonadal steroid hormones on brain and behavioral development. Neurosci Biobehav Rev. (2016) 70:148–58. 10.1016/j.neubiorev.2016.07.036 PubMed DOI PMC
Vigil P, Del Río JP, Carrera B, ArÁnguiz FC, Rioseco H, Cortés ME. Influence of sex steroid hormones on the adolescent brain and behavior: an update. Linacre Q. (2016) 83:308–29. 10.1080/00243639.2016.1211863 PubMed DOI PMC
Bakker J, De Mees C, Douhard Q, Balthazart J, Gabant P, Szpirer J, et al. Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nat Neurosci. (2006) 9:220–6. 10.1038/nn1624 PubMed DOI
Wallen K. Hormonal influences on sexually differentiated behavior in nonhuman primates. Front Neuroendocrinol. (2005) 26:7–26. 10.1016/j.yfrne.2005.02.001 PubMed DOI
McCarthy MM. How it’s made: organisational effects of hormones on the developing brain. J Neuroendocrinol. (2010) 22:736–42. 10.1111/j.1365-2826.2010.02021.x PubMed DOI PMC
Pillerová M, Borbélyová V, Hodosy J, Riljak V, Renczés E, Frick KM, et al. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front Neuroendocrinol. (2021) 62:100926. 10.1016/j.yfrne.2021.100926 PubMed DOI PMC
Hu M, Richard JE, Maliqueo M, Kokosar M, Fornes R, Benrick A, et al. Maternal testosterone exposure increases anxiety-like behavior and impacts the limbic system in the offspring. Proc Natl Acad Sci U.S.A. (2015) 112:14348–53. 10.1073/pnas.150751411 PubMed DOI PMC
Rankov Petrovic B, Hrncic D, Mladenovic D, Simic T, Suvakov S, Jovanovic D, et al. Prenatal androgenization induces anxiety-like behavior in female rats, associated with reduction of inhibitory interneurons and increased BDNF in hippocampus and cortex. BioMed Res Int. (2019) 2019:3426092. 10.1155/2019/3426092 PubMed DOI PMC
Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey. Arch Gen Psychiatry. (1994) 51:8–19. 10.1001/archpsyc.1994.03950010008002 PubMed DOI
Mendell AL, MacLusky NJ. Neurosteroid metabolites of gonadal steroid hormones in neuroprotection: implications for sex differences in neurodegenerative disease. Front Mol Neurosci. (2018) 11:359. 10.3389/fnmol.2018.00359 PubMed DOI PMC
Solomon MB, Herman JP. Sex differences in psychopathology: of gonads, adrenals and mental illness. Physiol Behav. (2009) 97:250–8. 10.1016/j.physbeh.2009.02.033 PubMed DOI PMC
Nolen-Hoeksema S, Larson J, Grayson C. Explaining the gender difference in depressive symptoms. J Pers Soc Psychol. (1999) 77:1061–72. 10.1037/0022-3514.77.5.1061 PubMed DOI
Mir FR, Rivarola MA. Sex differences in anxiety and depression: what can (and cannot) preclinical studies tell us? Sexes. (2022) 3:141–63. 10.3390/sexes3010012 DOI
Montgomery JC, Brincat M, Tapp A, Appleby L, Versi E, Fenwick PBC, et al. Effect of oestrogen and testosterone implants on psychological disorders in the climacteric. Lancet. (1987) 329:297–9. 10.1016/S0140-6736(87)92026-5 PubMed DOI
Fink G, Sumner B, Rosie R, Wilson H, McQueen J. Androgen actions on central serotonin neurotransmission: relevance for mood, mental state and memory. Behav Brain Res. (1999) 105:53–68. 10.1016/S0166-4328(99)00082-0 PubMed DOI
Frye C, Walf A, Rhodes M, Harney J. Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but not those deficient in type 1 5??-reductase. Brain Res. (2004) 1004:116–24. 10.1016/j.brainres.2004.01.020 PubMed DOI
Walf AA, Koonce CJ, Frye CA. Estradiol or diarylpropionitrile decrease anxiety-like behavior of wildtype, but not estrogen receptor beta knockout, mice. Behav Neurosci. (2008) 122:974–81. 10.1037/a0012749 PubMed DOI PMC
Walf AA, Frye CA. Estradiol reduces anxiety- and depression-like behavior of aged female mice. Physiol Behav. (2010) 99:169–74. 10.1016/j.physbeh.2009.09.017 PubMed DOI PMC
Le Mellédo J-M, Baker G. Role of progesterone and other neuroactive steroids in anxiety disorders. Exp Rev Neurother. (2004) 4:851–60. 10.1586/14737175.4.5.851 PubMed DOI
Miller KK, Wexler TL, Zha AM, Lawson EA, Meenaghan EM, Misra M, et al. Androgen deficiency: association with increased anxiety and depression symptom severity in anorexia nervosa. J Clin Psychiatry. (2007) 68:959–65. PubMed
Barry JA, Hardiman PJ, Saxby BK, Kuczmierczyk A. Testosterone and mood dysfunction in women with polycystic ovarian syndrome compared to subfertile controls. J Psychosom Obstetr Gynecol. (2011) 32:104–11. 10.3109/0167482X.2011.568129 PubMed DOI
Chaudhari AP, Mazumdar K, Mehta PD. Anxiety, depression, and quality of life in women with polycystic ovarian syndrome. Indian J Psychol Med. (2018) 40:239–46. 10.4103/IJPSYM.IJPSYM_561_17 PubMed DOI PMC
Gordon JL, Peltier A, Grummisch JA, Sykes Tottenham L. Estradiol fluctuation, sensitivity to stress, and depressive symptoms in the menopause transition: a pilot study. Front Psychol. (2019) 10:1319. 10.3389/fpsyg.2019.01319 PubMed DOI PMC
Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS, Jr, et al. Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex. (2001) 11:490–7. 10.1093/cercor/11.6.490 PubMed DOI
Goldman-Rakic PS, Cools AR, Srivastava K, Roberts AC, Robbins TW, Weiskrantz L. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci. (1996) 351:1445–53. 10.1098/rstb.1996.0129 PubMed DOI
Teffer K, Semendeferi K. Chapter 9 - Human prefrontal cortex: evolution, development, and pathology. In: Hofman MA, Falk D. editors. Progress in Brain Research. Amsterdam: Elsevier; (2012). p. 191–218. 10.1016/B978-0-444-53860-4.00009-X PubMed DOI
Funahashi S, Bruce CJ, Goldman-Rakic PS. Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic” scotomas”. J Neurosci. (1993) 13:1479–97. 10.1523/JNEUROSCI.13-04-01479.1993 PubMed DOI PMC
Gabrieli JDE, Poldrack RA, Desmond JE. The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci U.S.A. (1998) 95:906. 10.1073/pnas.95.3.906 PubMed DOI PMC
Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Ann Rev Neurosci. (2001) 24:167–202. 10.1146/annurev.neuro.24.1.167 PubMed DOI
Guadagno A, Belliveau C, Mechawar N, Walker C-D. Effects of early life stress on the developing basolateral amygdala-prefrontal cortex circuit: the emerging role of local inhibition and perineuronal nets. Front Hum Neurosci. (2021) 15:669120. 10.3389/fnhum.2021.669120 PubMed DOI PMC
Anand KS, Dhikav V. Hippocampus in health and disease: an overview. Ann Indian Acad Neurol. (2012) 15:239–46. 10.4103/0972-2327.104323 PubMed DOI PMC
Barkus C, McHugh SB, Sprengel R, Seeburg PH, Rawlins JNP, Bannerman DM. Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. Eur J Pharmacol. (2010) 626:49–56. 10.1016/j.ejphar.2009.10.014 PubMed DOI PMC
Frick KM. Molecular mechanisms underlying the memory-enhancing effects of estradiol. Horm Behav. (2015) 74:4–18. 10.1016/j.yhbeh.2015.05.001 PubMed DOI PMC
Bannerman D, Grubb M, Deacon R, Yee B, Feldon J, Rawlins J. Ventral hippocampal lesions affect anxiety but not spatial learning. Behav Brain Res. (2003) 139:197–213. 10.1016/s0166-4328(02)00268-1 PubMed DOI
Phillips R, LeDoux J. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. (1992) 106:274. 10.1037/0735-7044.106.2.274 PubMed DOI
Calder AJ, Lawrence AD, Young AW. Neuropsychology of fear and loathing. Nat Rev Neurosci. (2001) 2:352–63. 10.1038/35072584 PubMed DOI
Feldman S, Conforti N, Weidenfeld J. Limbic pathways and hypothalamic neurotransmitters mediating adrenocortical responses to neural stimuli. Neurosci Biobehav Rev. (1995) 19:235–40. 10.1016/0149-7634(94)00062-6 PubMed DOI
Öhman A. The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinology. (2005) 30:953–8. 10.1016/j.psyneuen.2005.03.019 PubMed DOI
Baxter MG, Croxson PL. Facing the role of the amygdala in emotional information processing. Proc Natl Acad Sci U.S.A. (2012) 109:21180. 10.1073/pnas.1219167110 PubMed DOI PMC
Ressler KJ. Amygdala activity, fear, and anxiety: modulation by stress. Biol Psychiatry. (2010) 67:1117–9. 10.1016/j.biopsych.2010.04.027 PubMed DOI PMC
Derr R, Cameron S, Golden S. Pre-Analytic considerations for the proper assessment of hormones of the hypothalamic-pituitary axis in epidemiological research. Eur J Epidemiol. (2006) 21:217–26. 10.1007/s10654-006-0011-0 PubMed DOI
Faravelli C, Lo Sauro C, Godini L, Lelli L, Benni L, Pietrini F, et al. Childhood stressful events, HPA axis and anxiety disorders. World J Psychiatry. (2012) 2:13–25. 10.5498/wjp.v2.i1.13 PubMed DOI PMC
Toufexis D, Rivarola MA, Lara H, Viau V. Stress and the reproductive axis. J Neuroendocrinol. (2014) 26:573–86. 10.1111/jne.12179 PubMed DOI PMC
Stevens JS, Hamann S. Sex differences in brain activation to emotional stimuli: a meta-analysis of neuroimaging studies. Neuropsychologia. (2012) 50:1578–93. 10.1016/j.neuropsychologia.2012.03.011 PubMed DOI
Martin EI, Ressler KJ, Binder E, Nemeroff CB. The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Psychiatr Clin N Am. (2009) 32:549–75. 10.1016/j.psc.2009.05.004 PubMed DOI PMC
Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. (2010) 35:169–91. 10.1038/npp.2009.83 PubMed DOI PMC
Pilhatsch M, Vetter NC, Hübner T, Ripke S, Müller KU, Marxen M, et al. Amygdala-Function perturbations in healthy mid-adolescents with familial liability for depression. J Am Acad Child Adolesc Psychiatry. (2014) 53:559–68.e6. 10.1016/j.jaac.2014.02.010 PubMed DOI
Hare BD, Duman RS. Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions. Mol Psychiatry. (2020) 25:2742–58. 10.1038/s41380-020-0685-9 PubMed DOI PMC
Guerra-Araiza C, Coyoy-Salgado A, Camacho-Arroyo I. Sex differences in the regulation of progesterone receptor isoforms expression in the rat brain. Brain Res Bull. (2002) 59:105–9. 10.1016/S0361-9230(02)00845-6 PubMed DOI
Berg AH, Rice CD, Rahman MS, Dong J, Thomas P. Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: I. Discovery in female atlantic croaker and evidence ZIP9 mediates testosterone-induced apoptosis of ovarian follicle cells. Endocrinology. (2014) 155:4237–49. 10.1210/en.2014-1198 PubMed DOI PMC
Almey A, Milner TA, Brake WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav. (2015) 74:125–38. 10.1016/j.yhbeh.2015.06.010 PubMed DOI PMC
American Psychiatric Association. Anxiety Disorders, Diagnostic and Statistical Manual of Mental Disorders. Virginia, VI: American Psychiatric Association; (2013).
Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialog Clin Neurosci. (2015) 17:327–35. 10.31887/DCNS.2015.17.3/bbandelow PubMed DOI PMC
dos Santos Gonçalves J, Lopes P, Esteves F, Fernández-Berrocal P. Must we suffer to succeed?: when anxiety boosts motivation and performance. J Individ Differ. (2017) 38:113–24. 10.1027/1614-0001/a000228 DOI
Wirtz PW, Rohrbeck CA, Burns KM. Anxiety effects on disaster precautionary behaviors: a multi-path cognitive model. J Health Psychol. (2017) 24:1401–11. 10.1177/1359105317720277 PubMed DOI
Kalin NH. Novel insights into pathological anxiety and anxiety-related disorders. Am J Psychiatry. (2020) 177:187–9. 10.1176/appi.ajp.2020.20010057 PubMed DOI
Chand SP, Marwaha R. Anxiety. St. Petersburg, FL: StatPearls Publishing; (2022). PubMed
Belovicova K, Bogi E, Csatlosova K, Dubovicky M. Animal tests for anxiety-like and depression-like behavior in rats. Interdiscip Toxicol. (2017) 10:40–3. 10.1515/intox-2017-0006 PubMed DOI PMC
Manti M, Fornes R, Qi X, Folmerz E, Lindén Hirschberg A, de Castro Barbosa T, et al. Maternal androgen excess and obesity induce sexually dimorphic anxiety-like behavior in the offspring. FASEB J. (2018) 32:4158–71. 10.1096/fj.201701263RR PubMed DOI
Stener-Victorin E, Manti M, Fornes R, Risal S, Lu H, Benrick A. Origins and impact of psychological traits in polycystic ovary syndrome. Med Sci. (2019) 7:86. 10.3390/medsci7080086 PubMed DOI PMC
Bibel M, Barde Y. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. (2000) 14:2919–37. 10.1101/gad.841400 PubMed DOI
Berton O, McClung CA, DiLeone RJ, Krishnan V, Renthal W, Russo SJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. (2006) 311:864–8. 10.1126/science.1120972 PubMed DOI
Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. (2012) 64:238–58. 10.1124/pr.111.005108 PubMed DOI PMC
Numakawa T, Odaka H, Adachi N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int J Mol Sci. (2018) 19:3650. 10.3390/ijms19113650 PubMed DOI PMC
Pivina SG, Akulova VK, Ordyan NÉ. Characteristics of behavior and stress reactivity of the hypophyseal-adrenocortical system in rats with prenatal inhibition of testosterone metabolism. Neurosci Behav Physiol. (2007) 37:53–8. 10.1007/s11055-007-0149-6 PubMed DOI
Ordian NE, Pivina SG, Akulova VK. Effects of prenatal disturbance in the brain testosterone metabolism on anxiety level and behavior of rats in a novel environment. Neurosci Behav Physiol. (2007) 37:435–41. PubMed
Ordyan NE, Pivina SG, Akulova VK. Effects of impaired testosterone metabolism during prenatal ontogenesis on the level of anxiety and behavior of rats in a novel environment. Neurosci Behav Physiol. (2007) 37:435–41. 10.1007/s11055-007-0032-5 PubMed DOI
Cheng J, Wu H, Liu H, Li H, Zhu H, Zhou Y, et al. Exposure of hyperandrogen during pregnancy causes depression- and anxiety-like behaviors, and reduced hippocampal neurogenesis in rat offspring. Front Neurosci. (2019) 13:436. 10.3389/fnins.2019.00436 PubMed DOI PMC
Carbone S, Ponzo OJ, Gobetto N, Samaniego YA, Reynoso R, Scacchi P, et al. Antiandrogenic effect of perinatal exposure to the endocrine disruptor di-(2-ethylhexyl) phthalate increases anxiety-like behavior in male rats during sexual maturation. Horm Behav. (2013) 63:692–9. 10.1016/j.yhbeh.2013.01.006 PubMed DOI
Xu X, Yang Y, Wang R, Wang Y, Ruan Q, Lu Y. Perinatal exposure to di-(2-ethylhexyl) phthalate affects anxiety- and depression-like behaviors in mice. Chemosphere. (2015) 124:22–31. 10.1016/j.chemosphere.2014.10.056 PubMed DOI
Shono T, Suita S. Disturbed pituitary-testicular axis inhibits testicular descent in the prenatal rat. BJU Int. (2003) 92:641–3. 10.1046/j.1464-410X.2003.04436.x PubMed DOI
Pallarés ME, Adrover E, Baier CJ, Bourguignon NS, Monteleone MC, Brocco MA, et al. Prenatal maternal restraint stress exposure alters the reproductive hormone profile and testis development of the rat male offspring. Stress. (2013) 16:429–40. 10.3109/10253890.2012.761195 PubMed DOI
Pallarés ME, Baier CJ, Adrover E, Monteleone MC, Brocco MA, Antonelli MC. Age-Dependent effects of prenatal stress on the corticolimbic dopaminergic system development in the rat male offspring. Neurochem Res. (2013) 38:2323–35. 10.1007/s11064-013-1143-8 PubMed DOI
Rimondini R, Ågren G, Börjesson S, Sommer W, Heilig M. Persistent behavioral and autonomic supersensitivity to stress following prenatal stress exposure in rats. Behav Brain Res. (2003) 140:75–80. 10.1016/S0166-4328(02)00273-5 PubMed DOI
de Souza MA, Centenaro LA, Menegotto PR, Henriques TP, Bonini J, Achaval M, et al. Prenatal stress produces social behavior deficits and alters the number of oxytocin and vasopressin neurons in adult rats. Neurochem Res. (2013) 38:1479–89. 10.1007/s11064-013-1049-5 PubMed DOI
Zuena AR, Mairesse J, Casolini P, Cinque C, Alemà GS, Morley-Fletcher S, et al. Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS One. (2008) 3:e2170. 10.1371/journal.pone.0002170 PubMed DOI PMC
Barros VG, Rodríguez P, Martijena ID, Pérez A, Molina VA, Antonelli MC. Prenatal stress and early adoption effects on benzodiazepine receptors and anxiogenic behavior in the adult rat brain. Synapse. (2006) 60:609–18. 10.1002/syn.20336 PubMed DOI
Palacios-García I, Lara-Vásquez A, Montiel JF, íaz-Véliz GFD, Sepúlveda H, Utreras E, et al. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats. PLoS One. (2015) 10:e0117680. 10.1371/journal.pone.0117680 PubMed DOI PMC
Akatsu S, Ishikawa C, Takemura K, Ohtani A, Shiga T. Effects of prenatal stress and neonatal handling on anxiety, spatial learning and serotonergic system of male offspring mice. Neurosci Res. (2015) 101:15–23. 10.1016/j.neures.2015.07.002 PubMed DOI
Fusar-Poli L, Rodolico A, Sturiale S, Carotenuto B, Natale A, Arillotta D, et al. Second-to-fourth digit ratio (2D:4D) in psychiatric disorders: a systematic review of case-control studies. Clin Psychopharmacol Neurosci. (2020) 19:26–45. 10.9758/cpn.2021.19.1.26 PubMed DOI PMC
Zheng Z, Cohn MJ. Developmental basis of sexually dimorphic digit ratios. Proc Natl Acad Sci U.S.A. (2011) 108:16289–94. 10.1073/pnas.110831210 PubMed DOI PMC
Lutchmaya S, Baron-Cohen S, Raggatt P, Knickmeyer R, Manning JT. 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Hum Dev. (2004) 77:23–8. 10.1016/j.earlhumdev.2003.12.002 PubMed DOI
Manning JT, Scutt D, Wilson J, Lewis-Jones DI. The ratio of 2nd to 4th digit length: a predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Hum Reprod. (1998) 13:3000–4. 10.1093/humrep/13.11.3000 PubMed DOI
Ventura T, Gomes MC, Pita A, Neto MT, Taylor A. Digit ratio (2D:4D) in newborns: influences of prenatal testosterone and maternal environment. Early Hum Dev. (2013) 89:107–12. 10.1016/j.earlhumdev.2012.08.009 PubMed DOI
Evardone M, Alexander GM. Anxiety, sex-linked behaviors, and digit ratios (2D:4D). Arch Sex Behav. (2009) 38:442–55. 10.1007/s10508-007-9260-6 PubMed DOI PMC
Manning JT, Bundred PE, Newton DJ, Flanagan BF. The second to fourth digit ratio and variation in the androgen receptor gene. Evol Hum Behav. (2003) 24:399–405. 10.1016/S1090-5138(03)00052-7 DOI
Schneider G, Nienhaus K, Gromoll J, Heuft G, Nieschlag E, Zitzmann M. Sex hormone levels, genetic androgen receptor polymorphism, and anxiety in =50-year-old males. J Sex Med. (2011) 8:3452–64. 10.1111/j.1743-6109.2011.02443.x PubMed DOI
Rodríguez-Ramos Á, Moriana JA, García-Torres F, Ruiz-Rubio M. Emotional stability is related to 2D:4D and social desirability in women: possible implications on subjective well-being and psychopathology. PLoS One. (2021) 16:e0248368. 10.1371/journal.pone.0248368 PubMed DOI PMC
Risal S, Manti M, Lu H, Fornes R, Larsson H, Benrick A, et al. Prenatal androgen exposure causes a sexually dimorphic transgenerational increase in offspring susceptibility to anxiety disorders. Transl Psychiatry. (2021) 11:45. 10.1038/s41398-020-01183-9 PubMed DOI PMC
Buchholz VN, Mühle C, Kornhuber J, Lenz B, Gmel G, Mohler-Kuo M, et al. Lower Digit Ratio (2D:4D) indicative of excess prenatal androgen is associated with increased sociability and greater social capital. Front Behav Neurosci. (2019) 13:246. 10.3389/fnbeh.2019.00246 PubMed DOI PMC
Su Q-R, Su L-Y, Su H-R, Chen Q, Ren G-Y, Yin YOU, et al. Polymorphisms of androgen receptor gene in childhood and adolescent males with first-onset major depressive disorder and association with related symptomatology. Int J Neurosci. (2007) 117:903–17. 10.1080/00207450600910689 PubMed DOI
Chen CV, Brummet JL, Lonstein JS, Jordan CL, Breedlove SM. New knockout model confirms a role for androgen receptors in regulating anxiety-like behaviors and HPA response in mice. Horm Behav. (2014) 65:211–8. 10.1016/j.yhbeh.2014.01.001 PubMed DOI PMC
Krȩżel W, Dupont S, Krust A, Chambon P, Chapman PF. Increased anxiety and synaptic plasticity in estrogen receptor β-deficient mice. Proc Natl Acad Sci U.S.A. (2001) 98:12278. 10.1073/pnas.221451898 PubMed DOI PMC
ÖStlund H, Keller EVA, Hurd YL. Estrogen receptor gene expression in relation to neuropsychiatric disorders. Ann N Y Acad Sci. (2003) 1007:54–63. 10.1196/annals.1286.006 PubMed DOI
Lund TD, Rovis T, Chung WC, Handa RJ. Novel actions of estrogen receptor-β on anxiety-related behaviors. Endocrinology. (2005) 146:797–807. 10.1210/en.2004-1158 PubMed DOI
Xu Y, Sheng H, Bao Q, Wang Y, Lu J, Ni X. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun. (2016) 56:175–86. 10.1016/j.bbi.2016.02.022 PubMed DOI
Schüle C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R. Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience. (2011) 191:55–77. 10.1016/j.neuroscience.2011.03.025 PubMed DOI
Kastenberger I, Schwarzer C. GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner. Horm Behav. (2014) 66:628–36. 10.1016/j.yhbeh.2014.09.001 PubMed DOI PMC
Fındıklı E, Camkurt MA, Karaaslan MF, Kurutas EB, Altun H, Ýzci F, et al. Serum levels of G protein-coupled estrogen receptor 1 (GPER1) in drug-naive patients with generalized anxiety disorder. Psychiatry Res. (2016) 244:312–6. 10.1016/j.psychres.2016.04.098 PubMed DOI
Chen B, Dowlatshahi D, MacQueen GM, Wang J-F, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. (2001) 50:260–5. 10.1016/S0006-3223(01)01083-6 PubMed DOI
Tian Z, Wang Y, Zhang N, Guo Y-Y, Feng B, Liu S-B, et al. Estrogen receptor GPR30 exerts anxiolytic effects by maintaining the balance between GABAergic and glutamatergic transmission in the basolateral amygdala of ovariectomized mice after stress. Psychoneuroendocrinology. (2013) 38:2218–33. 10.1016/j.psyneuen.2013.04.011 PubMed DOI
Hodosy J, Zelmanová D, Majzúnová M, Filová B, Malinová M, Ostatníková D, et al. The anxiolytic effect of testosterone in the rat is mediated via the androgen receptor. Pharmacol Biochem Behav. (2012) 102:191–5. 10.1016/j.pbb.2012.04.005 PubMed DOI
Edinger KL, Frye CA. Intrahippocampal administration of an androgen receptor antagonist, flutamide, can increase anxiety-like behavior in intact and DHT-replaced male rats. Horm Behav. (2006) 50:216–22. 10.1016/j.yhbeh.2006.03.003 PubMed DOI
Zuloaga DG, Poort JE, Jordan CL, Breedlove SM. Male rats with the testicular feminization mutation of the androgen receptor display elevated anxiety-related behavior and corticosterone response to mild stress. Horm Behav. (2011) 60:380–8. 10.1016/j.yhbeh.2011.07.008 PubMed DOI PMC
Zeidan MA, Igoe SA, Linnman C, Vitalo A, Levine JB, Klibanski A, et al. Estradiol modulates medial prefrontal cortex and amygdala activity during fear extinction in women and female rats. Biol Psychiatry. (2011) 70:920–7. 10.1016/j.biopsych.2011.05.016 PubMed DOI PMC
Borrow A, Handa RJ. Estrogen Receptors Modulation of Anxiety-Like Behavior, Vitamins and Hormones. Amsterdam: Elsevier; (2017). p. 27–52. PubMed PMC
Imwalle DB, Gustafsson J-Å, Rissman EF. Lack of functional estrogen receptor β influences anxiety behavior and serotonin content in female mice. Physiol Behav. (2005) 84:157–63. 10.1016/j.physbeh.2004.11.002 PubMed DOI
Walf AA, Frye CA. Administration of estrogen receptor beta-specific selective estrogen receptor modulators to the hippocampus decrease anxiety and depressive behavior of ovariectomized rats. Pharmacol Biochem Behav. (2007) 86:407–14. 10.1016/j.pbb.2006.07.003 PubMed DOI
Hughes ZA, Liu F, Platt BJ, Dwyer JM, Pulicicchio CM, Zhang G, et al. WAY-200070, a selective agonist of estrogen receptor beta as a potential novel anxiolytic/antidepressant agent. Neuropharmacology. (2008) 54:1136–42. 10.1016/j.neuropharm.2008.03.004 PubMed DOI
Wang S, Kamphuis W, Huitinga I, Zhou J, Swaab DF. Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psychiatry. (2008) 13:786–99. 10.1038/mp.2008.38 PubMed DOI
Vamvakopoulos NC, Chrousos GP. Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction. J Clin Investig. (1993) 92:1896–902. 10.1172/JCI116782 PubMed DOI PMC
Bao A-M, Swaab DF. The human hypothalamus in mood disorders: the HPA axis in the center. IBRO Rep. (2019) 6:45–53. 10.1016/j.ibror.2018.11.008 PubMed DOI PMC
Bao A, Fischer D, Wu Y, Hol E, Balesar R, Unmehopa U, et al. A direct androgenic involvement in the expression of human corticotropin-releasing hormone. Mol Psychiatry. (2006) 11:567–76. 10.1038/sj.mp.4001800 PubMed DOI
Gomez C, Saldivar-Gonzalez A, Delgado G, Rodriguez R. Rapid anxiolytic activity of progesterone and pregnanolone in male rats. Pharmacol Biochem Behav. (2002) 72:543–50. 10.1016/S0091-3057(02)00722-0 PubMed DOI
Bitran D, Shiekh M, McLeod M. Anxiolytic effect of progesterone is mediated by the neurosteroid allopregnanolone at brain GABAA receptors. J Neuroendocrinol. (1995) 7:171–7. 10.1111/j.1365-2826.1995.tb00744.x PubMed DOI
Frye C, Walf A. Estrogen and/or progesterone administered systemically or to the amygdala can have anxiety-, fear-, and pain-reducing effects in ovariectomized rats. Behav Neurosci. (2004) 118:306–13. 10.1037/0735-7044.118.2.306 PubMed DOI
Flores RJ, Cruz B, Uribe KP, Correa VL, Arreguin MC, Carcoba LM, et al. Estradiol promotes and progesterone reduces anxiety-like behavior produced by nicotine withdrawal in female rats. Psychoneuroendocrinology. (2020) 119:104694. 10.1016/j.psyneuen.2020.104694 PubMed DOI PMC
Reddy DS, O’Malley BW, Rogawski MA. Anxiolytic activity of progesterone in progesterone receptor knockout mice. Neuropharmacology. (2005) 48:14–24. 10.1016/j.neuropharm.2004.09.002 PubMed DOI
Maron E. S68-03 new insight into role of BDNF in anxiety. Eur Psychiatry. (2009) 24:S323. 10.1016/S0924-9338(09)70556-5 DOI
Chen Z-Y, Jing D, Bath KG, Ieraci A, Khan T, Siao C-J, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. (2006) 314:140–3. 10.1126/science.1129663 PubMed DOI PMC
Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. (2006) 59:1116–27. 10.1016/j.biopsych.2006.02.013 PubMed DOI
Castrén E, Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis. (2017) 97:119–26. 10.1016/j.nbd.2016.07.010 PubMed DOI
Dincheva I, Yang J, Li A, Marinic T, Freilingsdorf H, Huang C, et al. Effect of early-life fluoxetine on anxiety-like behaviors in BDNF Val66Met mice. Am J Psychiatry. (2017) 174:1203–13. 10.1176/appi.ajp.2017.15121592 PubMed DOI PMC
Jiang X, Xu K, Hoberman J, Tian F, Marko AJ, Waheed JF, et al. BDNF variation and mood disorders: a novel functional promoter polymorphism and Val66Met are associated with anxiety but have opposing effects. Neuropsychopharmacology. (2005) 30:1353–61. 10.1038/sj.npp.1300703 PubMed DOI
Frielingsdorf H, Bath KG, Soliman F, Difede J, Casey BJ, Lee FS. Variant brain-derived neurotrophic factor Val66Met endophenotypes: implications for posttraumatic stress disorder. Ann N Y Acad Sci. (2010) 1208:150–7. 10.1111/j.1749-6632.2010.05722.x PubMed DOI PMC
Frustaci A, Pozzi G, Gianfagna F, Manzoli L, Boccia S. Meta-analysis of the brain-derived neurotrophic factor gene (BDNF) Val66Met polymorphism in anxiety disorders and anxiety-related personality traits. Neuropsychobiology. (2008) 58:163–70. 10.1159/000182892 PubMed DOI
Montag C, Reuter M, Newport B, Elger C, Weber B. The BDNF Val66Met polymorphism affects amygdala activity in response to emotional stimuli: evidence from a genetic imaging study. Neuroimage. (2008) 42:1554–9. 10.1016/j.neuroimage.2008.06.008 PubMed DOI
von Richthofen S, Lang UE, Hellweg R. Effects of different kinds of acute stress on nerve growth factor content in rat brain. Brain Res. (2003) 987:207–13. 10.1016/s0006-8993(03)03338-9 PubMed DOI
Angelucci F, Ricci V, Gelfo F, Martinotti G, Brunetti M, Sepede G, et al. BDNF serum levels in subjects developing or not post-traumatic stress disorder after trauma exposure. Brain Cogn. (2014) 84:118–22. 10.1016/j.bandc.2013.11.012 PubMed DOI
Rasika S, Alvarez-Buylla A, Nottebohm F. BDNF mediates the effects of testosterone on the survival of new neurons in an adult brain. Neuron. (1999) 22:53–62. 10.1016/S0896-6273(00)80678-9 PubMed DOI
Walf AA, Frye CA. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology. (2006) 31:1097–111. 10.1038/sj.npp.1301067 PubMed DOI PMC
Morita K, Her S. Progesterone pretreatment enhances serotonin-stimulated BDNF gene expression in rat C6 glioma cells through production of 5α-reduced neurosteroids. J Mol Neurosci. (2008) 34:193–200. 10.1007/s12031-007-9034-6 PubMed DOI
Carrier N, Kabbaj M. Extracellular signal-regulated kinase 2 signaling in the hippocampal dentate gyrus mediates the antidepressant effects of testosterone. Biol Psychiatry. (2012) 71:642–51. 10.1016/j.biopsych.2011.11.028 PubMed DOI PMC
Furuta M, Numakawa T, Chiba S, Ninomiya M, Kajiyama Y, Adachi N, et al. Estrogen, predominantly via estrogen receptor α, attenuates postpartum-induced anxiety- and depression-like behaviors in female rats. Endocrinology. (2013) 154:3807–16. 10.1210/en.2012-2136 PubMed DOI
Bandelow B, Michaelis S, Wedekind D. Treatment of anxiety disorders. Dialog Clin Neurosci. (2017) 19:93–107. 10.31887/DCNS.2017.19.2/bbandelow PubMed DOI PMC
Gambacciani M, Levancini M. Hormone replacement therapy and the prevention of postmenopausal osteoporosis. Prz Menopauzalny. (2014) 13:213–20. 10.5114/pm.2014.44996 PubMed DOI PMC
Toffol E, Heikinheimo O, Partonen T. Hormone therapy and mood in perimenopausal and postmenopausal women: a narrative review. Menopause. (2015) 22:564–78. 10.1097/GME.0000000000000323 PubMed DOI
Harvey JM, Clark GM, Osborne CK, Allred DC. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol. (1999) 17:1474–81. 10.1200/JCO.1999.17.5.1474 PubMed DOI
Grandi G, Caroli M, Cortesi L, Toss A, Tazzioli G, Facchinetti F. Postmenopausal hormone therapy in BRCA gene mutation carriers: to whom and which? Expert Opin Drug Saf. (2020) 19:1025–30. 10.1080/14740338.2020.1791818 PubMed DOI
Minami CA, Freedman RA. Menopausal hormone therapy and long-term breast cancer risk: further data from the women’s health initiative trials. JAMA. (2020) 324:347–9. 10.1001/jama.2020.9620 PubMed DOI
Weng CH, Okawa ER, Roberts MB, Park SK, Umbricht CB, Manson JE, et al. Breast cancer risk in postmenopausal women with medical history of thyroid disorder in the women’s health initiative. Thyroid. (2020) 30:519–30. 10.1089/thy.2019.0426 PubMed DOI PMC
Liu Y, Ma H, Yao J, Ralpha E. A key target for cancer therapy: a review. Onco Targets Ther. (2020) 13:2183–91. 10.2147/OTT.S236532 PubMed DOI PMC
Weiser MJ, Wu TJ, Handa RJ. Estrogen Receptor-β agonist diarylpropionitrile: biological activities of r- and s-enantiomers on behavior and hormonal response to stress. Endocrinology. (2009) 150:1817–25. 10.1210/en.2008-1355 PubMed DOI PMC
Liu F, Day M, Muniz LC, Bitran D, Arias R, Revilla-Sanchez R, et al. Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory. Nat Neurosci. (2008) 11:334–43. 10.1038/nn2057 PubMed DOI
Hanson AM, Perera KLIS, Kim J, Pandey RK, Sweeney N, Lu X, et al. A–C Estrogens as potent and selective estrogen receptor-beta agonists (SERBAs) to enhance memory consolidation under low-estrogen conditions. J Med Chem. (2018) 61:4720–38. 10.1021/acs.jmedchem.7b01601 PubMed DOI PMC
Fleischer AW, Schalk JC, Wetzel EA, Hanson AM, Sem DS, Donaldson WA, et al. Long-term oral administration of a novel estrogen receptor beta agonist enhances memory and alleviates drug-induced vasodilation in young ovariectomized mice. Horm Behav. (2021) 130:104948. 10.1016/j.yhbeh.2021.104948 PubMed DOI PMC
Freeman E, Purdy R, Coutifaris C, Rickels K, Paul SM. Anxiolytic metabolites of progesterone: correlation with mood and performance measures following oral progesterone administration to healthy female volunteers. Neuroendocrinology. (1993) 58:478–84. 10.1159/000126579 PubMed DOI
Frye CA, Walf AA. Changes in progesterone metabolites in the hippocampus can modulate open field and forced swim test behavior of proestrous rats. Horm Behav. (2002) 41:306–15. 10.1006/hbeh.2002.1763 PubMed DOI
Schüle C, Nothdurfter C, Rupprecht R. The role of allopregnanolone in depression and anxiety. Prog Neurobiol. (2014) 113:79–87. 10.1016/j.pneurobio.2013.09.003 PubMed DOI
van Wingen GA, van Broekhoven F, Verkes RJ, Petersson KM, Bäckström T, Buitelaar JK, et al. Progesterone selectively increases amygdala reactivity in women. Mol Psychiatry. (2008) 13:325–33. 10.1038/sj.mp.4002030 PubMed DOI
Powell JG, Garland S, Preston K, Piszczatoski C. Brexanolone (Zulresso): finally, an FDA-approved treatment for postpartum depression. Ann Pharmacother. (2019) 54:157–63. 10.1177/1060028019873320 PubMed DOI
Hackett G, Cole N, Bhartia M, Kennedy D, Raju J, Wilkinson P. Testosterone replacement therapy with long-acting testosterone undecanoate improves sexual function and quality-of-life parameters vs. placebo in a population of men with type 2 diabetes. J Sex Med. (2013) 10:1612–27. 10.1111/jsm.12146 PubMed DOI
Kim C, Barrett-Connor E, Aroda VR, Mather KJ, Christophi CA, Horton ES, et al. Testosterone and depressive symptoms among men in the Diabetes Prevention Program. Psychoneuroendocrinology. (2016) 72:63–71. 10.1016/j.psyneuen.2016.06.009 PubMed DOI PMC
Cheng Y, Bateson D, Concepcion K, Stewart M, Lowy M, Sweeney S, et al. Factors associated with the initiation of testosterone replacement therapy in men from the 45 and Up Study. Aust J Gen Pract. (2018) 47:698–704. 10.31128/ajgp-02-18-4480 PubMed DOI
Zitzmann M. Testosterone, mood, behaviour and quality of life. Andrology. (2020) 8:1598–605. 10.1111/andr.12867 PubMed DOI
Cornwell BR, Johnson L, Berardi L, Grillon C. Anticipation of public speaking in virtual reality reveals a relationship between trait social anxiety and startle reactivity. Biol Psychiatry. (2006) 59:664–6. 10.1016/j.biopsych.2005.09.015 PubMed DOI
Hutschemaekers MHM, de Kleine RA, Davis ML, Kampman M, Smits JAJ, Roelofs K. Endogenous testosterone levels are predictive of symptom reduction with exposure therapy in social anxiety disorder. Psychoneuroendocrinology. (2020) 115:104612. 10.1016/j.psyneuen.2020.104612 PubMed DOI
Childs E, Van Dam NT, de Wit H. Effects of acute progesterone administration upon responses to acute psychosocial stress in men. Exp Clin Psychopharmacol. (2010) 18:78–86. 10.1037/a0018060 PubMed DOI PMC
Domonkos E, Hodosy J, Ostatníková D, Celec P. On the role of testosterone in anxiety-like behavior across life in experimental rodents. Front Endocrinol. (2018) 9:441. 10.3389/fendo.2018.00441 PubMed DOI PMC
Edinger KL, Frye CA. Testosterone’s anti-anxiety and analgesic effects may be due in part to actions of its 5alpha-reduced metabolites in the hippocampus. Psychoneuroendocrinology. (2005) 30:418–30. 10.1016/j.psyneuen.2004.11.001 PubMed DOI
Carrier N, Saland SK, Duclot F, He H, Mercer R, Kabbaj M. The anxiolytic and antidepressant-like effects of testosterone and estrogen in gonadectomized male rats. Biol Psychiatry. (2015) 78:259–69. 10.1016/j.biopsych.2014.12.024 PubMed DOI PMC
Maayan R, Touati-Werner D, Ram E, Strous R, Keren O, Weizman A. The protective effect of frontal cortex dehydroepiandrosterone in anxiety and depressive models in mice. Pharmacol Biochem Behav. (2006) 85:415–21. 10.1016/j.pbb.2006.09.010 PubMed DOI
Evans J, Sun Y, McGregor A, Connor B. Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology. (2012) 63:1315–26. 10.1016/j.neuropharm.2012.08.012 PubMed DOI
Wainwright S, Workman J, Tehrani A, Hamson D, Chow C, Lieblich S, et al. Testosterone has antidepressant-like efficacy and facilitates imipramine-induced neuroplasticity in male rats exposed to chronic unpredictable stress. Horm Behav. (2016) 79:58–69. 10.1016/j.yhbeh.2016.01.001 PubMed DOI
El-Khatib YA, Sayed RH, Sallam NA, Zaki HF, Khattab MM. 17β-Estradiol augments the neuroprotective effect of agomelatine in depressive- and anxiety-like behaviors in ovariectomized rats. Psychopharmacology. (2020) 237:2873–86. 10.1007/s00213-020-05580-2 PubMed DOI
Shirayama Y, Fujita Y, Oda Y, Iwata M, Muneoka K, Hashimoto K. Allopregnanolone induces antidepressant-like effects through BDNF-TrkB signaling independent from AMPA receptor activation in a rat learned helplessness model of depression. Behav Brain Res. (2020) 390:112670. 10.1016/j.bbr.2020.112670 PubMed DOI
Chen S, Gao L, Li X, Ye Y. Allopregnanolone in mood disorders: mechanism and therapeutic development. Pharmacol Res. (2021) 169:105682. 10.1016/j.phrs.2021.105682 PubMed DOI
Akwa Y, Purdy RH, Koob GF, Britton KT. The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat. Behav Brain Res. (1999) 106:119–25. 10.1016/S0166-4328(99)00101-1 PubMed DOI
Meltzer-Brody S, Kanes SJ. Allopregnanolone in postpartum depression: role in pathophysiology and treatment. Neurobiol Stress. (2020) 12:100212. 10.1016/j.ynstr.2020.100212 PubMed DOI PMC
Tsutsui K, Haraguchi S. Neuroprotective actions of cerebellar and pineal allopregnanolone on Purkinje cells. FASEB BioAdvances. (2020) 2:149–59. 10.1096/fba.2019-00055 PubMed DOI PMC
Potmìšil P. What combinations of agomelatine with other antidepressants could be successful during the treatment of major depressive disorder or anxiety disorders in clinical practice? Ther Adv Psychopharmacol. (2019) 9:2045125319855206. 10.1177/2045125319855206 PubMed DOI PMC