HDL metabolism and functions impacting on cell cholesterol homeostasis are specifically altered in patients with abdominal aortic aneurysm
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36172376
PubMed Central
PMC9510680
DOI
10.3389/fimmu.2022.935241
Knihovny.cz E-zdroje
- Klíčová slova
- ABCA1, ABCG1, arterial aneurysm, cholesterol efflux, cholesteryl ester transfer protein, inflammation, lecithin cholesterol acyltransferase, vascular biology,
- MeSH
- adenosintrifosfát MeSH
- aneurysma břišní aorty * MeSH
- antiflogistika MeSH
- ateroskleróza * MeSH
- cholesterol metabolismus MeSH
- cholesterolacyltransferasa metabolismus MeSH
- HDL-cholesterol MeSH
- homeostáza MeSH
- lecitiny MeSH
- lidé MeSH
- lipoproteiny metabolismus MeSH
- metaloproteasy metabolismus MeSH
- transportní proteiny pro estery cholesterolu MeSH
- zánět metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- antiflogistika MeSH
- cholesterol MeSH
- cholesterolacyltransferasa MeSH
- HDL-cholesterol MeSH
- lecitiny MeSH
- lipoproteiny MeSH
- metaloproteasy MeSH
- transportní proteiny pro estery cholesterolu MeSH
BACKGROUND: The etiopathogenesis of abdominal aortic aneurysm (AAA) is still unclarified, but vascular inflammation and matrix metalloproteases activation have a recognized role in AAA development and progression. Circulating lipoproteins are involved in tissue inflammation and repair, particularly through the regulation of intracellular cholesterol, whose excess is associated to cell damage and proinflammatory activation. We analyzed lipoprotein metabolism and function in AAA and in control vasculopathic patients, to highlight possible non-atherosclerosis-related, specific abnormalities. METHODS: We measured fluorometrically serum esterified/total cholesterol ratio, as an index of lecithin-cholesterol acyltransferase (LCAT) activity, and cholesteryl ester transfer protein (CETP) activity in patients referred to vascular surgery either for AAA (n=30) or stenotic aortic/peripheral atherosclerosis (n=21) having similar burden of cardiovascular risk factors and disease. We measured high-density lipoprotein (HDL)-cholesterol efflux capacity (CEC), through the ATP-binding cassette G1 (ABCG1) and A1 (ABCA1) pathways and serum cell cholesterol loading capacity (CLC), by radioisotopic and fluorimetric methods, respectively. RESULTS: We found higher LCAT (+23%; p < 0.0001) and CETP (+49%; p < 0.0001) activity in AAA sera. HDL ABCG1-CEC was lower (-16%; p < 0.001) and ABCA1-CEC was higher (+31.7%; p < 0.0001) in AAA. Stratification suggests that smoking may partly contribute to these modifications. CEC and CETP activity correlated with CLC only in AAA. CONCLUSIONS: We demonstrated that compared to patients with stenotic atherosclerosis, patients with AAA had altered HDL metabolism and functions involved in their anti-inflammatory and tissue repair activity, particularly through the ABCG1-related intracellular signaling. Clarifying the relevance of this mechanism for AAA evolution might help in developing new diagnostic parameters and therapeutic targets for the early management of this condition.
Zobrazit více v PubMed
Nordon IM, Hinchliffe RJ, Loftus IM, Thompson MM. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat Rev Cardiol (2011) 8:92–102. doi: 10.1038/nrcardio.2010.180 PubMed DOI
Weng L, Roetker NS, Lutsey PL, Alonso A, Guan W, Pankow JS, et al. . Evaluation of the relationship between plasma lipids and abdominal aortic aneurysm : A mendelian randomization study. PLoS One (2018), 13:1–10. doi: 10.1371/journal.pone.0195719 PubMed DOI PMC
Mourmoura E, Vasilaki A, Giannoukas A, Michalodimitrakis E, Pavlidis P, Tsezou A. Evidence of deregulated cholesterol efflux in abdominal aortic aneurysm. Acta Histochem (2016) 118:97–108. doi: 10.1016/j.acthis.2015.11.012 PubMed DOI
Zhao L, Jin H, Yang B, Zhang S, Han S, Yin F, et al. . Correlation between ABCA1 gene polymorphism and aopA-I and HDL-c in abdominal aortic aneurysm. Med Sci Monit Int Med J Exp Clin Res (2016) 22:172–6. doi: 10.12659/msm.895298 PubMed DOI PMC
Rye K-A, Barter PJ. Regulation of high-density lipoprotein metabolism. Circ Res (2014) 114:143–56. doi: 10.1161/CIRCRESAHA.114.300632 PubMed DOI
Tall AR. Plasma high density lipoproteins: Therapeutic targeting and links to atherogenic inflammation. Atherosclerosis (2018) 276:39–43. doi: 10.1016/j.atherosclerosis.2018.07.004 PubMed DOI
Van Linthout S, Frias M, Singh N, De Geest B. Therapeutic potential of HDL in cardioprotection and tissue repair. Handb Exp Pharmacol (2015) 224:527–65. doi: 10.1007/978-3-319-09665-0_17 PubMed DOI
Cheng Z, Zhou Y-Z, Wu Y, Wu Q-Y, Liao X-B, Fu X-M, et al. . Diverse roles of macrophage polarization in aortic aneurysm: destruction and repair. J Transl Med (2018) 16:354. doi: 10.1186/s12967-018-1731-0 PubMed DOI PMC
Westerterp M, Tall AR. A new pathway of macrophage cholesterol efflux. Proc Natl Acad Sci U.S.A. (2020) 117:11853–5. doi: 10.1073/pnas.2007836117 PubMed DOI PMC
Vergeer M, Korporaal SJ, Franssen R, Meurs I, Out R, Hovings KG, et al. . Genetic variant of the scavenger receptor BI in humans. N Eng J Med (2011) 364(2):136–45. doi: 10.1056/NEJMoa0907687 PubMed DOI
Litvinov DY, Savushkin EV, Dergunov AD. Intracellular and plasma membrane events in cholesterol transport and homeostasis. J Lipids (2018) 2018:1–22. doi: 10.1155/2018/3965054 PubMed DOI PMC
Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC, et al. . The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res (2007) 48(11):2453–62. doi: 10.1194/jlr.M700274-JLR200 PubMed DOI
Prosser HC, Ng MKC, a BC. The role of cholesterol efflux in mechanisms of endothelial protection by HDL. Curr Opin Lipidol (2012) 23:182–9. doi: 10.1097/MOL.0b013e328352c4dd PubMed DOI
Gomaraschi M, Adorni MP, Banach M, Bernini F, Franceschini G, Calabresi L. Effects of established hypolipidemic drugs on HDL concentration, subclass distribution, and function. In: Handbook of experimental pharmacology. (2015) (Springer New York LLC: ) p. 593–615. doi: 10.1007/978-3-319-09665-0_19 PubMed DOI
Zannis VI, Su S, Fotakis P. Role of apolipoproteins, ABCA1 and LCAT in the biogenesis of normal and aberrant high density lipoproteins. J BioMed Res (2017) 31:471–85. doi: 10.7555/JBR.31.20160082 PubMed DOI PMC
Phillips MC. Molecular mechanisms of cellular cholesterol efflux. J Biol Chem (2014) 289:24020–9. doi: 10.1074/jbc.R114.583658 PubMed DOI PMC
Favari E, Calabresi L, Adorni MP, Jessup W, Simonelli S, Franceschini G, et al. . Small discoidal pre-beta1 HDL particles are efficient acceptors of cell cholesterol via ABCA1 and ABCG1. Biochemistry (2009) 48:11067–74. doi: 10.1021/bi901564g PubMed DOI
Shrestha S, Wu BJ, Guiney L, Barter PJ, Rye K-A. Cholesteryl ester transfer protein and its inhibitors. J Lipid Res (2018) 59:772–83. doi: 10.1194/jlr.R082735 PubMed DOI PMC
Favari E, Lee M, Calabresi L, Franceschini G, Zimetti F, Bernini F, et al. . Depletion of pre-β-high density lipoprotein by human chymase impairs ATP-binding cassette transporter A1- but not scavenger receptor class b type I-mediated lipid efflux to high density lipoprotein. J Biol Chem (2004) 279:9930–6. doi: 10.1074/jbc.M312476200 PubMed DOI
Rye K-A, Barter PJ. Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein a-I. Arterioscler Thromb Vasc Biol (2004) 24:421–8. doi: 10.1161/01.ATV.0000104029.74961.f5 PubMed DOI
Favari E, Calabresi L, Adorni MP, Jessup W, Simonelli S, Franceschini G, et al. . Small discoidal pre-β1 HDL particles are efficient acceptors of cell cholesterol via ABCA1 and ABCG1. Biochemistry (2009) 48:11067–74. doi: 10.1021/bi901564g PubMed DOI
McPeek M, Malur A, Tokarz DA, Lertpiriyapong K, Gowdy KM, Murray G, et al. . Alveolar macrophage ABCG1 deficiency promotes pulmonary granulomatous inflammation. Am J Respir Cell Mol Biol (2019) 61:332–40. doi: 10.1165/rcmb.2018-0365OC PubMed DOI PMC
Sag D, Cekic C, Wu R, Linden J, Hedrick CC. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun (2015) 6:6354. doi: 10.1038/ncomms7354 PubMed DOI PMC
Ronda N, Favari E, Borghi MO, Ingegnoli F, Gerosa M, Chighizola C, et al. . Impaired serum cholesterol efflux capacity in rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis (2014) 73:609–15. doi: 10.1136/annrheumdis-2012-202914 PubMed DOI
Martínez-López D, Cedó L, Metso J, Burillo E, García-León A, Canyelles M, et al. . Impaired HDL (High-density lipoprotein)-mediated macrophage cholesterol efflux in patients with abdominal aortic aneurysm-brief report. Arterioscler Thromb Vasc Biol (2018) 38:2750–4. doi: 10.1161/ATVBAHA.118.311704 PubMed DOI
Canyelles M, Tondo M, Lindholt JS, Santos D, Fernández-Alonso I, de Gonzalo-Calvo D, et al. . Macrophage cholesterol efflux downregulation is not associated with abdominal aortic aneurysm (AAA) progression. Biomolecules (2020) 10:1–10. doi: 10.3390/biom10040662 PubMed DOI PMC
Catapano AL, Pirillo A, Norata GD. Vascular inflammation and low-density lipoproteins: is cholesterol the link? A lesson from the clinical trials. Br J Pharmacol (2017) 174:3973–85. doi: 10.1111/bph.13805 PubMed DOI PMC
Morita S. Metabolism and modification of apolipoprotein b-containing lipoproteins involved in dyslipidemia and atherosclerosis. Biol Pharm Bull (2016) 39:1–24. doi: 10.1248/bpb.b15-00716 PubMed DOI
Zhang X, Xie Y, Zhou H, Xu Y, Liu J, Xie H, et al. . Involvement of TLR4 in oxidized LDL/β2GPI/anti-β2GPI-induced transformation of macrophages to foam cells. J Atheroscler Thromb (2014) 21:1140–51. doi: 10.5551/jat.24372 PubMed DOI
Adorni MP, Zimetti F, Puntoni M, Bigazzi F, Sbrana F, Minichilli F, et al. . Cellular cholesterol efflux and cholesterol loading capacity of serum: effects of LDL-apheresis. J Lipid Res (2012) 53:984–9. doi: 10.1194/jlr.P024810 PubMed DOI PMC
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune- inflammatory responses : Potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle (2022) 00:1–26. doi: 10.1080/15384101.2022.2094577 PubMed DOI PMC
Norman PE, Curci JA. Understanding the effects of tobacco smoke on the pathogenesis of aortic aneurysm. Arterioscler Thromb Vasc Biol (2013) 33:1473–7. doi: 10.1161/ATVBAHA.112.300158 PubMed DOI PMC
Ossoli A, Simonelli S, Vitali C, Franceschini G, Calabresi L. Role of LCAT in atherosclerosis. J Atheroscler Thromb (2016) 23:119–27. doi: 10.5551/jat.32854 PubMed DOI
Wade L, Nadeem N, Young IS, Woodside JV, McGinty A, McMaster C, et al. . α-tocopherol induces proatherogenic changes to HDL2 & HDL3: an in vitro and ex vivo investigation. Atherosclerosis (2013) 226:392–7. doi: 10.1016/j.atherosclerosis.2012.11.032 PubMed DOI
Horiuchi Y, Ohkawa R, Lai SJ, Shimano S, Hagihara M, Tohda S, et al. . Usefulness of apolipoprotein b-depleted serum in cholesterol efflux capacity assays using immobilized liposome-bound gel beads. Biosci Rep (2019) 29:1–10. doi: 10.1042/BSR20190213 PubMed DOI PMC
Gomaraschi M, Ossoli A, Castelnuovo S, Simonelli S, Pavanello C, Balzarotti G, et al. . Depletion in LpA-I:A-II particles enhances HDL-mediated endothelial protection in familial LCAT deficiency. J Lipid Res (2017) 58:994–1001. doi: 10.1194/jlr.P072371 PubMed DOI PMC
Zimetti F, Adorni MP, Ronda N, Gatti R, Bernini F, Favari E. The natural compound berberine positively affects macrophage functions involved in atherogenesis. Nutr Metab Cardiovasc Dis (2015) 25:195–201. doi: 10.1016/j.numecd.2014.08.004 PubMed DOI
Ragbir S, Farmer JA. Dysfunctional high-density lipoprotein and atherosclerosis. Curr Atheroscler Rep (2010) 12:343–8. doi: 10.1007/s11883-010-0091-x PubMed DOI
Sellmayer A, Hrboticky N, Weber PC. Lipids in vascular function. Lipids (1999) 34 Suppl:S13–8. doi: 10.1007/BF02562222 PubMed DOI
Adorni MP, Favari E, Ronda N, Granata A, Bellosta S, Arnaboldi L, et al. . Free cholesterol alters macrophage morphology and mobility by an ABCA1 dependent mechanism. Atherosclerosis (2011) 215:70–6. doi: 10.1016/j.atherosclerosis.2010.12.004 PubMed DOI
Mangum KD, Farber MA. Genetic and epigenetic regulation of abdominal aortic aneurysms. Clin Genet (2020) 97:815–26. doi: 10.1111/cge.13705 PubMed DOI
Hassan HH, Denis M, Krimbou L, Marcil M, Genest J. Cellular cholesterol homeostasis in vascular endothelial cells. Can J Cardiol (2006) 22 Suppl B:35B–40B. doi: 10.1016/s0828-282x(06)70985-0 PubMed DOI PMC
Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol (2015) 15:104–16. doi: 10.1038/nri3793 PubMed DOI PMC
Ronda N, Potì F, Palmisano A, Gatti R, Orlandini G, Maggiore U, et al. . Effects of the radiocontrast agent iodixanol on endothelial cell morphology and function. Vascul Pharmacol (2013) 58:39–47. doi: 10.1016/j.vph.2012.08.005 PubMed DOI
Harrison SC, Holmes MV, Burgess S, Asselbergs FW, Jones GT, Baas AF, et al. . Genetic association of lipids and lipid drug targets with abdominal aortic aneurysm: A meta-analysis. JAMA Cardiol (2018) 3:26–33. doi: 10.1001/jamacardio.2017.4293 PubMed DOI PMC
Kardassis D, Mosialou I, Kanaki M, Tiniakou I, Thymiakou E. Metabolism of HDL and its regulation. Curr Med Chem (2014) 21:2864–80. doi: 10.2174/0929867321666140303153430 PubMed DOI
Sankaranarayanan S, Oram JF, Asztalos BF, Vaughan AM, Lund-Katz S, Adorni MP, et al. . Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. J Lipid Res (2009) 50:275–84. doi: 10.1194/jlr.M800362-JLR200 PubMed DOI PMC
Gomaraschi M, Ossoli A, Favari E, Adorni MP, Sinagra G, Cattin L, et al. . Inflammation impairs eNOS activation by HDL in patients with acute coronary syndrome. Cardiovasc Res (2013) 100:36–43. doi: 10.1093/cvr/cvt169 PubMed DOI
Zimetti F, De Vuono S, Gomaraschi M, Adorni MP, Favari E, Ronda N, et al. . Plasma cholesterol homeostasis, HDL remodeling and function during the acute phase reaction. J Lipid Res (2017) 58:2051–60. doi: 10.1194/jlr.P076463 PubMed DOI PMC
Ramella M, Bernardi P, Fusaro L, Manfredi M, Casella F, Porta CM, et al. . Relevance of inflammation and matrix remodeling in abdominal aortic aneurysm (AAA) and popliteal artery aneurysm (PAA) progression. Am J Transl Res (2018) 10:3265–75. PubMed PMC
Gepner AD, Piper ME, Johnson HM, Fiore MC, Baker TB, Stein JH. Effects of smoking and smoking cessation on lipids and lipoproteins: Outcomes from a randomized clinical trial. Am Heart J (2011) 161:145–51. doi: 10.1016/j.ahj.2010.09.023 PubMed DOI PMC
Kim HW, Stansfield BK. Genetic and epigenetic regulation of aortic aneurysms. BioMed Res Int (2017) 2017:7268521. doi: 10.1155/2017/7268521 PubMed DOI PMC
Zimetti F, Favari E, Cagliero P, Adorni MP, Ronda N, Bonardi R, et al. . Cholesterol trafficking-related serum lipoprotein functions in children with cholesteryl ester storage disease. Atherosclerosis (2015) 242:443–9. doi: 10.1016/j.atherosclerosis.2015.08.007 PubMed DOI
Luna-Luna M, Niesor E, Pérez-Méndez Ó. HDL as bidirectional lipid vectors: Time for new paradigms. Biomedicines (2022) 10:1180. doi: 10.3390/biomedicines10051180 PubMed DOI PMC
Lee MKS, Moore X-L, Fu Y, Al-Sharea A, Dragoljevic D, Fernandez-Rojo MA, et al. . High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1. Br J Pharmacol (2016) 173:741–51. doi: 10.1111/bph.13319 PubMed DOI PMC
Park S-J, Lee K-P, Kang S, Lee J, Sato K, Chung HY, et al. . Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4. Cell Signal (2014) 26:2249–58. doi: 10.1016/j.cellsig.2014.07.009 PubMed DOI
Prosser HCG, Tan JTM, Dunn LL, Patel S, Vanags LZ, Bao S, et al. . Multifunctional regulation of angiogenesis by high-density lipoproteins. Cardiovasc Res (2014) 101:145–54. doi: 10.1093/cvr/cvt234 PubMed DOI
Keul P, Polzin A, Kaiser K, Gräler M, Dannenberg L, Daum G, et al. . Potent anti-inflammatory properties of HDL in vascular smooth muscle cells mediated by HDL-S1P and their impairment in coronary artery disease due to lower HDL-S1P: a new aspect of HDL dysfunction and its therapy. FASEB J Off Publ Fed Am Soc Exp Biol (2019) 33:1482–95. doi: 10.1096/fj.201801245R PubMed DOI
Siennicka A, Zuchowski M, Kaczmarczyk M, Cnotliwy M, Clark JS, Jastrzebska M. Spatial differences of matrix metalloproteinase-2 and matrix metalloproteinase-9 within abdominal aortic aneurysm wall and intraluminal thrombus. J Physiol Pharmacol an Off J Polish Physiol Soc (2016) 67:903–10. PubMed
Webb NR, De Beer MC, Wroblewski JM, Ji A, Bailey W, Shridas P, et al. . Deficiency of endogenous acute-phase serum amyloid a protects apoE-/- mice from angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol (2015) 35:1156–65. doi: 10.1161/ATVBAHA.114.304776 PubMed DOI PMC
Lee HY, Kim M-K, Park KS, Bae YH, Yun J, Park J-I, et al. . Serum amyloid a stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells. Biochem Biophys Res Commun (2005) 330:989–98. doi: 10.1016/j.bbrc.2005.03.069 PubMed DOI
Mullan RH, Bresnihan B, Golden-Mason L, Markham T, O’Hara R, FitzGerald O, et al. . Acute-phase serum amyloid a stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NF-kappaB-dependent signal transduction pathway. Arthritis Rheum (2006) 54:105–14. doi: 10.1002/art.21518 PubMed DOI