Evolutionary importance of the relationship between cytogeography and climate: New insights on creosote bushes from North and South America
Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36187552
PubMed Central
PMC9512640
DOI
10.1016/j.pld.2021.11.006
PII: S2468-2659(21)00136-0
Knihovny.cz E-zdroje
- Klíčová slova
- DNA content, Drylands, Genome size, Jarilla, Larrea, Zygophyllaceae,
- Publikační typ
- časopisecké články MeSH
Relationships between genome size and environmental variables suggest that DNA content might be adaptive and of evolutionary importance in plants. The genus Larrea provides an interesting system to test this hypothesis, since it shows both intra- and interspecific variation in genome size. Larrea has an amphitropical distribution in North and South American deserts, where it is most speciose. Larrea tridentata in North America shows a gradient of increasing autopolyploidy; while three of the four studied South American species are diploids, Larrea divaricata, Larrea nitida, Larrea ameghinoi, and the fourth is an allopolyploid, Larrea cuneifolia. We downloaded available focal species' georeferenced records from seven data reservoirs. We used these records to extract biologically relevant environmental variables from WorldClim at 30 arc seconds scale, to have a broad characterization of the variable climatic conditions of both regions, and a climatic envelope for each species. We estimated relative DNA content index and relative monoploid genome values, by flow cytometry, of four most abundant Larrea species throughout their respective ranges. Then we winnow the bioclimatic dataset down to uncorrelated variables and sampled locales, to analyse the degree of association between both intra- and interspecific relative DNA content and climatic variables that are functionally relevant in arid environments using Pearson correlations, general linear and mixed effects models. Within the genus Larrea, relative DNA content increases with rising temperature and decreases with rising precipitation. At the intraspecific level, all four species show relative DNA content variation across climatic conditions. Larrea is a genus that shows genome size variation correlated with climate. Our results are also consistent with the hypothesis that extreme environmental pressures may have facilitated repeated whole genome duplication events in North America, while in South America, reticulate evolution, as allopolyploidization, and speciation might have been climate-dependent since the Oligocene.
Department of Botany Faculty of Science Charles University Benátská 2 128 00 Prague Czech Republic
Laboratorio Ecotono INIBIOMA Quintral 1250 Bariloche Río Negro Argentina
Zobrazit více v PubMed
Barbour M.G. Patterns of genetic similarity between Larrea divaricata of North and South America. Am. Midl. Nat. 1969;81:54–67.
Bennett M.D. Variation in genomic form in plants and its ecological implications. New Phytol. 1987;106:177–200.
Bottini M., Greizerstein E., Aulicino M.B., et al. Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L.(Berberidaceae) Ann. Bot. 2000;86:565–573.
Bromham L., Hua X., Lanfear R., et al. Exploring the relationships between mutation rates, life history, genome size, environment, and species richness in flowering plants. Am. Nat. 2015;185:507–524. PubMed
Burnham R.J., Graham A. The history of neotropical vegetation: new developments and status. Ann. Mo. Bot. Gard. 1999;86:546–589.
Comai L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 2005;6:836–846. PubMed
Davies T.J., Savolainen V., Chase M.W., et al. Environmental energy and evolutionary rates in flowering plants. Proc. R. Soc. Lond. B Biol. Sci. 2004;271:2195–2200. PubMed PMC
De Bodt S., Maere S., Van de Peer Y. Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 2005;20:591–597. PubMed
Doležel J., Greilhuber J., Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007;2:2233. PubMed
Ezcurra E., Montana C., Arizaga S. Architecture, light interception, and distribution of Larrea species in the Monte Desert, Argentina. Ecology. 1991;72:23–34.
Flenley J.R. In: Tropical Rainforest Responses to Climatic Change. Bush M., Flenley J., Gosling W., editors. Springer Praxis Books. Springer; Berlin, Heidelberg: 2011. Ultraviolet insolation and the tropical rainforest: altitudinal variations, Quaternary and recent change, extinctions, and the evolution of biodiversity; pp. 241–258.
Goldie X., Gillman L., Crisp M., et al. Evolutionary speed limited by water in arid Australia. Proc. R. Soc. Lond. B Biol. Sci. 2010;277:2645–2653. PubMed PMC
Grime J., Mowforth M. Variation in genome size—an ecological interpretation. Nature. 1982;299:151–153.
Hamann A., Wang T., Spittlehouse D.L., et al. A comprehensive, high-resolution database of historical and projected climate surfaces for western North America. Bull. Am. Meteorol. Soc. 2013;94:1307–1309.
Hawkins B.A., Field R., Cornell H.V., et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology. 2003;84:3105–3117.
Hijmans R., Cameron S., Parra J., et al. University of California; Berkeley: 2005. WorldClim. Version 1.3.
Hunziker J., Palacios R., De Valesi A.G., et al. Species disjunctions in Larrea: evidence from morphology, cytogenetics, phenolic compounds, and seed albumins. Ann. Mo. Bot. Gard. 1972;59:224–233.
Hunziker J.H., Comas C. Larrea interspecific hybrids revisited (Zygophyllaceae) Darwiniana. 2002;40:33–38.
Landis J.B., Soltis D.E., Li Z., et al. Impact of whole-genome duplication events on diversification rates in angiosperms. Am. J. Bot. 2018;105:348–363. PubMed
Laport R.G., Hatem L., Minckley R.L., et al. Ecological niche modeling implicates climatic adaptation, competitive exclusion, and niche conservatism among Larrea tridentata cytotypes in North American deserts. J. Torrey Bot. Soc. 2013;140:349–363.
Laport R.G., Minckley R.L., Ramsey J. Phylogeny and cytogeography of the North American creosote bush (Larrea tridentata, Zygophyllaceae) Syst. Bot. 2012;37:153–164.
Laport R.G., Ng J. Out of one, many: the biodiversity considerations of polyploidy. Am. J. Bot. 2017;104:1119–1121. PubMed
Laport R.G., Ramsey J. Morphometric analysis of the North American creosote bush (Larrea tridentata, Zygophyllaceae) and the microspatial distribution of its chromosome races. Plant Syst. Evol. 2015;301:1581–1599.
Leong-Škorničková J., Šída O., Jarolímová V., et al. Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae) Ann. Bot. 2007;100:505–526. PubMed PMC
Lia V.V., Confalonieri V.A., Comas C.I., et al. Molecular phylogeny of Larrea and its allies (Zygophyllaceae): reticulate evolution and the probable time of creosote bush arrival to North America. Mol. Phylogenet. Evol. 2001;21:309–320. PubMed
Maceira N.O., Jacquard P., Lumaret R. Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytol. 1993;124:321–328. PubMed
Ohri D., Kumar A., Pal M. Correlations between 2C DNA values and habit in Cassia (Leguminosae: Caesalpinioideae) Plant Syst. Evol. 1986;153:223–227.
Paruelo J.M., Beltrán A., Jobbágy E., et al. The climate of Patagonia: general patterns and controls on biotic processes. Ecol. Austral. 1998;8:85–101.
Petit C., Thompson J.D. Species diversity and ecological range in relation to ploidy level in the flora of the Pyrenees. Evol. Ecol. 1999;13:45–65.
Poggio L., Naranjo C. vol. 5. Academia Nacional Ciencias Exactas Fisicas y Naturales; Buenos Aires, Argentina, Monografia: 1990. pp. 27–37. (Contenido de ADN y evolución en plantas superiores).
Poggio L., Realini M.F., Fourastié M.F., et al. Genome downsizing and karyotype constancy in diploid and polyploid congeners: a model of genome size variation. AoB Plants. 2014;6 plu029. PubMed PMC
Poggio L., Rosato M., Chiavarino A.M., et al. Genome size and environmental correlations in maize (Zea mays ssp. mays, Poaceae) Ann. Bot. 1998;82:107–115.
Price H.J. DNA content variation among higher plants. Ann. Mo. Bot. Gard. 1988;75:1248–1257.
Raven P.H. Plant species disjunctions: a summary. Ann. Mo. Bot. Gard. 1972;59:234–246.
Rice A., Šmarda P., Novosolov M., et al. The global biogeography of polyploid plants. Nat. Ecol. Evol. 2019;3:265–273. PubMed
Rohde K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos. 1992;65:514–527.
Roig F., Roig-Juñent S., Corbalán V. Biogeography of the Monte Desert. J. Arid Environ. 2009;73:164–172.
Schönswetter P., Suda J., Popp M., et al. Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol. Phylogenet. Evol. 2007;42:92–103. PubMed
Severns P.M., Liston A. Intraspecific chromosome number variation: a neglected threat to the conservation of rare plants. Conserv. Biol. 2008;22:1641–1647. PubMed
Soltis D.E., Albert V.A., Leebens Mack J., et al. Polyploidy and angiosperm diversification. Am. J. Bot. 2009;96:336–348. PubMed
Soltis D.E., Buggs R.J., Doyle J.J., et al. What we still don't know about polyploidy. Taxon. 2010;59:1387–1403.
Soltis D.E., Soltis P.S., Schemske D.W., et al. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon. 2007;56:13–30.
Soltis P.S., Soltis D.E. The role of genetic and genomic attributes in the success of polyploids. Proc. Natl. Acad. Sci. U.S.A. 2000;97:7051–7057. PubMed PMC
Soltis P.S., Soltis D.E. Ancient WGD events as drivers of key innovations in angiosperms. Curr. Opin. Plant Biol. 2016;30:159–165. PubMed
Stebbins G.L. Polyploidy, hybridization, and the invasion of new habitats. Ann. Mo. Bot. Gard. 1985;72:824–832.
Tank D.C., Eastman J.M., Pennell M.W., et al. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol. 2015;207:454–467. PubMed
Te Beest M., Le Roux J.J., Richardson D.M., et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 2012;109:19–45. PubMed PMC
Temsch E.M., Temsch W., Ehrendorfer-Schratt L., et al. Heavy metal pollution, selection, and genome size: the species of the Žerjav study revisited with flow cytometry. J. Bot. 2010:1–11.
Wang T., Hamann A., Spittlehouse D., et al. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS One. 2016;11 PubMed PMC
Willis K.J., Bennett K.D., Birks H.J.B. Variability in thermal and UV-B energy fluxes through time and their influence on plant diversity and speciation. J. Biogeogr. 2009;36:1630–1644.
Yang T.W. Major chromosome races of Larrea divaricata in North America. J. Ariz. Acad. Sci. 1970;6:41–45.
Zhang K., Wang X., Cheng F. Plant polyploidy: origin, evolution, and its influence on crop domestication. Hortic. Plant J. 2019;5:231–239.