Ophiostomatoid fungi synergize attraction of the Eurasian spruce bark beetle, Ips typographus to its aggregation pheromone in field traps
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
36204608
PubMed Central
PMC9530181
DOI
10.3389/fmicb.2022.980251
Knihovny.cz E-resources
- Keywords
- aggregation pheromones, attraction, fungal VOCs, fusel alcohols and acetates, spruce bark beetle, synergism,
- Publication type
- Journal Article MeSH
Eurasian spruce bark beetle, Ips typographus is a destructive pest of the Norway spruce (Picea abies). Recent outbreaks in Europe have been attributed to global warming and other anthropogenic impacts. Bark beetles are guided by multiple complex olfactory cues throughout their life cycle. Male-produced aggregation pheromones, comprising 2-methyl-3-buten-2-ol and cis-verbenol, have been identified as the most powerful attractants for dispersing conspecifics. In addition to host trees, bark beetles interact with multiple organisms, including symbiotic ophiostomatoid fungi, which may promote beetle colonization success and offspring development. Previously, in a short-distance laboratory assay, we demonstrated that I. typographus adults are attracted to the volatile organic compounds (VOCs) produced by three symbiotic fungi: Grosmannia penicillata, Endoconidiophora polonica, and Leptographium europhioides. Furthermore, the abundant fusel alcohols and their acetates were found to be the most attractive odorants in the fungal VOC profile. In this study, using a long-distance field-trapping experiment, we analyzed the role of fungal VOCs as attractants for dispersing I. typographus. Two types of fungal lures were tested in combination with pheromones in traps: (1) live cultures of fungi grown on potato dextrose agar (PDA) and (2) dispensers containing synthetic fusel alcohols and their acetates in equal proportions. Subsequently, the composition of VOCs emitted from live fungal lures were analyzed. We found that the symbiotic fungi synergistically increased the attraction of beetles to pheromones in field traps and the attractiveness of live fungal lures depended on the fungal load. While one Petri dish with E. polonica, when combined with pheromones synergistically increased trapping efficiency, three Petri dishes with L. europhioides were required to achieve the same. The synthetic mix of fungal fusel alcohols and acetates improved the catch efficiency of pheromones only at a low tested dose. VOC analysis of fungal cultures revealed that all the three fungi produced fusel alcohols and acetates but in variable composition and amounts. Collectively, the results of this study show that, in addition to pheromones, bark beetles might also use volatile cues from their symbiotic fungi to improve tree colonization and reproductive success in their breeding and feeding sites.
Department of Biology Lund University Lund Sweden
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czechia
See more in PubMed
Andreadis S. S., Witzgall P., Becher P. G. (2015). Survey of arthropod assemblages responding to live yeasts in an organic apple orchard. DOI
Becher P. G., Hagman A., Verschut V., Chakraborty A., Rozpędowska E., Lebreton S., et al. (2018). Chemical signaling and insect attraction is a conserved trait in yeasts. PubMed DOI PMC
Biedermann P. H. W., Vega F. E. (2020). Ecology and evolution of insect–fungus mutualisms. PubMed DOI
Biedermann P. H. W., Müller J., Grégoire J. C., Gruppe A., Hagge J., Hammerbacher A., et al. (2019). Bark beetle population dynamics in the anthropocene: Challenges and solutions. PubMed DOI
Bleiker K. P., Six D. L. (2007). Dietary benefits of fungal associates to an eruptive herbivore: Potential implications of multiple associates on host population dynamics. PubMed DOI
Buser C. C., Newcomb R. D., Gaskett A. C., Goddard M. R. (2014). Niche construction initiates the evolution of mutualistic interactions. PubMed DOI
Cale J. A., Collignon R. M., Klutsch J. G., Kanekar S. S., Hussain A., Erbilgin N. (2016). Fungal volatiles can act as carbon sources and semiochemicals to mediate interspecific interactions among bark beetle-associated fungal symbionts. PubMed DOI PMC
Christiaens J. F., Franco L. M., Cools T. L., de Meester L., Michiels J., Wenseleers T., et al. (2014). The fungal aroma gene PubMed DOI
Davis T. S., Landolt P. J. (2013). A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. PubMed DOI
Davis T. S., Boundy-Mills K., Landolt P. J. (2012). Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps. PubMed DOI
Davis T. S., Crippen T. L., Hofstetter R. W., Tomberlin J. K. (2013). Microbial volatile emissions as insect semiochemicals. PubMed DOI
Douglas A. E. (2009). The microbial dimension in insect nutritional ecology. DOI
El-Sayed A. M., Heppelthwaite V. J., Manning L. M., Gibb A. R., Suckling D. M. (2005). Volatile constituents of fermented sugar baits and their attraction to lepidopteran species. PubMed DOI
Flórez L. V., Biedermann P. H. W., Engl T., Kaltenpoth M. (2015). Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. PubMed DOI
François L., Annie Y., Aurélien S. (2009). Stimulation of defenses by ophiostomatoid fungi can explain attack success of bark beetles on conifers. DOI
Giordano L., Garbelotto M., Nicolotti G., Gonthier P. (2013). Characterization of fungal communities associated with the bark beetle DOI
Hazelwood L. H., Daran J.-M. G., van Maris A. J. A., Pronk J. T., Dickinson J. R. (2008). The Ehrlich pathway for fusel alcohol production: A century of research on saccharomyces cerevisiae metabolism. PubMed DOI PMC
Horntvedt R., Christiansen E., Solheim H., Wang S. (1983). Artificial inoculation with
Huang J., Kautz M., Trowbridge A. M., Hammerbacher A., Raffa K. F., Adams H. D., et al. (2020). Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. PubMed DOI
Hlásny T., Zimová S., Merganicová K., Štepánek P., Modlinger R., Turcáni M. (2021). Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. DOI
Jirošová A., Kalinová B., Modlinger R., Jakuš R., Unelius C. R., Blaženec M., et al. (2022). Anti-attractant activity of (+)- PubMed DOI
Kandasamy D., Gershenzon J., Hammerbacher A. (2016). Volatile organic compounds emitted by fungal associates of conifer bark beetles and their potential in bark beetle control. PubMed DOI PMC
Kandasamy D., Gershenzon J., Andersson M. N., Hammerbacher A. (2019). Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle ( PubMed DOI PMC
Kandasamy D., Zaman R., Nakamura Y., Zhao T., Hartmann H., Andersson M. N., et al. (2021). Bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. PubMed DOI PMC
Keeling C. I., Tittiger C., MacLean M., Blomquist G. J. (2021). “Pheromone production in bark beetles,” in DOI
Kirisits T. (2007). “Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi,” in
Krokene P. (2015). “Conifer defense and resistance to bark beetles,” in DOI
Krokene P., Solheim H. (2001). Loss of pathogenicity in the blue-stain fungus DOI
Lehenberger M., Foh N., Göttlein A., Six D., Biedermann P. H. W. (2021). Nutrient-poor breeding substrates of ambrosia beetles are enriched with biologically important elements. PubMed DOI PMC
Lemoine M. M., Engl T., Kaltenpoth M. (2020). Microbial symbionts expanding or constraining abiotic niche space in insects. PubMed DOI
Linnakoski R., Lasarov I., Veteli P., Tikkanen O.-P., Viiri H., Jyske T., et al. (2021). Filamentous fungi and yeasts associated with mites phoretic on DOI
Linnakoski R., Mahilainen S., Harrington A., Vanhanen H., Eriksson M., Mehtatalo L., et al. (2016). Seasonal succession of fungi associated with PubMed DOI PMC
Linnakoski R., Wilhelm de Beer Z. B., Niemelä P., Wingfield M. J. (2012). Associations of conifer-infesting bark beetles and fungi in Fennoscandia. PubMed DOI PMC
Madden A. A., Epps M. J., Fukami T., Irwin R. E., Sheppard J., Sorger D. M., et al. (2018). The ecology of insect–yeast relationships and its relevance to human industry. PubMed DOI PMC
Mansourian S., Stensmyr M. C. (2015). The chemical ecology of the fly. PubMed DOI
Netherer S., Kandasamy D., Jirosová A., Kalinová B., Schebeck M., Schlyter F. (2021). Interactions among Norway spruce, the bark beetle PubMed DOI PMC
Nout M. J. R., Bartelt R. J. (1998). Attraction of a flying nitidulid ( DOI
Oliver K. M., Smith A. H., Russell J. A. (2014). Defensive symbiosis in the real world-advancing ecological studies of heritable, protective bacteria in aphids and beyond. DOI
Pinheiro J. C., Bates D. M. R Core Team. (2022).
Pureswaran D. S., Gries R., Borden J. H., Pierce H. D. (2000). Dynamics of pheromone production and communication in the mountain pine beetle, DOI
R Core Team (2022).
Saerens S. M. G., Delvaux F. R., Verstrepen K. J., Thevelein J. M. (2010). Production and biological function of volatile esters in PubMed DOI PMC
Schlyter F., Birgersson G., Byers J. A., Löfqvist J., Bergström G. (1987). Field response of spruce bark beetle, PubMed DOI
Solheim H. (1991). Oxygen deficiency and spruce resin inhibition of growth of blue stain fungi associated with DOI
Solheim H. (1992). The early stages of fungal invasion in Norway spruce infested by the bark beetle DOI
Sullivan B. T., Dalusky M. J., Wakarchuk D., Berisford C. W. (2007). Field evaluations of potential aggregation inhibitors for the southern pine beetle, DOI
Tanin S. M., Kandasamy D., Krokene P. (2021). Fungal interactions and host tree preferences in the spruce bark beetle PubMed DOI PMC
Toffin E., Gabriel E., Louis M., Deneubourg J. L., Grégoire J. C. (2018). Colonization of weakened trees by mass-attacking bark beetles: No penalty for pioneers, scattered initial distributions and final regular patterns. PubMed DOI PMC
van den Bosch T. J. M., Welte C. U. (2017). Detoxifying symbionts in agriculturally important pest insects. PubMed DOI PMC
Wadke N., Kandasamy D., Vogel H., Lah L., Wingfield B. D., Paetz C., et al. (2016). Catechol dioxygenases catalyzing the first step in Norway spruce phenolic degradation are key virulence factors in the bark beetle-vectored fungus PubMed DOI PMC
Zhao T., Axelsson K., Krokene P., Borg-Karlson A. K. (2015). Fungal symbionts of the spruce bark beetle synthesize the beetle aggregation pheromone 2-methyl-3-buten-2-ol. PubMed DOI
Zhao T., Ganji S., Schiebe C., Bohman B., Weinstein P., Krokene P., et al. (2019). Convergent evolution of semiochemicals across kingdoms: Bark beetles and their fungal symbionts. PubMed DOI PMC
Zhao T., Kandasamy D., Krokene P., Chen J., Gershenzon J., Hammerbacher A. (2018). Fungal associates of the tree-killing bark beetle, DOI
Zuur A. F., Ieno E. N. (2016). A protocol for conducting and presenting results of regression-type analyses. DOI