Ophiostomatoid fungi synergize attraction of the Eurasian spruce bark beetle, Ips typographus to its aggregation pheromone in field traps
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36204608
PubMed Central
PMC9530181
DOI
10.3389/fmicb.2022.980251
Knihovny.cz E-zdroje
- Klíčová slova
- aggregation pheromones, attraction, fungal VOCs, fusel alcohols and acetates, spruce bark beetle, synergism,
- Publikační typ
- časopisecké články MeSH
Eurasian spruce bark beetle, Ips typographus is a destructive pest of the Norway spruce (Picea abies). Recent outbreaks in Europe have been attributed to global warming and other anthropogenic impacts. Bark beetles are guided by multiple complex olfactory cues throughout their life cycle. Male-produced aggregation pheromones, comprising 2-methyl-3-buten-2-ol and cis-verbenol, have been identified as the most powerful attractants for dispersing conspecifics. In addition to host trees, bark beetles interact with multiple organisms, including symbiotic ophiostomatoid fungi, which may promote beetle colonization success and offspring development. Previously, in a short-distance laboratory assay, we demonstrated that I. typographus adults are attracted to the volatile organic compounds (VOCs) produced by three symbiotic fungi: Grosmannia penicillata, Endoconidiophora polonica, and Leptographium europhioides. Furthermore, the abundant fusel alcohols and their acetates were found to be the most attractive odorants in the fungal VOC profile. In this study, using a long-distance field-trapping experiment, we analyzed the role of fungal VOCs as attractants for dispersing I. typographus. Two types of fungal lures were tested in combination with pheromones in traps: (1) live cultures of fungi grown on potato dextrose agar (PDA) and (2) dispensers containing synthetic fusel alcohols and their acetates in equal proportions. Subsequently, the composition of VOCs emitted from live fungal lures were analyzed. We found that the symbiotic fungi synergistically increased the attraction of beetles to pheromones in field traps and the attractiveness of live fungal lures depended on the fungal load. While one Petri dish with E. polonica, when combined with pheromones synergistically increased trapping efficiency, three Petri dishes with L. europhioides were required to achieve the same. The synthetic mix of fungal fusel alcohols and acetates improved the catch efficiency of pheromones only at a low tested dose. VOC analysis of fungal cultures revealed that all the three fungi produced fusel alcohols and acetates but in variable composition and amounts. Collectively, the results of this study show that, in addition to pheromones, bark beetles might also use volatile cues from their symbiotic fungi to improve tree colonization and reproductive success in their breeding and feeding sites.
Department of Biology Lund University Lund Sweden
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czechia
Zobrazit více v PubMed
Andreadis S. S., Witzgall P., Becher P. G. (2015). Survey of arthropod assemblages responding to live yeasts in an organic apple orchard. Front. Ecol. Evol. 3:121. 10.3389/fevo.2015.00121 DOI
Becher P. G., Hagman A., Verschut V., Chakraborty A., Rozpędowska E., Lebreton S., et al. (2018). Chemical signaling and insect attraction is a conserved trait in yeasts. Ecol. Evol. 8 2962–2974. 10.1002/ece3.3905 PubMed DOI PMC
Biedermann P. H. W., Vega F. E. (2020). Ecology and evolution of insect–fungus mutualisms. Annu. Rev. Entomol. 65 431–455. 10.1146/ANNUREV-ENTO-011019-024910 PubMed DOI
Biedermann P. H. W., Müller J., Grégoire J. C., Gruppe A., Hagge J., Hammerbacher A., et al. (2019). Bark beetle population dynamics in the anthropocene: Challenges and solutions. Trends Ecol. Evol. 34 914–924. 10.1016/j.tree.2019.06.002 PubMed DOI
Bleiker K. P., Six D. L. (2007). Dietary benefits of fungal associates to an eruptive herbivore: Potential implications of multiple associates on host population dynamics. Environ. Entomol. 36 1384–1396. 10.1603/0046-225X200736[1384:DBOFAT]2.0.CO;2 PubMed DOI
Buser C. C., Newcomb R. D., Gaskett A. C., Goddard M. R. (2014). Niche construction initiates the evolution of mutualistic interactions. Ecol. Lett. 17 1257–1264. 10.1111/ele.12331 PubMed DOI
Cale J. A., Collignon R. M., Klutsch J. G., Kanekar S. S., Hussain A., Erbilgin N. (2016). Fungal volatiles can act as carbon sources and semiochemicals to mediate interspecific interactions among bark beetle-associated fungal symbionts. PLoS One 11:e0162197. 10.1371/journal.pone.0162197 PubMed DOI PMC
Christiaens J. F., Franco L. M., Cools T. L., de Meester L., Michiels J., Wenseleers T., et al. (2014). The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep. 9 425–432. 10.1016/j.celrep.2014.09.009 PubMed DOI
Davis T. S., Landolt P. J. (2013). A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. J. Chem. Ecol. 39 860–868. 10.1007/s10886-013-0278-z PubMed DOI
Davis T. S., Boundy-Mills K., Landolt P. J. (2012). Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps. Microb. Ecol. 64 1056–1063. 10.1007/s00248-012-0074-2 PubMed DOI
Davis T. S., Crippen T. L., Hofstetter R. W., Tomberlin J. K. (2013). Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39 840–859. 10.1007/s10886-013-0306-z PubMed DOI
Douglas A. E. (2009). The microbial dimension in insect nutritional ecology. Funct. Ecol. 23 38–47. 10.1111/j.1365-2435.2008.01442.x DOI
El-Sayed A. M., Heppelthwaite V. J., Manning L. M., Gibb A. R., Suckling D. M. (2005). Volatile constituents of fermented sugar baits and their attraction to lepidopteran species. J. Agric. Food Chem. 53 953–958. 10.1021/jf048521j PubMed DOI
Flórez L. V., Biedermann P. H. W., Engl T., Kaltenpoth M. (2015). Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 32 904–936. 10.1039/C5NP00010F PubMed DOI
François L., Annie Y., Aurélien S. (2009). Stimulation of defenses by ophiostomatoid fungi can explain attack success of bark beetles on conifers. Ann. For. Sci. 66 1–22. 10.1051/forest/2009066 DOI
Giordano L., Garbelotto M., Nicolotti G., Gonthier P. (2013). Characterization of fungal communities associated with the bark beetle Ips typographus varies depending on detection method, location, and beetle population levels. Mycol. Prog. 12 127–140. 10.1007/s11557-012-0822-1 DOI
Hazelwood L. H., Daran J.-M. G., van Maris A. J. A., Pronk J. T., Dickinson J. R. (2008). The Ehrlich pathway for fusel alcohol production: A century of research on saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74 2259–2266. 10.1128/AEM.02625-07 PubMed DOI PMC
Horntvedt R., Christiansen E., Solheim H., Wang S. (1983). Artificial inoculation with Ips typographus-associated blue-stain fungi can kill healthy Norway spruce trees. Medd. Nor. Inst. Skogforsk 38 1–20.
Huang J., Kautz M., Trowbridge A. M., Hammerbacher A., Raffa K. F., Adams H. D., et al. (2020). Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. New Phytol. 225 26–36. 10.1111/nph.16173 PubMed DOI
Hlásny T., Zimová S., Merganicová K., Štepánek P., Modlinger R., Turcáni M. (2021). Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. For. Ecol. Manage. 490:119075. 10.1016/j.foreco.2021.119075 DOI
Jirošová A., Kalinová B., Modlinger R., Jakuš R., Unelius C. R., Blaženec M., et al. (2022). Anti-attractant activity of (+)-trans-4-thujanol for Eurasian spruce bark beetle Ips typographus: Novel potency for females. Pest Manag. Sci. 78 1992–1999. 10.1002/ps.6819 PubMed DOI
Kandasamy D., Gershenzon J., Hammerbacher A. (2016). Volatile organic compounds emitted by fungal associates of conifer bark beetles and their potential in bark beetle control. J. Chem. Ecol. 42 952–969. 10.1007/s10886-016-0768-x PubMed DOI PMC
Kandasamy D., Gershenzon J., Andersson M. N., Hammerbacher A. (2019). Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 13 1788–1800. 10.1038/s41396-019-0390-3 PubMed DOI PMC
Kandasamy D., Zaman R., Nakamura Y., Zhao T., Hartmann H., Andersson M. N., et al. (2021). Bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. bioRxiv [Preprint]. 10.1101/2021.07.03.450988 PubMed DOI PMC
Keeling C. I., Tittiger C., MacLean M., Blomquist G. J. (2021). “Pheromone production in bark beetles,” in Insect pheromone biochemistry and molecular biology, eds Blomquist G. J., Vogt R. G. (Cambridge, MA: Academic Press; ), 123–162. 10.1016/b978-0-12-819628-1.00004-3 DOI
Kirisits T. (2007). “Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi,” in Bark and wood boring insects in living trees in Europe, a synthesis, eds Lieutier F., Day K. R., Battisti A., Grégoire J. C., Evans H. F. (Dordrecht: Springer; ), 181–236.
Krokene P. (2015). “Conifer defense and resistance to bark beetles,” in Bark beetles: Biology and ecology of native and invasive species, eds Vega F. E., Hofstetter R. W. (Amsterdam: Elsevier; ), 177–207. 10.1016/B978-0-12-417156-5.00005-8 DOI
Krokene P., Solheim H. (2001). Loss of pathogenicity in the blue-stain fungus Ceratocystis polonica. Plant Pathol. 50 497–502. 10.1046/J.1365-3059.2001.00588.X DOI
Lehenberger M., Foh N., Göttlein A., Six D., Biedermann P. H. W. (2021). Nutrient-poor breeding substrates of ambrosia beetles are enriched with biologically important elements. Front. Microbiol. 12:927. 10.3389/FMICB.2021.664542/BIBTEX PubMed DOI PMC
Lemoine M. M., Engl T., Kaltenpoth M. (2020). Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 39 14–20. 10.1016/J.COIS.2020.01.003 PubMed DOI
Linnakoski R., Lasarov I., Veteli P., Tikkanen O.-P., Viiri H., Jyske T., et al. (2021). Filamentous fungi and yeasts associated with mites phoretic on Ips typographus in Eastern Finland. Forests 12:743. 10.3390/f12060743 DOI
Linnakoski R., Mahilainen S., Harrington A., Vanhanen H., Eriksson M., Mehtatalo L., et al. (2016). Seasonal succession of fungi associated with Ips typographus beetles and their phoretic mites in an outbreak region of Finland. PLoS One 11:e0155622. 10.1371/journal.pone.0155622 PubMed DOI PMC
Linnakoski R., Wilhelm de Beer Z. B., Niemelä P., Wingfield M. J. (2012). Associations of conifer-infesting bark beetles and fungi in Fennoscandia. Insects 3 200–227. 10.3390/insects3010200 PubMed DOI PMC
Madden A. A., Epps M. J., Fukami T., Irwin R. E., Sheppard J., Sorger D. M., et al. (2018). The ecology of insect–yeast relationships and its relevance to human industry. R. Soc. Open Sci. 285:20172733. 10.1098/rspb.2017.2733 PubMed DOI PMC
Mansourian S., Stensmyr M. C. (2015). The chemical ecology of the fly. Curr. Opin. Neurobiol. 34 95–102. 10.1016/j.conb.2015.02.006 PubMed DOI
Netherer S., Kandasamy D., Jirosová A., Kalinová B., Schebeck M., Schlyter F. (2021). Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J. Pest Sci. 94 591–614. 10.1007/s10340-021-01341-y PubMed DOI PMC
Nout M. J. R., Bartelt R. J. (1998). Attraction of a flying nitidulid (Carpophilus humeralis) to volatiles produced by yeasts grown on sweet corn and a corn-based medium. J. Chem. Ecol. 24 1217–1239. 10.1023/A:1022451020013 DOI
Oliver K. M., Smith A. H., Russell J. A. (2014). Defensive symbiosis in the real world-advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct. Ecol. 28 341–355. 10.1111/1365-2435.12133 DOI
Pinheiro J. C., Bates D. M. R Core Team. (2022). nlme: Linear and nonlinear mixed effects models. 1–159. Available online at: https://cran.r-project.org/package=nlme (accessed April 3, 2022).
Pureswaran D. S., Gries R., Borden J. H., Pierce H. D. (2000). Dynamics of pheromone production and communication in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Chemoecology 10 153–168. 10.1007/PL00001818 DOI
R Core Team (2022). R: A language and environment for statistical computing. Vienna, Austria. Available online: https://www.r-project.org/ (accessed 3.4.22).
Saerens S. M. G., Delvaux F. R., Verstrepen K. J., Thevelein J. M. (2010). Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb. Biotechnol. 3 165–177. 10.1111/j.1751-7915.2009.00106.x PubMed DOI PMC
Schlyter F., Birgersson G., Byers J. A., Löfqvist J., Bergström G. (1987). Field response of spruce bark beetle, Ips typographus, to aggregation pheromone candidates. J. Chem. Ecol. 13 701–716. 10.1007/BF01020153 PubMed DOI
Solheim H. (1991). Oxygen deficiency and spruce resin inhibition of growth of blue stain fungi associated with Ips typographus. Mycol. Res 95 1387–1392. 10.1016/S0953-7562(09)80390-0 DOI
Solheim H. (1992). The early stages of fungal invasion in Norway spruce infested by the bark beetle Ips typographus. Can. J. Bot. 70 1–5. 10.1139/b92-001 DOI
Sullivan B. T., Dalusky M. J., Wakarchuk D., Berisford C. W. (2007). Field evaluations of potential aggregation inhibitors for the southern pine beetle, Dendroctonus frontalis (Coleoptera: Curculionidae). J. Entomol. Sci. 42 139–149. 10.18474/0749-8004-42.2.139 DOI
Tanin S. M., Kandasamy D., Krokene P. (2021). Fungal interactions and host tree preferences in the spruce bark beetle Ips typographus. Front. Microbiol. 12:695167. 10.3389/fmicb.2021.695167 PubMed DOI PMC
Toffin E., Gabriel E., Louis M., Deneubourg J. L., Grégoire J. C. (2018). Colonization of weakened trees by mass-attacking bark beetles: No penalty for pioneers, scattered initial distributions and final regular patterns. R. Soc. Open Sci. 5:170454. 10.1098/rsos.170454 PubMed DOI PMC
van den Bosch T. J. M., Welte C. U. (2017). Detoxifying symbionts in agriculturally important pest insects. Microb. Biotechnol. 10 531–540. 10.1111/1751-7915.12483 PubMed DOI PMC
Wadke N., Kandasamy D., Vogel H., Lah L., Wingfield B. D., Paetz C., et al. (2016). Catechol dioxygenases catalyzing the first step in Norway spruce phenolic degradation are key virulence factors in the bark beetle-vectored fungus Endoconidiophora polonica. Plant Physiol. 171:01916.2015. 10.1104/pp.15.01916 PubMed DOI PMC
Zhao T., Axelsson K., Krokene P., Borg-Karlson A. K. (2015). Fungal symbionts of the spruce bark beetle synthesize the beetle aggregation pheromone 2-methyl-3-buten-2-ol. J. Chem. Ecol. 41 848–852. 10.1007/s10886-015-0617-3 PubMed DOI
Zhao T., Ganji S., Schiebe C., Bohman B., Weinstein P., Krokene P., et al. (2019). Convergent evolution of semiochemicals across kingdoms: Bark beetles and their fungal symbionts. ISME J. 13 1535–1545. 10.1038/s41396-019-0370-7 PubMed DOI PMC
Zhao T., Kandasamy D., Krokene P., Chen J., Gershenzon J., Hammerbacher A. (2018). Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecol. 38 71–79. 10.1016/j.funeco.2018.06.003 DOI
Zuur A. F., Ieno E. N. (2016). A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7 636–645. 10.1111/2041-210X.12577 DOI