• This record comes from PubMed

Ophiostomatoid fungi synergize attraction of the Eurasian spruce bark beetle, Ips typographus to its aggregation pheromone in field traps

. 2022 ; 13 () : 980251. [epub] 20220920

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Eurasian spruce bark beetle, Ips typographus is a destructive pest of the Norway spruce (Picea abies). Recent outbreaks in Europe have been attributed to global warming and other anthropogenic impacts. Bark beetles are guided by multiple complex olfactory cues throughout their life cycle. Male-produced aggregation pheromones, comprising 2-methyl-3-buten-2-ol and cis-verbenol, have been identified as the most powerful attractants for dispersing conspecifics. In addition to host trees, bark beetles interact with multiple organisms, including symbiotic ophiostomatoid fungi, which may promote beetle colonization success and offspring development. Previously, in a short-distance laboratory assay, we demonstrated that I. typographus adults are attracted to the volatile organic compounds (VOCs) produced by three symbiotic fungi: Grosmannia penicillata, Endoconidiophora polonica, and Leptographium europhioides. Furthermore, the abundant fusel alcohols and their acetates were found to be the most attractive odorants in the fungal VOC profile. In this study, using a long-distance field-trapping experiment, we analyzed the role of fungal VOCs as attractants for dispersing I. typographus. Two types of fungal lures were tested in combination with pheromones in traps: (1) live cultures of fungi grown on potato dextrose agar (PDA) and (2) dispensers containing synthetic fusel alcohols and their acetates in equal proportions. Subsequently, the composition of VOCs emitted from live fungal lures were analyzed. We found that the symbiotic fungi synergistically increased the attraction of beetles to pheromones in field traps and the attractiveness of live fungal lures depended on the fungal load. While one Petri dish with E. polonica, when combined with pheromones synergistically increased trapping efficiency, three Petri dishes with L. europhioides were required to achieve the same. The synthetic mix of fungal fusel alcohols and acetates improved the catch efficiency of pheromones only at a low tested dose. VOC analysis of fungal cultures revealed that all the three fungi produced fusel alcohols and acetates but in variable composition and amounts. Collectively, the results of this study show that, in addition to pheromones, bark beetles might also use volatile cues from their symbiotic fungi to improve tree colonization and reproductive success in their breeding and feeding sites.

See more in PubMed

Andreadis S. S., Witzgall P., Becher P. G. (2015). Survey of arthropod assemblages responding to live yeasts in an organic apple orchard. DOI

Becher P. G., Hagman A., Verschut V., Chakraborty A., Rozpędowska E., Lebreton S., et al. (2018). Chemical signaling and insect attraction is a conserved trait in yeasts. PubMed DOI PMC

Biedermann P. H. W., Vega F. E. (2020). Ecology and evolution of insect–fungus mutualisms. PubMed DOI

Biedermann P. H. W., Müller J., Grégoire J. C., Gruppe A., Hagge J., Hammerbacher A., et al. (2019). Bark beetle population dynamics in the anthropocene: Challenges and solutions. PubMed DOI

Bleiker K. P., Six D. L. (2007). Dietary benefits of fungal associates to an eruptive herbivore: Potential implications of multiple associates on host population dynamics. PubMed DOI

Buser C. C., Newcomb R. D., Gaskett A. C., Goddard M. R. (2014). Niche construction initiates the evolution of mutualistic interactions. PubMed DOI

Cale J. A., Collignon R. M., Klutsch J. G., Kanekar S. S., Hussain A., Erbilgin N. (2016). Fungal volatiles can act as carbon sources and semiochemicals to mediate interspecific interactions among bark beetle-associated fungal symbionts. PubMed DOI PMC

Christiaens J. F., Franco L. M., Cools T. L., de Meester L., Michiels J., Wenseleers T., et al. (2014). The fungal aroma gene PubMed DOI

Davis T. S., Landolt P. J. (2013). A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. PubMed DOI

Davis T. S., Boundy-Mills K., Landolt P. J. (2012). Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps. PubMed DOI

Davis T. S., Crippen T. L., Hofstetter R. W., Tomberlin J. K. (2013). Microbial volatile emissions as insect semiochemicals. PubMed DOI

Douglas A. E. (2009). The microbial dimension in insect nutritional ecology. DOI

El-Sayed A. M., Heppelthwaite V. J., Manning L. M., Gibb A. R., Suckling D. M. (2005). Volatile constituents of fermented sugar baits and their attraction to lepidopteran species. PubMed DOI

Flórez L. V., Biedermann P. H. W., Engl T., Kaltenpoth M. (2015). Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. PubMed DOI

François L., Annie Y., Aurélien S. (2009). Stimulation of defenses by ophiostomatoid fungi can explain attack success of bark beetles on conifers. DOI

Giordano L., Garbelotto M., Nicolotti G., Gonthier P. (2013). Characterization of fungal communities associated with the bark beetle DOI

Hazelwood L. H., Daran J.-M. G., van Maris A. J. A., Pronk J. T., Dickinson J. R. (2008). The Ehrlich pathway for fusel alcohol production: A century of research on saccharomyces cerevisiae metabolism. PubMed DOI PMC

Horntvedt R., Christiansen E., Solheim H., Wang S. (1983). Artificial inoculation with

Huang J., Kautz M., Trowbridge A. M., Hammerbacher A., Raffa K. F., Adams H. D., et al. (2020). Tree defence and bark beetles in a drying world: Carbon partitioning, functioning and modelling. PubMed DOI

Hlásny T., Zimová S., Merganicová K., Štepánek P., Modlinger R., Turcáni M. (2021). Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. DOI

Jirošová A., Kalinová B., Modlinger R., Jakuš R., Unelius C. R., Blaženec M., et al. (2022). Anti-attractant activity of (+)- PubMed DOI

Kandasamy D., Gershenzon J., Hammerbacher A. (2016). Volatile organic compounds emitted by fungal associates of conifer bark beetles and their potential in bark beetle control. PubMed DOI PMC

Kandasamy D., Gershenzon J., Andersson M. N., Hammerbacher A. (2019). Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle ( PubMed DOI PMC

Kandasamy D., Zaman R., Nakamura Y., Zhao T., Hartmann H., Andersson M. N., et al. (2021). Bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes. PubMed DOI PMC

Keeling C. I., Tittiger C., MacLean M., Blomquist G. J. (2021). “Pheromone production in bark beetles,” in DOI

Kirisits T. (2007). “Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi,” in

Krokene P. (2015). “Conifer defense and resistance to bark beetles,” in DOI

Krokene P., Solheim H. (2001). Loss of pathogenicity in the blue-stain fungus DOI

Lehenberger M., Foh N., Göttlein A., Six D., Biedermann P. H. W. (2021). Nutrient-poor breeding substrates of ambrosia beetles are enriched with biologically important elements. PubMed DOI PMC

Lemoine M. M., Engl T., Kaltenpoth M. (2020). Microbial symbionts expanding or constraining abiotic niche space in insects. PubMed DOI

Linnakoski R., Lasarov I., Veteli P., Tikkanen O.-P., Viiri H., Jyske T., et al. (2021). Filamentous fungi and yeasts associated with mites phoretic on DOI

Linnakoski R., Mahilainen S., Harrington A., Vanhanen H., Eriksson M., Mehtatalo L., et al. (2016). Seasonal succession of fungi associated with PubMed DOI PMC

Linnakoski R., Wilhelm de Beer Z. B., Niemelä P., Wingfield M. J. (2012). Associations of conifer-infesting bark beetles and fungi in Fennoscandia. PubMed DOI PMC

Madden A. A., Epps M. J., Fukami T., Irwin R. E., Sheppard J., Sorger D. M., et al. (2018). The ecology of insect–yeast relationships and its relevance to human industry. PubMed DOI PMC

Mansourian S., Stensmyr M. C. (2015). The chemical ecology of the fly. PubMed DOI

Netherer S., Kandasamy D., Jirosová A., Kalinová B., Schebeck M., Schlyter F. (2021). Interactions among Norway spruce, the bark beetle PubMed DOI PMC

Nout M. J. R., Bartelt R. J. (1998). Attraction of a flying nitidulid ( DOI

Oliver K. M., Smith A. H., Russell J. A. (2014). Defensive symbiosis in the real world-advancing ecological studies of heritable, protective bacteria in aphids and beyond. DOI

Pinheiro J. C., Bates D. M. R Core Team. (2022).

Pureswaran D. S., Gries R., Borden J. H., Pierce H. D. (2000). Dynamics of pheromone production and communication in the mountain pine beetle, DOI

R Core Team (2022).

Saerens S. M. G., Delvaux F. R., Verstrepen K. J., Thevelein J. M. (2010). Production and biological function of volatile esters in PubMed DOI PMC

Schlyter F., Birgersson G., Byers J. A., Löfqvist J., Bergström G. (1987). Field response of spruce bark beetle, PubMed DOI

Solheim H. (1991). Oxygen deficiency and spruce resin inhibition of growth of blue stain fungi associated with DOI

Solheim H. (1992). The early stages of fungal invasion in Norway spruce infested by the bark beetle DOI

Sullivan B. T., Dalusky M. J., Wakarchuk D., Berisford C. W. (2007). Field evaluations of potential aggregation inhibitors for the southern pine beetle, DOI

Tanin S. M., Kandasamy D., Krokene P. (2021). Fungal interactions and host tree preferences in the spruce bark beetle PubMed DOI PMC

Toffin E., Gabriel E., Louis M., Deneubourg J. L., Grégoire J. C. (2018). Colonization of weakened trees by mass-attacking bark beetles: No penalty for pioneers, scattered initial distributions and final regular patterns. PubMed DOI PMC

van den Bosch T. J. M., Welte C. U. (2017). Detoxifying symbionts in agriculturally important pest insects. PubMed DOI PMC

Wadke N., Kandasamy D., Vogel H., Lah L., Wingfield B. D., Paetz C., et al. (2016). Catechol dioxygenases catalyzing the first step in Norway spruce phenolic degradation are key virulence factors in the bark beetle-vectored fungus PubMed DOI PMC

Zhao T., Axelsson K., Krokene P., Borg-Karlson A. K. (2015). Fungal symbionts of the spruce bark beetle synthesize the beetle aggregation pheromone 2-methyl-3-buten-2-ol. PubMed DOI

Zhao T., Ganji S., Schiebe C., Bohman B., Weinstein P., Krokene P., et al. (2019). Convergent evolution of semiochemicals across kingdoms: Bark beetles and their fungal symbionts. PubMed DOI PMC

Zhao T., Kandasamy D., Krokene P., Chen J., Gershenzon J., Hammerbacher A. (2018). Fungal associates of the tree-killing bark beetle, DOI

Zuur A. F., Ieno E. N. (2016). A protocol for conducting and presenting results of regression-type analyses. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...