• This record comes from PubMed

Polarisation of human macrophages towards an M1 subtype triggered by an atypical Brazilian strain of Toxoplasma gondii results in a reduction in parasite burden

. 2022 Oct 04 ; 69 () : . [epub] 20221004

Language English Country Czech Republic Media electronic

Document type Journal Article

Toxoplasma gondii Nicolle et Manceaux, 1909, the etiologic agent of toxoplasmosis, was considered a clonal population with three distinct genetic lineages (I, II and III); however, sequence analysis of different strains has revealed distinct atypical genotypes. Macrophages are essential for immunity against toxoplasmosis and differential cell regulation may affect the course of the disease. In this context, our study aims to investigate the infection by TgChBrUD2, a highly virulent atypical Brazilian strain of T. gondii, on the activation and polarisation of human macrophages. Human macrophage-like cells obtained from THP-1 cells were infected with TgChBrUD2, RH or ME49 strains of T. gondii to evaluate the impact of parasite infection on macrophage polarisation. Our results indicate that the TgChBrUD2 and ME49 strains of T. gondii induced a classic activation of human macrophages, which was confirmed by the high rate of spindle-shaped macrophages, low amount of urea and increase in the levels of nitrite, as well as the down-regulation of M2-markers. In contrast, RH strain promoted an alternative activation of macrophages. The polarisation of human macrophages towards an M1 subtype mediated by TgChBrUD2 and ME49 strains resulted in a low parasite burden, with high levels of IL-6 and MIF. Finally, the M2 subtype triggered by the RH strain culminated in a lower intracellular proliferation index. We concluded that the atypical (TgChBrUD2) and clonal (ME49) strains are able to elicit an M1 subtype, which results in parasitism control, partially explained by the high levels of IL-6 and MIF produced during the infection by these genotypes. In contrast, the clonal (RH) strain promoted a macrophage polarisation towards an M2 subtype, marked by a high parasite burden, with a weak modulation of pro-inflammatory cytokines. Thus, atypical strains can present different mechanisms of pathogenicity and transmissibility compared to clonal strains, as well as they can use distinct strategies to evade the host's immune response and ensure their survival.

See more in PubMed

Aguirre A.A., Longcore T., Barbieri M., Dabritz H., Hill D., Klein P.N., Lepczyk C., Lilly E.L., McLeod R., Milcarsky J., Murphy C.E., Su C., VanWormer E., Yolken R., Sizemore G.C. 2019: The one health approach to toxoplasmosis: epidemiology, control, and prevention strategies. Ecohealth 16: 378-390. PubMed DOI

Akinrinmade O.A., Chetty S., Daramola A.K., Islam M.-u., Thepen T., Barth S. 2017: CD64: An attractive immunotherapeutic target for M1-type macrophage mediated chronic inflammatory diseases. Biomedicines 5: 56. DOI

Aldridge J.R., Moseley C.E., Boltz D.A., Negovetich N.J., Reynolds C., Franks J., Brown S.A., Doherty P.C., Webster R.G., Thomas P.G. 2009: TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc. Natl. Acad. Sci. USA 106: 5306-5311. PubMed DOI

Angeloni M.B., Guirelli P.M., Franco P.S., Barbosa B.F., Gomes A.O., Castro A.S., Silva N.M., Martins-Filho O.A., Mineo T.W., Silva D.A., Mineo J.R., Ferro E.A. 2013: Differential apoptosis in BeWo cells after infection with highly (RH) or moderately (ME49) virulent strains of Toxoplasma gondii is related to the cytokine profile secreted, the death receptor fas expression and phosphorylated ERK1/2 expression. Placenta 34: 973-982. PubMed DOI

Angeloni M.B., Silva N.M., Castro A.S., Gomes A.O., Silva D.A.O., Mineo J.R., Ferro E.A.V. 2009: Apoptosis and S phase of the cell cycle in BeWo trophoblastic and HeLa cells are differentially modulated by Toxoplasma gondii strain types. Placenta 30: 785-791. PubMed DOI

Barbosa B.F., Lopes-Maria J.B., Gomes A.O., Angeloni M.B., Castro A.S., Franco P.S., Fermino M.L., Roque-Barreira M.C., Ietta F., Martins-Filho O.A., Silva D.A., Mineo J.R., Ferro E.A. 2015: IL10, TGF beta1, and IFN gamma modulate intracellular signaling pathways and cytokine production to control Toxoplasma gondii infection in BeWo trophoblast cells. Biol. Reprod. 92: 82. DOI

Bigna J.J., Tochie J.N. 2019: Global, regional and national estimates of Toxoplasma gondii seroprevalence in pregnant women: a protocol for a systematic review and modelling analysis. B.M.J. Open 9: e030472. DOI

Campos M.A.S., Gilbert R.E., Freeman K., Lago E.G., Bahia-Oliveira L.M.G., Tan H.K., Wallon M., Buffolano W., Stanford M.R., Petersen E. 2008: Ocular sequelae of congenital toxoplasmosis in Brazil compared with Europe. PLoS Negl. Trop. Dis. 2: e277. DOI

Carneiro A.C.A.V., Andrade G.M., Costa J.G.L., Pinheiro B.V., Vasconcelos-Santos D.V., Ferreira A.M., Su C., Januário J.N., Vitor R.W.A. 2013: Genetic characterizationof Toxoplasma gondii revealed highly diverse genotypes for isolates from newborns with congenital toxoplasmosis in Southeastern Brazil. J. Clin. Microbiol. 51: 901-907. PubMed DOI

Castro A.S., Alves C.M., Angeloni M.B., Gomes A.O., Barbosa B.F., Franco P.S., Silva D.A., Martins-Filho O.A., Mineo J.R., Mineo T.W., Ferro E.A. 2013: Trophoblast cells are able to regulate monocyte activity to control Toxoplasma gondii infection. Placenta 34: 240-247. PubMed DOI

Comalada M., Yeramian A., Modolell M., Lloberas J., Celada A. 2012: Arginine and macrophage activation. Methods Mol. Biol. 844: 223-235. DOI

Dardé M.L. 2008: Toxoplasma gondii, "new" genotypes and virulence. Parasite 15: 366-371. PubMed DOI

de Barros R.A.M., Torrecilhas A.C., Marciano M.A.M., Mazuz M.L., Pereira-Chioccola V.L., Fux B. 2022: Toxoplasmosis in human and animals around the world. Diagnosis and perspectives in the one health approach. Acta Trop. 231: 106432. PubMed DOI

de Oliveira Gomes A., de Oliveira Silva D.A., Silva N.M., de Freitas Barbosa B., Franco P.S., Angeloni M.B., Fermino M.L., Roque-Barreira M.C., Bechi N., Paulesu L.R., Dos Santos M.C., Mineo J.R., Ferro E.A. 2011: Effect of macrophage migration inhibitory factor (MIF) in human placental explants infected with Toxoplasma gondii depends on gestational age. Am. J. Pathol. 178: 2792-2801. DOI

Dubey J., Jones J. 2008: Toxoplasma gondii infection in humans and animals in the United States. Int. J. Parasitol. 38: 1257-1278. DOI

Dubey J.P., Lago E.G., Gennari S.M., Su C., Jones J.L. 2012: Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. Parasitology 139: 1375-1424. PubMed DOI

Dubey J.P., Velmurugan G.V., Rajendran C., Yabsley M.J., Thomas N.J., Beckmen K.B., Sinnett D., Ruid D., Hart J., Fair P.A., McFee W.E., Shearn-Bochsler V., Kwok O.C.H., Ferreira L.R., Choudhary S., Faria E.B., Zhou H., Felix T.A., Su C. 2011: Genetic characterisation of Toxoplasma gondii in wildlife from North America revealed widespread and high prevalence of the fourth clonal type. Int. J. Parasitol. 41: 1139-1147. DOI

Dunay I.R., DaMatta R.A., Fux B., Presti R., Greco S., Colonna M., Sibley L.D. 2008: Gr1+ Inflammatory Monocytes Are Required for Mucosal Resistance to the Pathogen Toxoplasma gondii. Immunity 29: 306-317. PubMed DOI

Ferreira I.M.R., Vidal J.E., de Mattos C.d.C.B., de Mattos L.C., Qu D., Su C., Pereira-Chioccola V.L. 2011: Toxoplasma gondii isolates: Multilocus RFLP-PCR genotyping from human patients in Sao Paulo State, Brazil identified distinct genotypes. Exp. Parasitol. 129: 190-195. PubMed DOI

Ferro E.A., Mineo J.R., Ietta F., Bechi N., Romagnoli R., Silva D.A., Sorda G., Bevilacqua E., Paulesu L.R. 2008: Macrophage migration inhibitory factor is up-regulated in human first-trimester placenta stimulated by soluble antigen of Toxoplasma gondii, resulting in increased monocyte adhesion on villous explants. Am. J. Pathol. 172: 50-58. DOI

Flores M., Saavedra R., Bautista R., Viedma R., Tenorio E.P., Leng L., Sanchez Y., Juárez I., Satoskar A.A., Shenoy A.S., Terrazas L.I., Bucala R., Barbi J., Satoskar A.R., Rodriguez-Sosa M. 2008: Macrophage migration inhibitory factor (MIF) is critical for the host resistance against Toxoplasma gondii. FASEB J. 22: 3661-3671. PubMed DOI

Fox B.A., Guevara R.B., Rommereim L.M., Falla A., Bellini V., Pètre G., Rak C., Cantillana V., Dubremetz J.-F., Cesbron-Delauw M.-F., Taylor G.A., Mercier C., Bzik D.J., Weiss L.M. 2019: Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins orchestrate chronic infection and GRA12 underpins resistance to host gamma interferon. mBio. 10: e00589-19. PubMed DOI

Franco P.S., da Silva N.M., de Freitas Barbosa B., de Oliveira Gomes A., Ietta F., Shwab E.K., Su C., Mineo J.R., Ferro E.A.V. 2015: Calomys callosus chronically infected by Toxoplasma gondii clonal type II strain and reinfected by Brazilian strains is not able to prevent vertical transmission. Front. Microbiol. 6: 181. PubMed DOI

Franco P.S., Gois P.S.G., de Araujo T.E., da Silva R.J., de Freitas Barbosa B., de Oliveira Gomes A., Ietta F., Dos Santos L.A., Dos Santos M.C., Mineo J.R., Ferro E.A.V. 2019: Brazilian strains of Toxoplasma gondii are controlled by azithromycin and modulate cytokine production in human placental explants. J. Biomed. Sci. 26: 10. DOI

Franco P.S., Ribeiro M., Lopes-Maria J.B., Costa L.F., Silva D.A.O., de Freitas Barbosa B., de Oliveira Gomes A., Mineo J.R., Ferro E.A.V. 2014: Experimental infection of Calomys callosus with atypical strains of Toxoplasma gondii shows gender differences in severity of infection. Parasitol. Res. 113: 2655-2664. DOI

Gómez-Chávez F., Cañedo-Solares I., Ortiz-Alegría L.B., Flores-García Y., Figueroa-Damián R., Luna-Pastén H., Gómez-Toscano V., López-Candiani C., Arce-Estrada G.E., Bonilla-Ríos C.A., Mora-González J.C., García-Ruiz R., Correa D. 2020: A Proinflammatory immune response might determine Toxoplasma gondii vertical transmission and severity of clinical features in congenitally infected newborns. Front. Immunol. 11: 390. PubMed DOI

Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok J.S., Tannenbaum S.R. 1982: Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126: 131-138. PubMed DOI

Grigg M.E., Ganatra J., Boothroyd John C., Margolis Todd P. 2001: Unusual abundance of atypical strains associated with human ocular toxoplasmosis. J. Infect. Dis. 184: 633-639. DOI

Hakimi M.A., Mammari N., Vignoles P., Halabi M.A., Darde M.L., Courtioux B. 2014: In vitro infection of human nervous cells by two strains of Toxoplasma gondii: a kinetic analysis of immune mediators and parasite multiplication. PLoS ONE 9: e98491. PubMed DOI

Halonen S.K., Weiss L.M. 2013: Toxoplasmosis. 114: 125-145.

Hampton M.M. 2015: Congenital toxoplasmosis: a review. Neonatal Netw. 34: 274-278. PubMed DOI

Händel U., Brunn A., Drögemüller K., Müller W., Deckert M., Schlüter D. 2012: Neuronal gp130 expression is crucial to prevent neuronal loss, hyperinflammation, and lethal course of murine Toxoplasma encephalitis. Am. J. Pathol. 181: 163-173. DOI

Howe D.K., Sibley L.D. 1995: Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J. Infect.Dis. 172: 1561-1566. PubMed DOI

Hunter C.A., Sibley L.D. 2012: Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat. Rev. Microbiol. 10: 766-778. PubMed DOI

Ishikawa T., Harada T., Koi H., Kubota T., Azuma H., Aso T. 2007: Identification of arginase in human placental villi. Placenta 28: 133-138. PubMed DOI

Italiani P., Boraschi D. 2014: From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front. Immunol. 5: 514. PubMed DOI

Jaguin M., Houlbert N., Fardel O., Lecureur V. 2013: Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cell. Immunol. 281: 51-61. PubMed DOI

Jensen K.D.C., Camejo A., Melo M.B., Cordeiro C., Julien L., Grotenbreg G.M., Frickel E.-M., Ploegh H.L., Young L., Saeij J.P.J., Weiss L.M. 2015: Toxoplasma gondii superinfection and virulence during secondary infection correlate with the exact ROP5/ROP18 allelic combination. mBio 6: e02280-14. PubMed DOI

Jensen Kirk D.C., Wang Y., Wojno Elia D.T., Shastri Anjali J., Hu K., Cornel L., Boedec E., Ong Y.-C., Chien Y.-h., Hunter Christopher A., Boothroyd John C., Saeij Jeroen P.J. 2011: Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host Microbe. 9: 472-483. DOI

Khan A. 2006: Genetic divergence of Toxoplasma gondii strains associated with ocular toxoplasmosis, Brazil. Emerg. Infect. Dis. 12: 942-949. DOI

Khan A., Dubey J.P., Su C., Ajioka J.W., Rosenthal B.M., Sibley L.D. 2011: Genetic analyses of atypical Toxoplasma gondii strains reveal a fourth clonal lineage in North America. Int. J. Parasitol. 41: 645-655. DOI

Kong L., Zhang Q., Chao J., Wen H., Zhang Y., Chen H., Pappoe F., Zhang A., Xu X., Cai Y., Li M., Luo Q., Zhang L., Shen J. 2015: Polarization of macrophages induced by Toxoplasma gondii and its impact on abnormal pregnancy in rats. Acta Trop. 143: 1-7. PubMed DOI

Li Z., Zhao M., Li T., Zheng J., Liu X., Jiang Y., Zhang H., Hu X. 2017: Decidual macrophage functional polarization during abnormal pregnancy due to Toxoplasma gondii: role for LILRB4. Front. Immunol. 8: 1013. PubMed DOI

Liu T., Zhang Q., Liu L., Xu X., Chen H., Wang H., Kong L., Wang W., Zhang A., Cai Y., Li M., Yu L., Du J., Wang X., Luo Q., Lun Z.-R., Wang Y., Shen J. 2013: Trophoblast apoptosis through polarization of macrophages induced by Chinese Toxoplasma gondii isolates with different virulence in pregnant mice. Parasitol. Res. 112: 3019-3027. DOI

Lopes C.S., Franco P.S., Silva N.M., Silva D.A.O., Ferro E.A.V., Pena H.F.J., Soares R.M., Gennari S.M., Mineo J.R. 2016: Phenotypic and genotypic characterization of two Toxoplasma gondii isolates in free-range chickens from Uberlândia, Brazil. Epidemiol. Infect. 144: 1865-1875. PubMed DOI

Lüder C.G.K., Stanway R.R., Chaussepied M., Langsley G., Heussler V.T. 2009: Intracellular survival of apicomplexan parasites and host cell modification. Int. J. Parasitol. 39: 163-173. DOI

Mantovani A., Sica A., Sozzani S., Allavena P., Vecchi A., Locati M. 2004: The chemokine system in diverse forms of macrophage activation and polarization. Trends. Immunol. 25: 677-686. PubMed DOI

Melo M.B., Jensen K.D.C., Saeij J.P.J. 2011: Toxoplasma gondii effectors are master regulators of the inflammatory response. Trends Parasitol. 27: 487-495. PubMed DOI

Mills C. 2012: M1 and M2 macrophages: oracles of health and disease. Crit. Rev. Immunol. 32: 463-488. PubMed DOI

Montoya J.G., Liesenfeld O. 2004: Toxoplasmosis. Lancet 363: 1965-1976. DOI

Mordue D.G., Monroy F., La Regina M., Dinarello C.A., Sibley L.D. 2001: Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines. J. Immunol. 167: 4574-4584. PubMed DOI

Mukhopadhyay D., Sangaré L.O., Braun L., Hakimi M.A., Saeij J.P.J. 2020: Toxoplasma GRA15 limits parasite growth in IFNγ-activated fibroblasts through TRAF ubiquitin ligases. EMBO J. 39. DOI

Murray P. J. 2011: Macrophages as a battleground for Toxoplasma pathogenesis. Cell Host Microbe. 9: 445-447. DOI

Murray P.J., Wynn T.A. 2011: Obstacles and opportunities for understanding macrophage polarization. J. Leukoc. Biol. 89: 557-563. PubMed DOI

Nguyen T.D., Bigaignon G., Markine-Goriaynoff D., Heremans H., Nguyen T.N., Warnier G., Delmee M., Warny M., Wolf S.F., Uyttenhove C., Van Snick J., Coutelier J.P. 2003: Virulent Toxoplasma gondii strain RH promotes T-cell-independent overproduction of proinflammatory cytokines IL12 and γ-interferon. J. Med. Microbiol. 52: 869-876. DOI

Ning F., Liu H., Lash G.E. 2016: The role of cecidual macrophages during normal and pathological pregnancy. Am. J. Reprod. Immunol. 75: 298-309. DOI

Orecchioni M., Ghosheh Y., Pramod A.B., Ley K. 2019: Macrophage Polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front. Immunol. 10: 1084. PubMed DOI

Park E.K., Jung H.S., Yang H.I., Yoo M.C., Kim C., Kim K.S. 2007: Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm. Res. 56: 45-50. PubMed DOI

Park J., Hunter C.A. 2020: The role of macrophages in protective and pathological responses to Toxoplasma gondii. Parasite Immunol. 42: e12712. PubMed DOI

Pena H.F.J., Gennari S.M., Dubey J.P., Su C. 2008: Population structure and mouse-virulence of Toxoplasma gondii in Brazil. Int. J. Parasitol. 38: 561-569. DOI

Porcheray F., Viaud S., Rimaniol A.C., Leone C., Samah B., Dereuddre-Bosquet N., Dormont D., Gras G. 2005: Macrophage activation switching: an asset for the resolution of inflammation. Clin. Exp. Immunol. 142: 481-489. DOI

Radke J. 2001: Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii. Mol. Biochem. Parasitol. 115: 165-175. PubMed DOI

Rajendran C., Su C., Dubey J.P. 2012: Molecular genotyping of Toxoplasma gondii from Central and South America revealed high diversity within and between populations. Infect. Genet. Evol. 12: 359-368. PubMed DOI

Reese M.L., Shah N., Boothroyd J.C. 2014: The Toxoplasma pseudokinase ROP5 is an allosteric inhibitor of the immunity-related GTPases. J. Biol. Chem. 289: 27849-27858. DOI

Reyes L., Moore R.N., Davidson M.K., Thomas L.C., Davis J.K. 1999: Effects of Mycoplasma fermentans incognitus on differentiation of THP-1 cells. Infect. Immun. 67: 3188-3192. PubMed DOI

Ribeiro M., Franco P.S., Lopes-Maria J.B., Angeloni M.B., Barbosa B.d.F., Gomes A.d.O., Castro A.S., Silva R.J.d., Oliveira F.C.d., Milian I.C.B., Martins-Filho O.A., Ietta F., Mineo J.R., Ferro E.A.V. 2017: Azithromycin treatment is able to control the infection by two genotypes of Toxoplasma gondii in human trophoblast BeWo cells. Exp. Parasitol. 181: 111-118. PubMed DOI

Rico-Torres C.P., Vargas-Villavicencio J.A., Correa D. 2016: Is Toxoplasma gondii type related to clinical outcome in human congenital infection? Systematic and critical review. Eur. J. Clin. Microbiol. Infect. Dis. 35: 1079-1088. DOI

Saadatnia G., Golkar M. 2012: A review on human toxoplasmosis. Scand. J. Infect. Dis. 44: 805-814. DOI

Saeij J.P.J., Boyle J.P., Boothroyd J.C. 2005: Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends Parasitol. 21: 476-481. PubMed DOI

Sauer A., de la Torre A., Gomez-Marin J., Bourcier T., Garweg J., Speeg-Schatz C., Candolfi E. 2011: Prevention of retinochoroiditis in congenital toxoplasmosis: Europe versus South America. Pediatr. Infect. Dis. J. 30: 601-603. DOI

Shwab E.K., Zhu X.-Q., Majumdar D., Pena H.F.J., Gennari S.M., Dubey J.P., Su C. 2013: Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology 141: 453-461. PubMed DOI

Sibley L.D., Ajioka J.W. 2008: Population structure of Toxoplasma gondii: clonal expansion driven by infrequent recombination and selective sweeps. Annu. Rev. Microbiol. 62: 329-351. PubMed DOI

Sibley L.D., Blackwell J., Newbold C., Turner M., Vickerman K., Mordue D.G., Su C., Robben P.M., Howe D.K. 2002: Genetic approaches to studying virulence and pathogenesis in Toxoplasma gondii. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357: 81-88. DOI

Stopić M., Štajner T., Marković-Denić L., Nikolić V., Djilas I., Srzentić S.J., Djurković-Djaković O., Bobić B. 2022: Epidemiology of toxoplasmosis in Serbia: a cross-sectional study on blood donors. Microorganisms 10: 492. PubMed DOI

Su C., Khan A., Zhou P., Majumdar D., Ajzenberg D., Darde M.L., Zhu X.Q., Ajioka J.W., Rosenthal B.M., Dubey J.P., Sibley L.D. 2012: Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proc. Natl. Acad. Sci. USA 109: 5844-5849. PubMed DOI

Teixeira S.C., de Souza G., Borges B.C., de Araújo T.E., Rosini A.M., Aguila F.A., Ambrósio S.R., Veneziani R.C.S., Bastos J.K., Silva M.J.B., Martins C.H.G., de Freitas Barbosa B., Ferro E.A.V. 2020: Copaifera spp. oleoresins impair Toxoplasma gondii infection in both human trophoblastic cells and human placental explants. Sci. Rep. 10: 15158. PubMed DOI

Vallochi A.L., Muccioli C., Martins M.C., Silveira C., Belfort R., Rizzo L.V. 2005: The genotype of Toxoplasma gondii strains causing ocular toxoplasmosis in humans in Brazil. Am. J. Ophthalmol. 139: 350-351. DOI

Verreck F.A.W., de Boer T., Langenberg D.M.L., Hoeve M.A., Kramer M., Vaisberg E., Kastelein R., Kolk A., de Waal-Malefyt R., Ottenhoff T.H.M. 2004: Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl. Acad. Sci. USA 101: 4560-4565. PubMed DOI

Vogel D.Y.S., Glim J.E., Stavenuiter A.W.D., Breur M., Heijnen P., Amor S., Dijkstra C.D., Beelen R.H.J. 2014: Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology 219: 695-703. PubMed DOI

Wahab T., Edvinsson B., Palm D., Lindh J. 2009: Comparison of the AF146527 and B1 repeated elements, two real-time PCR targets used for detection of Toxoplasma gondii. J. Clin. Microbiol. 48: 591-592. PubMed DOI

Waldo S.W., Li Y., Buono C., Zhao B., Billings E.M., Chang J., Kruth H.S. 2008: Heterogeneity of human macrophages in culture and in atherosclerotic plaques. Am. J. Pathol. 172: 1112-1126. DOI

Wang W.-J., Hao C.-F., Lin Q.-D. 2011: Dysregulation of macrophage activation by decidual regulatory T cells in unexplained recurrent miscarriage patients. J. Reprod. Immunol. 92: 97-102. PubMed DOI

Wang Y., Sangaré L.O., Paredes-Santos T.C., Hassan M.A., Krishnamurthy S., Furuta A.M., Markus B.M., Lourido S., Saeij J.P.J. 2020: Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages. Nat. Commun. 11: 5258. PubMed DOI

Yao Y., Xu X.-H., Jin L. 2019: Macrophage polarization in physiological and pathological pregnancy. Front. Immunol. 10: 792. PubMed DOI

Yarovinsky F. 2008: Toll-like receptors and their role in host resistance to Toxoplasma gondii. Immunol. Lett. 119: 17-21. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...