Preconcentration and Separation of Gold Nanoparticles from Environmental Waters Using Extraction Techniques Followed by Spectrometric Quantification

. 2022 Sep 28 ; 23 (19) : . [epub] 20220928

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36232767

Grantová podpora
VEGA 1/0135/22 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
NPRP grant # NPRP13S-0123-200153 Qatar National Research Fund

The quantification of gold nanoparticles (AuNP) in environmental samples at ultratrace concentrations can be accurately performed by sophisticated and pricey analytical methods. This paper aims to challenge the analytical potential and advantages of cheaper and equally reliable alternatives that couple the well-established extraction procedures with common spectrometric methods. We discuss several combinations of techniques that are suitable for separation/preconcentration and quantification of AuNP in complex and challenging aqueous matrices, such as tap, river, lake, brook, mineral, and sea waters, as well as wastewaters. Cloud point extraction (CPE) has been successfully combined with electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICP-MS), chemiluminescence (CL), and total reflection X-ray fluorescence spectrometry (TXRF). The major advantage of this approach is the ability to quantify AuNP of different sizes and coatings in a sample with a volume in the order of milliliters. Small volumes of sample (5 mL), dispersive solvent (50 µL), and extraction agent (70 µL) were reported also for surfactant-assisted dispersive liquid-liquid microextraction (SA-DLLME) coupled with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The limits of detection (LOD) achieved using different combinations of methods as well as enrichment factors (EF) varied greatly, being 0.004-200 ng L-1 and 8-250, respectively.

Zobrazit více v PubMed

Pryshchepa O., Pomastowski P., Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv. Colloid Interface Sci. 2020;284:102246. doi: 10.1016/j.cis.2020.102246. PubMed DOI

Definition—Nanomaterials—Environment—European Commission. [(accessed on 20 February 2022)]. Available online: https://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm.

Alfieri A., Anantharaman S.B., Zhang H.Q., Jariwala D. Nanomaterials for quantum information science and engineering. Adv. Mater. 2022:2109621. doi: 10.1002/adma.202109621. PubMed DOI

Bilal M., Rasheed T., Mehmood S., Tang H.Z., Ferreira L.F.R., Bharagava R.N., Iqbal H.M.N. Mitigation of environmentally-related hazardous pollutants from water matrices using nanostructured materials—A review. Chemosphere. 2020;253:126770. doi: 10.1016/j.chemosphere.2020.126770. PubMed DOI

Hagarová I. Separation and quantification of metallic nanoparticles using cloud point extraction and spectrometric methods: A brief review of latest applications. Anal. Methods. 2017;9:3594–3601. doi: 10.1039/C7AY00953D. DOI

Majedi S.M., Lee H.K. Recent advances in the separation and quantification of metallic nanoparticles and ions in the environment. TrAC Trends Anal. Chem. 2016;75:183–196. doi: 10.1016/j.trac.2015.08.009. DOI

Yaqoob A.A., Ahmad H., Parveen T., Ahmad A., Oves M., Ismail I.M.I., Qari H.A., Umar K., Ibrahim M.N.M. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front. Chem. 2020;8:341. doi: 10.3389/fchem.2020.00341. PubMed DOI PMC

López-Serrano A., Olivas R.M., Landaluze J.S., Cámara C. Nanoparticles: A global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal. Methods. 2014;6:38–56. doi: 10.1039/C3AY40517F. DOI

Ogarev V.A., Rudoi V.M., Dementeva O.V. Gold nanoparticles: Synthesis, optical properties, and application. Inorg. Mater. Appl. Res. 2018;9:134–140. doi: 10.1134/S2075113318010197. DOI

Guo S.J., Wang E.K. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today. 2011;6:240–264. doi: 10.1016/j.nantod.2011.04.007. DOI

Saravanan A., Kumar P.S., Karishma S., Vo D.V.N., Jeevanantham S., Yaashikaa P.R., George C.S. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere. 2021;264:128580. doi: 10.1016/j.chemosphere.2020.128580. PubMed DOI

Cao S.W., Tao F., Tang Y., Li Y.T., Yu J.G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016;45:4747–4765. doi: 10.1039/C6CS00094K. PubMed DOI

Saha K., Agasti S.S., Kim C., Li X.N., Rotello V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012;112:2739–2779. doi: 10.1021/cr2001178. PubMed DOI PMC

Shah M., Fawcett D., Sharma S., Tripathy S.K., Poinern G.E.J. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8:7278–7308. doi: 10.3390/ma8115377. PubMed DOI PMC

Bai X., Wang Y.Y., Song Z.Y., Feng Y.M., Chen Y.Y., Zhang D.Y. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int. J. Mol. Sci. 2020;21:2480. doi: 10.3390/ijms21072480. PubMed DOI PMC

Das M., Shim K.H., An S.S.A., Yi D.K. Review on gold nanoparticles and their applications. Toxicol. Environ. Health Sci. 2011;3:193–205. doi: 10.1007/s13530-011-0109-y. DOI

Nooranian S., Mohammadinejad A., Mohajeri T., Aleyaghoob G., Kazemi Oskuee R. Biosensors based on aptamer-conjugated gold nanoparticles: A review. Biotechnol. Appl. Biochem. 2021;69:1517–1534. doi: 10.1002/bab.2224. PubMed DOI

Paidari S., Ibrahim S.A. Potential application of gold nanoparticles in food packaging: A mini review. Gold Bull. 2021;54:31–36. doi: 10.1007/s13404-021-00290-9. DOI

Chen F., Si P., de la Zerda A., Jokerst J.V., Myung D. Gold nanoparticles to enhance ophthalmic imaging. Biomater. Sci. 2021;9:367–390. doi: 10.1039/D0BM01063D. PubMed DOI PMC

Lipińska W., Grochowska K., Siuzdak K. Enzyme immobilization on gold nanoparticles for electrochemical glucose biosensors. Nanomaterials. 2021;11:1156. doi: 10.3390/nano11051156. PubMed DOI PMC

Luo D., Wang X., Burda C., Basilion J.P. Recent development of gold nanoparticles as contrast agents for cancer diagnosis. Cancers. 2021;13:1825. doi: 10.3390/cancers13081825. PubMed DOI PMC

Saleh T.A. Trends in the sample preparation and analysis of nanomaterials as environmental contaminants. Trends Environ. Anal. Chem. 2020;28:e00101. doi: 10.1016/j.teac.2020.e00101. DOI

Šebesta M., Kolenčík M., Matúš P., Kořenková L. Transport and distribution of engineered nanoparticles in soils and sediments. Chem. Listy. 2017;111:322–328.

Ma L.Y., Li Q.Y., Yu X., Jiang M., Xu L. Recent developments in the removal of metal-based engineered nanoparticles from the aquatic environments by adsorption. Chemosphere. 2022;291:133089. doi: 10.1016/j.chemosphere.2021.133089. PubMed DOI

Besha A.T., Liu Y., Fang C., Bekele D.N., Naidu R. Assessing the interactions between micropollutants and nanoparticles in engineered and natural aquatic environments. Crit. Rev. Environ. Sci. Technol. 2020;50:135–215. doi: 10.1080/10643389.2019.1629799. DOI

Sung H.K., Jo E., Kim E., Yoo S.K., Lee J.W., Kim P.J., Kim Y., Eom I.C. Analysis of gold and silver nanoparticles internalized by zebrafish (Danio rerio) using single particle-inductively coupled plasma-mass spectrometry. Chemosphere. 2018;209:815–822. doi: 10.1016/j.chemosphere.2018.06.149. PubMed DOI

Sani A., Cao C., Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021;26:100991. doi: 10.1016/j.bbrep.2021.100991. PubMed DOI PMC

Liu Y., He M., Chen B.B., Hu B. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2016;122:94–102. doi: 10.1016/j.sab.2016.04.009. DOI

Laborda F., Bolea E., Cepriá G., Gómez M.T., Jiménez M.S., Pérez-Arantegui J., Castillo J.R. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal. Chim. Acta. 2016;904:10–32. doi: 10.1016/j.aca.2015.11.008. PubMed DOI

Sýkora D., Kašička V., Mikšík I., Řezanka P., Záruba K., Matějka P., Král V. Application of gold nanoparticles in separation sciences. J. Sep. Sci. 2010;33:372–387. doi: 10.1002/jssc.200900677. PubMed DOI

Šebesta M., Matúš P. Separation, determination, and characterization of inorganic engineered nanoparticles in complex environmental samples. Chem. Listy. 2018;112:583–589.

Von der Kammer F., Ferguson P.L., Holden P.A., Masion A., Rogers K.R., Klaine S.J., Koelmans A.A., Horne N., Unrine J.M. Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 2012;31:32–49. doi: 10.1002/etc.723. PubMed DOI

Nemček L., Hagarová I. The recent strategies employed in chemical analysis of contaminated waters, sediments and soils as a part of the remediation process: Extraction. In: Prasad R., editor. Environmental Pollution and Remediation. Environmental and Microbial Biotechnology. Springer; Singapore: 2021. pp. 131–173.

Che D., Cheng J., Ji Z., Zhang S., Li G., Sun Z., You J. Recent advances and applications of polydopamine-derived adsorbents for sample pretreatment. TrAC Trends Anal. Chem. 2017;97:1–14. doi: 10.1016/j.trac.2017.08.002. DOI

Ibrahim A.S.A., Al-Farawati R., Hawas U., Shaban Y. Recent microextraction techniques for determination and chemical speciation of selenium. Open Chem. 2017;15:103–122. doi: 10.1515/chem-2017-0013. DOI

Werner J., Grześkowiak T., Zgoła-Grześkowiak A., Stanisz E. Recent trends in microextraction techniques used in determination of arsenic species. TrAC Trends Anal. Chem. 2018;105:121–136. doi: 10.1016/j.trac.2018.05.006. DOI

Campillo N., Gavazov K., Viñas P., Hagarová I., Andruch V. Liquid-phase microextraction: Update May 2016 to December 2018. Appl. Spectrosc. Rev. 2020;55:307–326. doi: 10.1080/05704928.2019.1604537. DOI

Gavazov K.B., Hagarová I., Halko R., Andruch V. Recent advances in the application of nanoparticles in cloud point extraction. J. Mol. Liq. 2019;281:93–99. doi: 10.1016/j.molliq.2019.02.071. DOI

Câmara J.S., Perestrelo R., Olayanju B., Berenguer C.V., Kabir A., Pereira J.A.M. Overview of different modes and applications of liquid phase-based microextraction techniques. Processes. 2022;10:1347. doi: 10.3390/pr10071347. DOI

López-Lorente A.I., Simonet B.M., Valcárcel M. Rapid analysis of gold nanoparticles in liver and river water samples. Analyst. 2012;137:3528–3534. doi: 10.1039/c2an35343a. PubMed DOI

He Z., Alexandridis P. Ionic liquid and nanoparticle hybrid systems: Emerging applications. Adv. Colloid Interface Sci. 2017;244:54–70. doi: 10.1016/j.cis.2016.08.004. PubMed DOI

Sajid M. Dispersive liquid-liquid microextraction: Evolution in design, application areas, and green aspects. Trac-Trends Anal. Chem. 2022;152:116636. doi: 10.1016/j.trac.2022.116636. DOI

Gharanjik R., Nassiri M., Hashemi H. Spectrophotometric determination of copper and nickel in marine brown algae after preconcentration with surfactant assisted dispersive liquid-liquid microextraction. Iran. J. Chem. Chem. Eng. 2020;39:117–126.

Sobhi H.R., Azadikhah E., Behbahani M., Esrafili A., Ghambarian M. Application of a surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for micro-volume based spectrophotometric determination of low level of Cr(VI) ions in aquatic samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018;202:36–40. doi: 10.1016/j.saa.2018.05.031. PubMed DOI

Dokpikul N., Chaiyasith W.C., Sananmuang R., Ampiah-Bonney R.J. Surfactant-assisted emulsification dispersive liquid-liquid microextraction using 2-thenoyltrifluoroacetone as a chelating agent coupled with electrothermal atomic absorption spectrometry for the speciation of chromium in water and rice samples. Food Chem. 2018;246:379–385. doi: 10.1016/j.foodchem.2017.11.050. PubMed DOI

Timofeeva I., Stepanova K., Bulatov A. In-a-syringe surfactant-assisted dispersive liquid-liquid microextraction of polycyclic aromatic hydrocarbons in supramolecular solvent from tea infusion. Talanta. 2021;224:121888. doi: 10.1016/j.talanta.2020.121888. PubMed DOI

Mammana S.B., Abraham E.D.C., Camargo A.B., Vázquez Á., Altamirano J.C. Enzymatic digestion coupled to surfactant-assisted dispersive liquid-liquid microextraction: A mild approach for determining polybrominated diphenyl ethers in human hair sample. Chemistryselect. 2020;5:2179–2184. doi: 10.1002/slct.201904795. DOI

Liu C., Liu Z., Wang M., Yang Y. Surfactant-assisted dispersive liquid–liquid micro-extraction combined with magnetic solid-phase extraction for analysis of polyphenols in tobacco samples. J. Iran. Chem. Soc. 2018;15:1561–1568. doi: 10.1007/s13738-018-1354-7. DOI

Hagarová I., Urík M. New approaches to the cloud point extraction: Utilizable for separation and preconcentration of trace metals. Curr. Anal. Chem. 2016;12:87–93. doi: 10.2174/1573411011666150601204931. DOI

Mandal S., Lahiri S. A review on extraction, preconcentration and speciation of metal ions by sustainable cloud point extraction. Microchem. J. 2022;175:107150. doi: 10.1016/j.microc.2021.107150. DOI

Liu J., Liu R., Yin Y., Jiang G. Triton X-114 based cloud point extraction: A thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase. Chem. Commun. 2009:1514–1516. doi: 10.1039/b821124h. PubMed DOI

Hartmann G., Schuster M. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry. Anal. Chim. Acta. 2013;761:27–33. doi: 10.1016/j.aca.2012.11.050. PubMed DOI

Tsogas G.Z., Giokas D.L., Vlessidis A.G. Ultratrace determination of silver, gold, and iron oxide nanoparticles by micelle mediated preconcentration/selective back-extraction coupled with flow injection chemiluminescence detection. Anal. Chem. 2014;86:3484–3492. doi: 10.1021/ac404071v. PubMed DOI

Bahadir Z., Torrent L., Hidalgo M., Marguí E. Simultaneous determination of silver and gold nanoparticles by cloud point extraction and total reflection X-ray fluorescence analysis. Spectrochim. Acta Part B At. Spectrosc. 2018;149:22–29. doi: 10.1016/j.sab.2018.07.016. DOI

El Hadri H., Hackley V.A. Investigation of cloud point extraction for the analysis of metallic nanoparticles in a soil matrix. Environ. Sci.–Nano. 2017;4:105–116. doi: 10.1039/C6EN00322B. PubMed DOI PMC

Mandyla S.P., Tsogas G.Z., Vlessidis A.G., Giokas D.L. Determination of gold nanoparticles in environmental water samples by second-order optical scattering using dithiotreitol-functionalized CdS quantum dots after cloud point extraction. J. Hazard. Mater. 2017;323:67–74. doi: 10.1016/j.jhazmat.2016.03.039. PubMed DOI

Benedé J.L., Giokas D.L., Chisvert A., Salvador A. In-situ suspended aggregate microextraction: A sample preparation approach for the enrichment of organic compounds in aqueous solutions. J. Chromatogr. A. 2015;1408:63–71. doi: 10.1016/j.chroma.2015.07.039. PubMed DOI

Choleva T.G., Kappi F.A., Tsogas G.Z., Vlessidis A.G., Giokas D.L. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry. Talanta. 2016;151:91–99. doi: 10.1016/j.talanta.2016.01.030. PubMed DOI

Medveď J., Bujdoš M., Matúš P., Kubová J. Determination of trace amounts of gold in acid-attacked environmental samples by atomic absorption spectrometry with electrothermal atomization after preconcentration. Anal. Bioanal. Chem. 2004;379:60–65. doi: 10.1007/s00216-004-2538-9. PubMed DOI

Medveď J., Matúš P., Bujdoš M., Kubová J. Gold and silver determination in waters by SPHERON® thiol 1000 preconcentration and ETAAS. Chem. Pap. 2006;60:27–31. doi: 10.2478/s11696-006-0005-0. DOI

Hagarová I., Nemček L. Application of metallic nanoparticles and their hybrids as innovative sorbents for separation and pre-concentration of trace elements by dispersive micro-solid phase extraction: A minireview. Front. Chem. 2021;9:672755. doi: 10.3389/fchem.2021.672755. PubMed DOI PMC

Zhang C., Xing H.F., Yang L.R., Fei P.F., Liu H.Z. Development trend and prospect of solid phase extraction technology. Chin. J. Chem. Eng. 2022;42:245–255. doi: 10.1016/j.cjche.2021.05.031. DOI

Li L., Leopold K., Schuster M. Effective and selective extraction of noble metal nanoparticles from environmental water through a noncovalent reversible reaction on an ionic exchange resin. Chem. Commun. 2012;48:9165–9167. doi: 10.1039/c2cc34838a. PubMed DOI

Li L., Leopold K. Ligand-assisted extraction for separation and preconcentration of gold nanoparticles from waters. Anal. Chem. 2012;84:4340–4349. doi: 10.1021/ac2034437. PubMed DOI

Zhang L., Chen B., He M., Liu X., Hu B. Hydrophilic polymer monolithic capillary microextraction online coupled to ICPMS for the determination of carboxyl group-containing gold nanoparticles in environmental waters. Anal. Chem. 2015;87:1789–1796. doi: 10.1021/ac503798c. PubMed DOI

Ścigalski P., Kosobucki P. Recent materials developed for dispersive solid phase extraction. Molecules. 2020;25:4869. doi: 10.3390/molecules25214869. PubMed DOI PMC

Choleva T.G., Giokas D.L. Application of dissolvable Mg/Al layered double hydroxides as an adsorbent for the dispersive solid phase extraction of gold nanoparticles prior to their determination by atomic absorption spectrometry. Anal. Methods. 2020;12:368–375. doi: 10.1039/C9AY02321F. DOI

Jesús Dueñas-Mas M., Laura Soriano M., Ruiz-Palomero C., Valcárcel M. Modified nanocellulose as promising material for the extraction of gold nanoparticles. Microchem. J. 2018;138:379–383. doi: 10.1016/j.microc.2018.01.035. DOI

Hagarová I. Magnetic solid phase extraction as a promising technique for fast separation of metallic nanoparticles and their ionic species: A review of recent advances. J. Anal. Methods Chem. 2020;2020:8847565. doi: 10.1155/2020/8847565. PubMed DOI PMC

Ricardo A.I.C., Abujaber F., Bernardo F.J.G., Martin-Doimeadios R.C.R., Rios A. Magnetic solid phase extraction as a valuable tool for elemental speciation analysis. Trends Environ. Anal. Chem. 2020;27:e00097. doi: 10.1016/j.teac.2020.e00097. DOI

Su S.W., Chen B.B., He M., Xiao Z.W., Hu B. A novel strategy for sequential analysis of gold nanoparticles and gold ions in water samples by combining magnetic solid phase extraction with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2014;29:444–453. doi: 10.1039/C3JA50342A. DOI

García-Figueroa A., Pena-Pereira F., Lavilla I., Bendicho C. Speciation of gold nanoparticles and total gold in natural waters: A novel approach based on naked magnetite nanoparticles in combination with ascorbic acid. Talanta. 2019;193:176–183. doi: 10.1016/j.talanta.2018.09.092. PubMed DOI

Application Note, Particle Size Analysis of Gold Nanoparticles. [(accessed on 8 February 2022)]. Available online: https://static.horiba.com/fileadmin/Horiba/Application/Materials/Chemical_Manufacturing/AN194_Particle_Size_Analysis_of_Gold_Nanoparticles.pdf.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...