Preconcentration and Separation of Gold Nanoparticles from Environmental Waters Using Extraction Techniques Followed by Spectrometric Quantification
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VEGA 1/0135/22
Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences
NPRP grant # NPRP13S-0123-200153
Qatar National Research Fund
PubMed
36232767
PubMed Central
PMC9570491
DOI
10.3390/ijms231911465
PII: ijms231911465
Knihovny.cz E-zdroje
- Klíčová slova
- environmental waters, extraction techniques, gold nanoparticles, quantification, separation, spectrometric methods,
- MeSH
- kovové nanočástice * MeSH
- odpadní voda MeSH
- povrchově aktivní látky MeSH
- rozpouštědla MeSH
- zlato * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- odpadní voda MeSH
- povrchově aktivní látky MeSH
- rozpouštědla MeSH
- zlato * MeSH
The quantification of gold nanoparticles (AuNP) in environmental samples at ultratrace concentrations can be accurately performed by sophisticated and pricey analytical methods. This paper aims to challenge the analytical potential and advantages of cheaper and equally reliable alternatives that couple the well-established extraction procedures with common spectrometric methods. We discuss several combinations of techniques that are suitable for separation/preconcentration and quantification of AuNP in complex and challenging aqueous matrices, such as tap, river, lake, brook, mineral, and sea waters, as well as wastewaters. Cloud point extraction (CPE) has been successfully combined with electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICP-MS), chemiluminescence (CL), and total reflection X-ray fluorescence spectrometry (TXRF). The major advantage of this approach is the ability to quantify AuNP of different sizes and coatings in a sample with a volume in the order of milliliters. Small volumes of sample (5 mL), dispersive solvent (50 µL), and extraction agent (70 µL) were reported also for surfactant-assisted dispersive liquid-liquid microextraction (SA-DLLME) coupled with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The limits of detection (LOD) achieved using different combinations of methods as well as enrichment factors (EF) varied greatly, being 0.004-200 ng L-1 and 8-250, respectively.
Zobrazit více v PubMed
Pryshchepa O., Pomastowski P., Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv. Colloid Interface Sci. 2020;284:102246. doi: 10.1016/j.cis.2020.102246. PubMed DOI
Definition—Nanomaterials—Environment—European Commission. [(accessed on 20 February 2022)]. Available online: https://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm.
Alfieri A., Anantharaman S.B., Zhang H.Q., Jariwala D. Nanomaterials for quantum information science and engineering. Adv. Mater. 2022:2109621. doi: 10.1002/adma.202109621. PubMed DOI
Bilal M., Rasheed T., Mehmood S., Tang H.Z., Ferreira L.F.R., Bharagava R.N., Iqbal H.M.N. Mitigation of environmentally-related hazardous pollutants from water matrices using nanostructured materials—A review. Chemosphere. 2020;253:126770. doi: 10.1016/j.chemosphere.2020.126770. PubMed DOI
Hagarová I. Separation and quantification of metallic nanoparticles using cloud point extraction and spectrometric methods: A brief review of latest applications. Anal. Methods. 2017;9:3594–3601. doi: 10.1039/C7AY00953D. DOI
Majedi S.M., Lee H.K. Recent advances in the separation and quantification of metallic nanoparticles and ions in the environment. TrAC Trends Anal. Chem. 2016;75:183–196. doi: 10.1016/j.trac.2015.08.009. DOI
Yaqoob A.A., Ahmad H., Parveen T., Ahmad A., Oves M., Ismail I.M.I., Qari H.A., Umar K., Ibrahim M.N.M. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front. Chem. 2020;8:341. doi: 10.3389/fchem.2020.00341. PubMed DOI PMC
López-Serrano A., Olivas R.M., Landaluze J.S., Cámara C. Nanoparticles: A global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal. Methods. 2014;6:38–56. doi: 10.1039/C3AY40517F. DOI
Ogarev V.A., Rudoi V.M., Dementeva O.V. Gold nanoparticles: Synthesis, optical properties, and application. Inorg. Mater. Appl. Res. 2018;9:134–140. doi: 10.1134/S2075113318010197. DOI
Guo S.J., Wang E.K. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today. 2011;6:240–264. doi: 10.1016/j.nantod.2011.04.007. DOI
Saravanan A., Kumar P.S., Karishma S., Vo D.V.N., Jeevanantham S., Yaashikaa P.R., George C.S. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere. 2021;264:128580. doi: 10.1016/j.chemosphere.2020.128580. PubMed DOI
Cao S.W., Tao F., Tang Y., Li Y.T., Yu J.G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016;45:4747–4765. doi: 10.1039/C6CS00094K. PubMed DOI
Saha K., Agasti S.S., Kim C., Li X.N., Rotello V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012;112:2739–2779. doi: 10.1021/cr2001178. PubMed DOI PMC
Shah M., Fawcett D., Sharma S., Tripathy S.K., Poinern G.E.J. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8:7278–7308. doi: 10.3390/ma8115377. PubMed DOI PMC
Bai X., Wang Y.Y., Song Z.Y., Feng Y.M., Chen Y.Y., Zhang D.Y. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int. J. Mol. Sci. 2020;21:2480. doi: 10.3390/ijms21072480. PubMed DOI PMC
Das M., Shim K.H., An S.S.A., Yi D.K. Review on gold nanoparticles and their applications. Toxicol. Environ. Health Sci. 2011;3:193–205. doi: 10.1007/s13530-011-0109-y. DOI
Nooranian S., Mohammadinejad A., Mohajeri T., Aleyaghoob G., Kazemi Oskuee R. Biosensors based on aptamer-conjugated gold nanoparticles: A review. Biotechnol. Appl. Biochem. 2021;69:1517–1534. doi: 10.1002/bab.2224. PubMed DOI
Paidari S., Ibrahim S.A. Potential application of gold nanoparticles in food packaging: A mini review. Gold Bull. 2021;54:31–36. doi: 10.1007/s13404-021-00290-9. DOI
Chen F., Si P., de la Zerda A., Jokerst J.V., Myung D. Gold nanoparticles to enhance ophthalmic imaging. Biomater. Sci. 2021;9:367–390. doi: 10.1039/D0BM01063D. PubMed DOI PMC
Lipińska W., Grochowska K., Siuzdak K. Enzyme immobilization on gold nanoparticles for electrochemical glucose biosensors. Nanomaterials. 2021;11:1156. doi: 10.3390/nano11051156. PubMed DOI PMC
Luo D., Wang X., Burda C., Basilion J.P. Recent development of gold nanoparticles as contrast agents for cancer diagnosis. Cancers. 2021;13:1825. doi: 10.3390/cancers13081825. PubMed DOI PMC
Saleh T.A. Trends in the sample preparation and analysis of nanomaterials as environmental contaminants. Trends Environ. Anal. Chem. 2020;28:e00101. doi: 10.1016/j.teac.2020.e00101. DOI
Šebesta M., Kolenčík M., Matúš P., Kořenková L. Transport and distribution of engineered nanoparticles in soils and sediments. Chem. Listy. 2017;111:322–328.
Ma L.Y., Li Q.Y., Yu X., Jiang M., Xu L. Recent developments in the removal of metal-based engineered nanoparticles from the aquatic environments by adsorption. Chemosphere. 2022;291:133089. doi: 10.1016/j.chemosphere.2021.133089. PubMed DOI
Besha A.T., Liu Y., Fang C., Bekele D.N., Naidu R. Assessing the interactions between micropollutants and nanoparticles in engineered and natural aquatic environments. Crit. Rev. Environ. Sci. Technol. 2020;50:135–215. doi: 10.1080/10643389.2019.1629799. DOI
Sung H.K., Jo E., Kim E., Yoo S.K., Lee J.W., Kim P.J., Kim Y., Eom I.C. Analysis of gold and silver nanoparticles internalized by zebrafish (Danio rerio) using single particle-inductively coupled plasma-mass spectrometry. Chemosphere. 2018;209:815–822. doi: 10.1016/j.chemosphere.2018.06.149. PubMed DOI
Sani A., Cao C., Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021;26:100991. doi: 10.1016/j.bbrep.2021.100991. PubMed DOI PMC
Liu Y., He M., Chen B.B., Hu B. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2016;122:94–102. doi: 10.1016/j.sab.2016.04.009. DOI
Laborda F., Bolea E., Cepriá G., Gómez M.T., Jiménez M.S., Pérez-Arantegui J., Castillo J.R. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal. Chim. Acta. 2016;904:10–32. doi: 10.1016/j.aca.2015.11.008. PubMed DOI
Sýkora D., Kašička V., Mikšík I., Řezanka P., Záruba K., Matějka P., Král V. Application of gold nanoparticles in separation sciences. J. Sep. Sci. 2010;33:372–387. doi: 10.1002/jssc.200900677. PubMed DOI
Šebesta M., Matúš P. Separation, determination, and characterization of inorganic engineered nanoparticles in complex environmental samples. Chem. Listy. 2018;112:583–589.
Von der Kammer F., Ferguson P.L., Holden P.A., Masion A., Rogers K.R., Klaine S.J., Koelmans A.A., Horne N., Unrine J.M. Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 2012;31:32–49. doi: 10.1002/etc.723. PubMed DOI
Nemček L., Hagarová I. The recent strategies employed in chemical analysis of contaminated waters, sediments and soils as a part of the remediation process: Extraction. In: Prasad R., editor. Environmental Pollution and Remediation. Environmental and Microbial Biotechnology. Springer; Singapore: 2021. pp. 131–173.
Che D., Cheng J., Ji Z., Zhang S., Li G., Sun Z., You J. Recent advances and applications of polydopamine-derived adsorbents for sample pretreatment. TrAC Trends Anal. Chem. 2017;97:1–14. doi: 10.1016/j.trac.2017.08.002. DOI
Ibrahim A.S.A., Al-Farawati R., Hawas U., Shaban Y. Recent microextraction techniques for determination and chemical speciation of selenium. Open Chem. 2017;15:103–122. doi: 10.1515/chem-2017-0013. DOI
Werner J., Grześkowiak T., Zgoła-Grześkowiak A., Stanisz E. Recent trends in microextraction techniques used in determination of arsenic species. TrAC Trends Anal. Chem. 2018;105:121–136. doi: 10.1016/j.trac.2018.05.006. DOI
Campillo N., Gavazov K., Viñas P., Hagarová I., Andruch V. Liquid-phase microextraction: Update May 2016 to December 2018. Appl. Spectrosc. Rev. 2020;55:307–326. doi: 10.1080/05704928.2019.1604537. DOI
Gavazov K.B., Hagarová I., Halko R., Andruch V. Recent advances in the application of nanoparticles in cloud point extraction. J. Mol. Liq. 2019;281:93–99. doi: 10.1016/j.molliq.2019.02.071. DOI
Câmara J.S., Perestrelo R., Olayanju B., Berenguer C.V., Kabir A., Pereira J.A.M. Overview of different modes and applications of liquid phase-based microextraction techniques. Processes. 2022;10:1347. doi: 10.3390/pr10071347. DOI
López-Lorente A.I., Simonet B.M., Valcárcel M. Rapid analysis of gold nanoparticles in liver and river water samples. Analyst. 2012;137:3528–3534. doi: 10.1039/c2an35343a. PubMed DOI
He Z., Alexandridis P. Ionic liquid and nanoparticle hybrid systems: Emerging applications. Adv. Colloid Interface Sci. 2017;244:54–70. doi: 10.1016/j.cis.2016.08.004. PubMed DOI
Sajid M. Dispersive liquid-liquid microextraction: Evolution in design, application areas, and green aspects. Trac-Trends Anal. Chem. 2022;152:116636. doi: 10.1016/j.trac.2022.116636. DOI
Gharanjik R., Nassiri M., Hashemi H. Spectrophotometric determination of copper and nickel in marine brown algae after preconcentration with surfactant assisted dispersive liquid-liquid microextraction. Iran. J. Chem. Chem. Eng. 2020;39:117–126.
Sobhi H.R., Azadikhah E., Behbahani M., Esrafili A., Ghambarian M. Application of a surfactant-assisted dispersive liquid-liquid microextraction method along with central composite design for micro-volume based spectrophotometric determination of low level of Cr(VI) ions in aquatic samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018;202:36–40. doi: 10.1016/j.saa.2018.05.031. PubMed DOI
Dokpikul N., Chaiyasith W.C., Sananmuang R., Ampiah-Bonney R.J. Surfactant-assisted emulsification dispersive liquid-liquid microextraction using 2-thenoyltrifluoroacetone as a chelating agent coupled with electrothermal atomic absorption spectrometry for the speciation of chromium in water and rice samples. Food Chem. 2018;246:379–385. doi: 10.1016/j.foodchem.2017.11.050. PubMed DOI
Timofeeva I., Stepanova K., Bulatov A. In-a-syringe surfactant-assisted dispersive liquid-liquid microextraction of polycyclic aromatic hydrocarbons in supramolecular solvent from tea infusion. Talanta. 2021;224:121888. doi: 10.1016/j.talanta.2020.121888. PubMed DOI
Mammana S.B., Abraham E.D.C., Camargo A.B., Vázquez Á., Altamirano J.C. Enzymatic digestion coupled to surfactant-assisted dispersive liquid-liquid microextraction: A mild approach for determining polybrominated diphenyl ethers in human hair sample. Chemistryselect. 2020;5:2179–2184. doi: 10.1002/slct.201904795. DOI
Liu C., Liu Z., Wang M., Yang Y. Surfactant-assisted dispersive liquid–liquid micro-extraction combined with magnetic solid-phase extraction for analysis of polyphenols in tobacco samples. J. Iran. Chem. Soc. 2018;15:1561–1568. doi: 10.1007/s13738-018-1354-7. DOI
Hagarová I., Urík M. New approaches to the cloud point extraction: Utilizable for separation and preconcentration of trace metals. Curr. Anal. Chem. 2016;12:87–93. doi: 10.2174/1573411011666150601204931. DOI
Mandal S., Lahiri S. A review on extraction, preconcentration and speciation of metal ions by sustainable cloud point extraction. Microchem. J. 2022;175:107150. doi: 10.1016/j.microc.2021.107150. DOI
Liu J., Liu R., Yin Y., Jiang G. Triton X-114 based cloud point extraction: A thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase. Chem. Commun. 2009:1514–1516. doi: 10.1039/b821124h. PubMed DOI
Hartmann G., Schuster M. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry. Anal. Chim. Acta. 2013;761:27–33. doi: 10.1016/j.aca.2012.11.050. PubMed DOI
Tsogas G.Z., Giokas D.L., Vlessidis A.G. Ultratrace determination of silver, gold, and iron oxide nanoparticles by micelle mediated preconcentration/selective back-extraction coupled with flow injection chemiluminescence detection. Anal. Chem. 2014;86:3484–3492. doi: 10.1021/ac404071v. PubMed DOI
Bahadir Z., Torrent L., Hidalgo M., Marguí E. Simultaneous determination of silver and gold nanoparticles by cloud point extraction and total reflection X-ray fluorescence analysis. Spectrochim. Acta Part B At. Spectrosc. 2018;149:22–29. doi: 10.1016/j.sab.2018.07.016. DOI
El Hadri H., Hackley V.A. Investigation of cloud point extraction for the analysis of metallic nanoparticles in a soil matrix. Environ. Sci.–Nano. 2017;4:105–116. doi: 10.1039/C6EN00322B. PubMed DOI PMC
Mandyla S.P., Tsogas G.Z., Vlessidis A.G., Giokas D.L. Determination of gold nanoparticles in environmental water samples by second-order optical scattering using dithiotreitol-functionalized CdS quantum dots after cloud point extraction. J. Hazard. Mater. 2017;323:67–74. doi: 10.1016/j.jhazmat.2016.03.039. PubMed DOI
Benedé J.L., Giokas D.L., Chisvert A., Salvador A. In-situ suspended aggregate microextraction: A sample preparation approach for the enrichment of organic compounds in aqueous solutions. J. Chromatogr. A. 2015;1408:63–71. doi: 10.1016/j.chroma.2015.07.039. PubMed DOI
Choleva T.G., Kappi F.A., Tsogas G.Z., Vlessidis A.G., Giokas D.L. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry. Talanta. 2016;151:91–99. doi: 10.1016/j.talanta.2016.01.030. PubMed DOI
Medveď J., Bujdoš M., Matúš P., Kubová J. Determination of trace amounts of gold in acid-attacked environmental samples by atomic absorption spectrometry with electrothermal atomization after preconcentration. Anal. Bioanal. Chem. 2004;379:60–65. doi: 10.1007/s00216-004-2538-9. PubMed DOI
Medveď J., Matúš P., Bujdoš M., Kubová J. Gold and silver determination in waters by SPHERON® thiol 1000 preconcentration and ETAAS. Chem. Pap. 2006;60:27–31. doi: 10.2478/s11696-006-0005-0. DOI
Hagarová I., Nemček L. Application of metallic nanoparticles and their hybrids as innovative sorbents for separation and pre-concentration of trace elements by dispersive micro-solid phase extraction: A minireview. Front. Chem. 2021;9:672755. doi: 10.3389/fchem.2021.672755. PubMed DOI PMC
Zhang C., Xing H.F., Yang L.R., Fei P.F., Liu H.Z. Development trend and prospect of solid phase extraction technology. Chin. J. Chem. Eng. 2022;42:245–255. doi: 10.1016/j.cjche.2021.05.031. DOI
Li L., Leopold K., Schuster M. Effective and selective extraction of noble metal nanoparticles from environmental water through a noncovalent reversible reaction on an ionic exchange resin. Chem. Commun. 2012;48:9165–9167. doi: 10.1039/c2cc34838a. PubMed DOI
Li L., Leopold K. Ligand-assisted extraction for separation and preconcentration of gold nanoparticles from waters. Anal. Chem. 2012;84:4340–4349. doi: 10.1021/ac2034437. PubMed DOI
Zhang L., Chen B., He M., Liu X., Hu B. Hydrophilic polymer monolithic capillary microextraction online coupled to ICPMS for the determination of carboxyl group-containing gold nanoparticles in environmental waters. Anal. Chem. 2015;87:1789–1796. doi: 10.1021/ac503798c. PubMed DOI
Ścigalski P., Kosobucki P. Recent materials developed for dispersive solid phase extraction. Molecules. 2020;25:4869. doi: 10.3390/molecules25214869. PubMed DOI PMC
Choleva T.G., Giokas D.L. Application of dissolvable Mg/Al layered double hydroxides as an adsorbent for the dispersive solid phase extraction of gold nanoparticles prior to their determination by atomic absorption spectrometry. Anal. Methods. 2020;12:368–375. doi: 10.1039/C9AY02321F. DOI
Jesús Dueñas-Mas M., Laura Soriano M., Ruiz-Palomero C., Valcárcel M. Modified nanocellulose as promising material for the extraction of gold nanoparticles. Microchem. J. 2018;138:379–383. doi: 10.1016/j.microc.2018.01.035. DOI
Hagarová I. Magnetic solid phase extraction as a promising technique for fast separation of metallic nanoparticles and their ionic species: A review of recent advances. J. Anal. Methods Chem. 2020;2020:8847565. doi: 10.1155/2020/8847565. PubMed DOI PMC
Ricardo A.I.C., Abujaber F., Bernardo F.J.G., Martin-Doimeadios R.C.R., Rios A. Magnetic solid phase extraction as a valuable tool for elemental speciation analysis. Trends Environ. Anal. Chem. 2020;27:e00097. doi: 10.1016/j.teac.2020.e00097. DOI
Su S.W., Chen B.B., He M., Xiao Z.W., Hu B. A novel strategy for sequential analysis of gold nanoparticles and gold ions in water samples by combining magnetic solid phase extraction with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2014;29:444–453. doi: 10.1039/C3JA50342A. DOI
García-Figueroa A., Pena-Pereira F., Lavilla I., Bendicho C. Speciation of gold nanoparticles and total gold in natural waters: A novel approach based on naked magnetite nanoparticles in combination with ascorbic acid. Talanta. 2019;193:176–183. doi: 10.1016/j.talanta.2018.09.092. PubMed DOI
Application Note, Particle Size Analysis of Gold Nanoparticles. [(accessed on 8 February 2022)]. Available online: https://static.horiba.com/fileadmin/Horiba/Application/Materials/Chemical_Manufacturing/AN194_Particle_Size_Analysis_of_Gold_Nanoparticles.pdf.