Homology Modeling, Molecular Docking, Molecular Dynamic Simulation, and Drug-Likeness of the Modified Alpha-Mangostin against the β-Tubulin Protein of Acanthamoeba Keratitis

. 2022 Sep 26 ; 27 (19) : . [epub] 20220926

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36234875

Grantová podpora
n/a New strategic research project (P2P) fiscal year 2022, Walailak University, Thailand

Acanthamoeba species are capable of causing amoebic keratitis (AK). As a monotherapy, alpha-mangostin is effective for the treatment of AK; however, its bioavailability is quite poor. Moreover, the efficacy of therapy is contingent on the parasite and virulent strains. To improve readiness against AK, it is necessary to find other derivatives with accurate target identification. Beta-tubulin (BT) has been used as a target for anti-Acanthamoeba (A. keratitis). In this work, therefore, a model of the BT protein of A. keratitis was constructed by homology modeling utilizing the amino acid sequence from NCBI (GenBank: JQ417907.1). Ramachandran Plot was responsible for validating the protein PDB. The verified BT PDB was used for docking with the specified ligand. Based on an improved docking score compared to alpha-mangostin (AM), two modified compounds were identified: 1,6-dihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C1) and 1,6-dihydroxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C2). In addition, molecular dynamics simulations were conducted to analyze the interaction characteristics of the two bound BT-new compound complexes. During simulations, the TRP9, ARG50, VAL52, and GLN122 residues of BT-C1 that align to the identical residues in BT-AM generate consistent hydrogen bond interactions with 0-3 and 0-2. However, the BT-C2 complex has a different binding site, TYR 258, ILE 281, and SER 302, and can form more hydrogen bonds in the range 0-4. Therefore, this study reveals that C1 and C2 inhibit BT as an additive or synergistic effect; however, further in vitro and in vivo studies are needed.

Zobrazit více v PubMed

Padzik M., Baltaza W., Conn D.B., Szaflik J.P., Chomicz L.J.A.O.A., Medicine E. Effect of povidone iodine, chlorhexidine digluconate and toyocamycin on amphizoic amoebic strains, infectious agents of Acanthamoeba keratitis–a growing threat to human health worldwide. Ann. Agric. Environ. Med. 2018;25:725–731. doi: 10.26444/aaem/99683. PubMed DOI

Khan N.A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 2006;30:564–595. doi: 10.1111/j.1574-6976.2006.00023.x. PubMed DOI

Niyyati M., Dodangeh S., Lorenzo-Morales J. A Review of the Current Research Trends in the Application of Medicinal Plants as a Source for Novel Therapeutic Agents Against Acanthamoeba Infections. Iran. J. Pharm. Res. IJPR. 2016;15:893–900. PubMed PMC

Tremblay M.R., Nevalainen M., Nair S.J., Porter J.R., Castro A.C., Behnke M.L., Yu L.-C., Hagel M., White K., Faia K., et al. Semisynthetic Cyclopamine Analogues as Potent and Orally Bioavailable Hedgehog Pathway Antagonists. J. Med. Chem. 2008;51:6646–6649. doi: 10.1021/jm8008508. PubMed DOI

Paddon C.J., Westfall P.J., Pitera D.J., Benjamin K., Fisher K., McPhee D., Leavell M.D., Tai A., Main A., Eng D., et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496:528–532. doi: 10.1038/nature12051. PubMed DOI

Henriquez Fiona L., Ingram Paul R., Muench Stephen P., Rice David W., Roberts Craig W. Molecular Basis for Resistance of Acanthamoeba Tubulins to All Major Classes of Antitubulin Compounds. Antimicrob. Agents Chemother. 2008;52:1133–1135. doi: 10.1128/AAC.00355-07. PubMed DOI PMC

Mungroo M.R., Khan N.A., Maciver S., Siddiqui R. Opportunistic free-living amoebal pathogens. Pathog. Glob. Health. 2022;116:70–84. doi: 10.1080/20477724.2021.1985892. PubMed DOI PMC

Dawson P.J., Gutteridge W.E., Gull K. A comparison of the interaction of anthelmintic benzimidazoles with tubulin isolated from mammalian tissue and the parasitic nematode Ascaridia galli. Biochem. Pharmacol. 1984;33:1069–1074. doi: 10.1016/0006-2952(84)90515-X. PubMed DOI

Ellis G.C., Phillips J.B., O’Rourke S., Lyczak R., Bowerman B. Maternally expressed and partially redundant β-tubulins in Caenorhabditis elegans are autoregulated. J. Cell Sci. 2004;117:457–464. doi: 10.1242/jcs.00869. PubMed DOI

Canta A., Chiorazzi A., Cavaletti G. Tubulin: A target for antineoplastic drugs into the cancer cells but also in the peripheral nervous system. Curr. Med. Chem. 2009;16:1315–1324. doi: 10.2174/092986709787846488. PubMed DOI

Fennell B.J., Naughton J.A., Dempsey E., Bell A. Cellular and molecular actions of dinitroaniline and phosphorothioamidate herbicides on Plasmodium falciparum: Tubulin as a specific antimalarial target. Mol. Biochem. Parasitol. 2006;145:226–238. doi: 10.1016/j.molbiopara.2005.08.020. PubMed DOI

Aleyasin H., Karuppagounder S.S., Kumar A., Sleiman S., Basso M., Ma T., Siddiq A., Chinta S.J., Brochier C., Langley B., et al. Antihelminthic Benzimidazoles Are Novel HIF Activators That Prevent Oxidative Neuronal Death via Binding to Tubulin. Antioxid. Redox Signal. 2014;22:121–134. doi: 10.1089/ars.2013.5595. PubMed DOI PMC

Chatterji B.P., Jindal B., Srivastava S., Panda D. Microtubules as antifungal and antiparasitic drug targets. Expert Opin. Ther. Pat. 2011;21:167–186. doi: 10.1517/13543776.2011.545349. PubMed DOI

Katiyar S.K., Gordon V.R., McLaughlin G.L., Edlind T.D. Antiprotozoal activities of benzimidazoles and correlations with beta-tubulin sequence. Antimicrob. Agents Chemother. 1994;38:2086–2090. doi: 10.1128/AAC.38.9.2086. PubMed DOI PMC

Ansori A.N.M., Fadholly A., Hayaza S., Susilo R.J.K., Inayatillah B., Winarni D., Husen S.A. A review on medicinal properties of mangosteen (Garcinia mangostana L.) Res. J. Pharm. Technol. 2020;13:974–982. doi: 10.5958/0974-360X.2020.00182.1. DOI

Ketsa S., Paull R.E. 1—Mangosteen (Garcinia mangostana L.) In: Yahia E.M., editor. Postharvest Biology and Technology of Tropical and Subtropical Fruits. Woodhead Publishing; Cambridge, UK: 2011. pp. 1–32e. DOI

Pedraza-Chaverri J., Cárdenas-Rodríguez N., Orozco-Ibarra M., Pérez-Rojas J.M. Medicinal properties of mangosteen (Garcinia mangostana) Food Chem. Toxicol. 2008;46:3227–3239. doi: 10.1016/j.fct.2008.07.024. PubMed DOI

Gutierrez-Orozco F., Thomas-Ahner J.M., Berman-Booty L.D., Galley J.D., Chitchumroonchokchai C., Mace T., Suksamrarn S., Bailey M.T., Clinton S.K., Lesinski G.B., et al. Dietary α-mangostin, a xanthone from mangosteen fruit, exacerbates experimental colitis and promotes dysbiosis in mice. Mol. Nutr. Food Res. 2014;58:1226–1238. doi: 10.1002/mnfr.201300771. PubMed DOI PMC

Cassileth B. Mangosteen (Garcinia mangostana) Oncology. 2011;2011:844. PubMed

Jung H.-A., Su B.-N., Keller W.J., Mehta R.G., Kinghorn A.D. Antioxidant Xanthones from the Pericarp of Garcinia mangostana (Mangosteen) J. Agric. Food Chem. 2006;54:2077–2082. doi: 10.1021/jf052649z. PubMed DOI

Gutierrez-Orozco F., Failla M.L. Biological Activities and Bioavailability of Mangosteen Xanthones: A Critical Review of the Current Evidence. Nutrients. 2013;5:3163–3183. doi: 10.3390/nu5083163. PubMed DOI PMC

Manimekalai I., Sivakumari K., Ashok K., Rajesh S.J. Antioxidant and anticancer potential of mangosteen fruit, Garcinia mangostana against hepatocellular carcinoma (HePG-2) cell line. World J. Pharm. Pharm. Sci. 2016;5:253–293.

Obolskiy D., Pischel I., Siriwatanametanon N., Heinrich M. Garcinia mangostana L.: A phytochemical and pharmacological review. Phytother. Res. 2009;23:1047–1065. doi: 10.1002/ptr.2730. PubMed DOI

Hemshekhar M., Sunitha K., Santhosh M.S., Devaraja S., Kemparaju K., Vishwanath B.S., Niranjana S.R., Girish K.S. An overview on genus garcinia: Phytochemical and therapeutical aspects. Phytochem. Rev. 2011;10:325–351. doi: 10.1007/s11101-011-9207-3. DOI

Nakatani K., Atsumi M., Arakawa T., Oosawa K., Shimura S., Nakahata N., Ohizumi Y. Inhibitions of Histamine Release and Prostaglandin E2 Synthesis by Mangosteen, a Thai Medicinal Plant. Biol. Pharm. Bull. 2002;25:1137–1141. doi: 10.1248/bpb.25.1137. PubMed DOI

Kasai K., Ito Y., Nitta A., Ariyoshi K., Nakamura T., Miura T. Metal coordination by L-amino acid oxidase derived from flounder Platichthys stellatus is structurally essential and regulates antibacterial activity. Appl. Microbiol. Biotechnol. 2020;104:9645–9654. doi: 10.1007/s00253-020-10914-3. PubMed DOI

Ma M., Stoyanova M., Rademacher G., Dutcher S.K., Brown A., Zhang R. Structure of the Decorated Ciliary Doublet Microtubule. Cell. 2019;179:909–922.e912. doi: 10.1016/j.cell.2019.09.030. PubMed DOI PMC

Studer G., Rempfer C., Waterhouse A.M., Gumienny R., Haas J., Schwede T. QMEANDisCo—Distance constraints applied on model quality estimation. Bioinformatics. 2020;36:1765–1771. doi: 10.1093/bioinformatics/btz828. PubMed DOI PMC

Hemmati S.A. Identification of novel antagonists of the ecdysone receptor from the desert locust (Schistocerca gregaria) by in silico modelling. Plant Prot. (Sci. J. Agric.) 2021;44:135–146.

Ongtanasup T., Prommee N., Jampa O., Limcharoen T., Wanmasae S., Nissapatorn V., Paul A.K., Pereira M.d.L., Wilairatana P., Nasongkla N., et al. The Cholesterol-Modulating Effect of the New Herbal Medicinal Recipe from Yellow Vine (Coscinium fenestratum (Goetgh.)), Ginger (Zingiber officinale Roscoe.), and Safflower (Carthamus tinctorius L.) on Suppressing PCSK9 Expression to Upregulate LDLR Expression in HepG2 Cells. Plants. 2022;11:1835. PubMed PMC

Ongtanasup T., Wanmasae S., Srisang S., Manaspon C., Net-anong S., Eawsakul K. In silico investigation of ACE2 and the main protease of SARS-CoV-2 with phytochemicals from Myristica fragrans (Houtt.) for the discovery of a novel COVID-19 drug. Saudi J. Biol. Sci. 2022;29:103389. doi: 10.1016/j.sjbs.2022.103389. PubMed DOI PMC

Eawsakul K., Panichayupakaranant P., Ongtanasup T., Warinhomhoun S., Noonong K., Bunluepuech K.J.H. Computational study and in vitro alpha-glucosidase inhibitory effects of medicinal plants from a Thai folk remedy. Heliyon. 2021;7:e08078. doi: 10.1016/j.heliyon.2021.e08078. PubMed DOI PMC

Pearson R.J. Hard and Soft Acids and Bases, Dowden, Hutchinson and Ross. Inorg Chem. 1993;26:250–255.

Lee L.-H. Correlation between Lewis Acid−Base Surface Interaction Components and Linear Solvation Energy Relationship Solvatochromic α and β Parameters. Langmuir. 1996;12:1681–1687. doi: 10.1021/la950725u. DOI

Zlatopolskiy B.D., Radzom M., Zeeck A., de Meijere A. Synthesis and Precursor-Directed Biosynthesis of New Hormaomycin Analogues. Eur. J. Org. Chem. 2006;2006:1525–1534. doi: 10.1002/ejoc.200500856. DOI

Akhtar R., Zahoor A.F., Rasool N., Ahmad M., Ali K.G. Recent trends in the chemistry of Sandmeyer reaction: A review. Mol. Divers. 2022;26:1837–1873. doi: 10.1007/s11030-021-10295-3. PubMed DOI PMC

Tang W., Keshipeddy S., Zhang Y., Wei X., Savoie J., Patel N.D., Yee N.K., Senanayake C.H. Efficient Monophosphorus Ligands for Palladium-Catalyzed Miyaura Borylation. Org. Lett. 2011;13:1366–1369. doi: 10.1021/ol2000556. PubMed DOI

Souto J.A., Stockman R.A., Ley S.V.J.O., Chemistry B. Development of a flow method for the hydroboration/oxidation of olefins. Org. Biomol. Chem. 2015;13:3871–3877. doi: 10.1039/C5OB00170F. PubMed DOI

Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC

Huang S.-H., Jong A.Y. Cellular mechanisms of microbial proteins contributing to invasion of the blood–brain barrier. Cell. Microbiol. 2001;3:277–287. doi: 10.1046/j.1462-5822.2001.00116.x. PubMed DOI

Chancellor M.B., Staskin D.R., Kay G.G., Sandage B.W., Oefelein M.G., Tsao J.W. Blood-Brain Barrier Permeation and Efflux Exclusion of Anticholinergics Used in the Treatment of Overactive Bladder. Drugs Aging. 2012;29:259–273. doi: 10.2165/11597530-000000000-00000. PubMed DOI

Kim R.B. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab. Rev. 2002;34:47–54. doi: 10.1081/DMR-120001389. PubMed DOI

Balimane P.V., Chong S. A combined cell based approach to identify P-glycoprotein substrates and inhibitors in a single assay. Int. J. Pharm. 2005;301:80–88. doi: 10.1016/j.ijpharm.2005.05.034. PubMed DOI

Testa B., Krämer S.D. The Biochemistry of Drug Metabolism—An Introduction. Chem. Biodivers. 2006;3:1053–1101. doi: 10.1002/cbdv.200690111. PubMed DOI

Hollenberg P.F. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab. Rev. 2002;34:17–35. doi: 10.1081/DMR-120001387. PubMed DOI

Kirchmair J., Göller A.H., Lang D., Kunze J., Testa B., Wilson I.D., Glen R.C., Schneider G. Predicting drug metabolism: Experiment and/or computation? Nat. Rev. Drug Discov. 2015;14:387–404. doi: 10.1038/nrd4581. PubMed DOI

Huang S.-M., Strong J.M., Zhang L., Reynolds K.S., Nallani S., Temple R., Abraham S., Habet S.A., Baweja R.K., Burckart G.J., et al. New Era in Drug Interaction Evaluation: US Food and Drug Administration Update on CYP Enzymes, Transporters, and the Guidance Process. J. Clin. Pharmacol. 2008;48:662–670. doi: 10.1177/0091270007312153. PubMed DOI

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI

Veber D.F., Johnson S.R., Cheng H.-Y., Smith B.R., Ward K.W., Kopple K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI

Egan W.J., Merz K.M., Baldwin J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000;43:3867–3877. doi: 10.1021/jm000292e. PubMed DOI

Siddiqui R., Aqeel Y., Khan N.A. The Development of Drugs against Acanthamoeba Infections. Antimicrob. Agents Chemother. 2016;60:6441–6450. doi: 10.1128/AAC.00686-16. PubMed DOI PMC

Schwede T., Kopp J.R., Guex N., Peitsch M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003;31:3381–3385. doi: 10.1093/nar/gkg520. PubMed DOI PMC

Benkert P., Künzli M., Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 2009;37:W510–W514. doi: 10.1093/nar/gkp322. PubMed DOI PMC

Kaplan W., Littlejohn T.G. Swiss-PDB Viewer (Deep View) Brief. Bioinform. 2001;2:195–197. doi: 10.1093/bib/2.2.195. PubMed DOI

Ramachandran S., Kota P., Ding F., Dokholyan N.V. Automated minimization of steric clashes in protein structures. Proteins Struct. Funct. Bioinform. 2011;79:261–270. doi: 10.1002/prot.22879. PubMed DOI PMC

Kota P., Ding F., Ramachandran S., Dokholyan N.V. Gaia: Automated quality assessment of protein structure models. Bioinformatics. 2011;27:2209–2215. doi: 10.1093/bioinformatics/btr374. PubMed DOI PMC

Amera G.M., Khan R.J., Pathak A., Kumar A., Singh A.K. Structure based in-silico study on UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase (MurE) from Acinetobacter baumannii as a drug target against nosocomial infections. Inform. Med. Unlocked. 2019;16:100216. doi: 10.1016/j.imu.2019.100216. DOI

Laskowski R., MacArthur M., Thornton J. PROCHECK: Validation of protein-structure coordinates. Int. Tables Crystallogr. 2006 in press .

Xu Y., Wang S., Hu Q., Gao S., Ma X., Zhang W., Shen Y., Chen F., Lai L., Pei J. CavityPlus: A web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res. 2018;46:W374–W379. doi: 10.1093/nar/gky380. PubMed DOI PMC

Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B.A., Thiessen P.A., Yu B., et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021;49:D1388–D1395. doi: 10.1093/nar/gkaa971. PubMed DOI PMC

Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC

Oda A., Takahashi O. Validation of ArgusLab Efficiencies for Binding Free Energy Calculations. Chem-Bio Inform. J. 2009;9:52–61. doi: 10.1273/cbij.9.52. DOI

Morris G.M., Goodsell D.S., Huey R., Hart W.E., Halliday S., Belew R., Olson A.J. Automated Docking of Flexible Ligands to Receptor-User Guide. The Scripps Research Institute, Molecular Graphics Laboratory, Department of Molecular Biology; La Jolla, CA, USA: 2001. AutoDock.

Biovia D.S. Discovery Studio Visualizer. BIOVIA; San Diego, CA, USA: 2017.

Loschen C., Klamt A. COSMOquick: A Novel Interface for Fast σ-Profile Composition and Its Application to COSMO-RS Solvent Screening Using Multiple Reference Solvents. Ind. Eng. Chem. Res. 2012;51:14303–14308. doi: 10.1021/ie3023675. DOI

Gautam L.K., Sharma P., Capalash N. Structural insight into substrate binding of Acinetobacter baumannii polyphosphate-AMP phosphotransferase (PPK2), a novel drug target. Biochem. Biophys. Res. Commun. 2022;626:107–113. doi: 10.1016/j.bbrc.2022.07.090. PubMed DOI

Bekker H., Berendsen H., Dijkstra E., Achterop S., Vondrumen R., VANDERSPOEL D., Sijbers A., Keegstra H., Renardus M. Gromacs-a parallel computer for molecular-dynamics simulations; Proceedings of the 4th International Conference on Computational Physics (PC 92); Annecy, France. 21–25 September 1992; pp. 252–256.

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Schüttelkopf A.W., Van Aalten D.M.F. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 2004;60:1355–1363. doi: 10.1107/S0907444904011679. PubMed DOI

Swamy P.M.G., Abbas N., Dhiwar P.S., Singh E., Ghara A., Das A. Discovery of potential Aurora-A kinase inhibitors by 3D QSAR pharmacophore modeling, virtual screening, docking, and MD simulation studies. J. Biomol. Struct. Dyn. 2021:1–22. doi: 10.1080/07391102.2021.2004236. PubMed DOI

Bode J.W. Reactor ChemAxon Ltd., Maramaros koz 2/a, Budapest, 1037 Hungary. www.chemaxon.com . Contact ChemAxon for pricing information. J. Am. Chem. Soc. 2004;126:15317. doi: 10.1021/ja040968l. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...