Effect of DNA methylation, modified by 5-azaC, on ecophysiological responses of a clonal plant to changing climate
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36241768
PubMed Central
PMC9568541
DOI
10.1038/s41598-022-22125-z
PII: 10.1038/s41598-022-22125-z
Knihovny.cz E-resources
- MeSH
- Azacitidine pharmacology MeSH
- Epigenesis, Genetic * MeSH
- Climate Change MeSH
- Humans MeSH
- DNA Methylation * MeSH
- Genes, Plant MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Azacitidine MeSH
Epigenetic regulation of gene expression is expected to be an important mechanism behind phenotypic plasticity. Whether epigenetic regulation affects species ecophysiological adaptations to changing climate remains largely unexplored. We compared ecophysiological traits between individuals treated with 5-azaC, assumed to lead to DNA demethylation, with control individuals of a clonal grass originating from and grown under different climates, simulating different directions and magnitudes of climate change. We linked the ecophysiological data to proxies of fitness. Main effects of plant origin and cultivating conditions predicted variation in plant traits, but 5-azaC did not. Effects of 5-azaC interacted with conditions of cultivation and plant origin. The direction of the 5-azaC effects suggests that DNA methylation does not reflect species long-term adaptations to climate of origin and species likely epigenetically adjusted to the conditions experienced during experiment set-up. Ecophysiology translated to proxies of fitness, but the intensity and direction of the relationships were context dependent and affected by 5-azaC. The study suggests that effects of DNA methylation depend on conditions of plant origin and current climate. Direction of 5-azaC effects suggests limited role of epigenetic modifications in long-term adaptation of plants. It rather facilitates fast adaptations to temporal fluctuations of the environment.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Institute of Botany Academy of Sciences of the Czech Republic Průhonice Czech Republic
See more in PubMed
Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA. 2005;102:8245–8250. doi: 10.1073/pnas.0409902102. PubMed DOI PMC
Fagundez J. Heathlands confronting global change: Drivers of biodiversity loss from past to future scenarios. Ann. Bot. 2013;111:151–172. doi: 10.1093/aob/mcs257. PubMed DOI PMC
Nicotra AB, et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010;15:684–692. doi: 10.1016/j.tplants.2010.09.008. PubMed DOI
Dubin MJ, et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife. 2015;4:25. doi: 10.7554/eLife.05255. PubMed DOI PMC
Herrera CM, Medrano M, Bazaga P. Comparative spatial genetics and epigenetics of plant populations: Heuristic value and a proof of concept. Mol. Ecol. 2016;25:1653–1664. doi: 10.1111/mec.13576. PubMed DOI
Richards CL, et al. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecol. Lett. 2017;20:1576–1590. doi: 10.1111/ele.12858. PubMed DOI
Münzbergová Z, Latzel V, Šurinová M, Hadincová V. DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos. 2019;128:124–134. doi: 10.1111/oik.05591. DOI
Thiebaut F, Hemerly AS, Ferreira PCG. A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Front. Plant Sci. 2019;10:25. doi: 10.3389/fpls.2019.00246. PubMed DOI PMC
Verhoeven KJF, Vonholdt BM, Sork VL. Epigenetics in ecology and evolution: What we know and what we need to know. Mol. Ecol. 2016;25:1631–1638. doi: 10.1111/mec.13617. PubMed DOI
Lisch D. How important are transposons for plant evolution? Nat. Rev. Genet. 2013;14:49–61. doi: 10.1038/nrg3374. PubMed DOI
Paszkowski J. Controlled activation of retrotransposition for plant breeding. Curr. Opin. Biotechnol. 2015;32:200–206. doi: 10.1016/j.copbio.2015.01.003. PubMed DOI
Becker C, et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature. 2011;480:245–U127. doi: 10.1038/nature10555. PubMed DOI
Schmitz RJ, et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science. 2011;334:369–373. doi: 10.1126/science.1212959. PubMed DOI PMC
Bossdorf O, Richards CL, Pigliucci M. Epigenetics for ecologists. Ecol. Lett. 2008;11:106–115. doi: 10.1111/j.1461-0248.2007.01130.x. PubMed DOI
Walsh MR, et al. Local adaptation in transgenerational responses to predators. Proc. R. Soc. B Biol. Sci. 2016 doi: 10.1098/rspb.2015.2271. PubMed DOI PMC
Foust CM, et al. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Mol. Ecol. 2016;25:1639–1652. doi: 10.1111/mec.13522. PubMed DOI
Gugger PF, Fitz-Gibbon S, Pellegrini M, Sork VL. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol. Ecol. 2016;25:1665–1680. doi: 10.1111/mec.13563. PubMed DOI
Herrera CM, Bazaga P. Untangling individual variation in natural populations: Ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol. Ecol. 2011;20:1675–1688. doi: 10.1111/j.1365-294X.2011.05026.x. PubMed DOI
Medrano M, Herrera CM, Bazaga P. Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb. Mol. Ecol. 2014;23:4926–4938. doi: 10.1111/mec.12911. PubMed DOI
Herrera CM, Medrano M, Bazaga P. Comparative epigenetic and genetic spatial structure of the perennial herb Helleborus foetidus: Isolation by environment, isolation by distance, and functional trait divergence. Am. J. Bot. 2017;104:1195–1204. doi: 10.3732/ajb.1700162. PubMed DOI
Sheldon EL, Schrey A, Andrew SC, Ragsdale A, Griffith SC. Epigenetic and genetic variation among three separate introductions of the house sparrow (Passer domesticus) into Australia. R. Soc. Open Sci. 2018 doi: 10.1098/rsos.172185. PubMed DOI PMC
Gaspar B, Bossdorf O, Durka W. Structure, stability and ecological significance of natural epigenetic variation: A large-scale survey in Plantago lanceolata. New Phytol. 2019;221:1585–1596. doi: 10.1111/nph.15487. PubMed DOI
Medrano M, Alonso C, Bazaga P, Lopez E, Herrera CM. Comparative genetic and epigenetic diversity in pairs of sympatric, closely related plants with contrasting distribution ranges in south-eastern Iberian mount. Aob Plants. 2020 doi: 10.1093/aobpla/plaa013. PubMed DOI PMC
Wang MZ, Li HL, Li JM, Yu FH. Correlations between genetic, epigenetic and phenotypic variation of an introduced clonal herb. Heredity. 2020;124:146–155. doi: 10.1038/s41437-019-0261-8. PubMed DOI PMC
Miryeganeh M, Saze H. Epigenetic inheritance and plant evolution. Popul. Ecol. 2020;62:17–27. doi: 10.1002/1438-390x.12018. DOI
Becklin KM, et al. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiol. 2016;172:635–649. doi: 10.1104/pp.16.00793. PubMed DOI PMC
Szymanska R, Slesak I, Orzechowska A, Kruk J. Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 2017;139:165–177. doi: 10.1016/j.envexpbot.2017.05.002. DOI
Agrawal AA, Erwin AC, Cook SC. Natural selection on and predicted responses of ecophysiological traits of swamp milkweed (Asclepias incarnata) J. Ecol. 2008;96:536–542. doi: 10.1111/j.1365-2745.2008.01365.x. DOI
Azhar A, Sathornkich J, Rattanawong R, Kasemsap P. Responses of chlorophyll fluorescence, stomatal conductance, and net photosynthesis rates of four rubber (Hevea brasiliensis) genotypes to drought. Adv. Rubber. 2014;844:11–14. doi: 10.4028/www.scientific.net/AMR.844.11. DOI
Bussotti F, Pancrazi M, Matteucci G, Gerosa G. Leaf morphology and chemistry in Fagus sylvatica (beech) trees as affected by site factors and ozone: Results from CONECOFOR permanent monitoring plots in Italy. Tree Physiol. 2005;25:211–219. doi: 10.1093/treephys/25.2.211. PubMed DOI
Carlson JE, Adams CA, Holsinger KE. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub. Ann. Bot. 2016;117:195–207. doi: 10.1093/aob/mcv146. PubMed DOI PMC
De Frenne P, et al. Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Glob. Change Biol. 2011;17:3240–3253. doi: 10.1111/j.1365-2486.2011.02449.x. DOI
Reinhardt K, Castanha C, Germino MJ, Kueppers LM. Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine. Tree Physiol. 2011;31:615–625. doi: 10.1093/treephys/tpr055. PubMed DOI
Yamori W, Hikosaka K, Way DA. Temperature response of photosynthesis in C-3, C-4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynth. Res. 2014;119:101–117. doi: 10.1007/s11120-013-9874-6. PubMed DOI
Stojanova B, et al. Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits. PLoS One. 2018 doi: 10.1371/journal.pone.0194670. PubMed DOI PMC
Han SK, Wagner D. Role of chromatin in water stress responses in plants. J. Exp. Bot. 2014;65:2785–2799. doi: 10.1093/jxb/ert403. PubMed DOI PMC
Han SK, Torii KU. Lineage-specific stem cells, signals and asymmetries during stomatal development. Development. 2016;143:1259–1270. doi: 10.1242/dev.127712. PubMed DOI
Torii KU. Stomatal differentiation: The beginning and the end. Curr. Opin. Plant Biol. 2015;28:16–22. doi: 10.1016/j.pbi.2015.08.005. PubMed DOI
Tricker PJ, Gibbings JG, Lopez CMR, Hadley P, Wilkinson MJ. Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. J. Exp. Bot. 2012;63:3799–3813. doi: 10.1093/jxb/ers076. PubMed DOI PMC
Vrablova M, Hronkova M, Vrabl D, Kubasek J, Santrucek J. Light intensity-regulated stomatal development in three generations of Lepidium sativum. Environ. Exp. Bot. 2018;156:316–324. doi: 10.1016/j.envexpbot.2018.09.012. DOI
Tricker PJ, Lopez CMR, Gibbings G, Hadley P, Wilkinson MJ. Transgenerational, dynamic methylation of stomata genes in response to low relative humidity. Int. J. Mol. Sci. 2013;14:6674–6689. doi: 10.3390/ijms14046674. PubMed DOI PMC
Puy J, et al. Improved demethylation in ecological epigenetic experiments: Testing a simple and harmless foliar demethylation application. Methods Ecol. Evol. 2018;9:744–753. doi: 10.1111/2041-210x.12903. DOI
Kosová V, Hájek T, Hadincová V, Münzbergová Z. The importance of ecophysiological traits in response of Festuca rubra to changing climate. Physiol. Plant. 2022;174:e13608. doi: 10.1111/ppl.13608. PubMed DOI
Maricle BR, Adler PB. Effects of precipitation on photosynthesis and water potential in Andropogon gerardii and Schizachyrium scoparium in a southern mixed grass prairie. Environ. Exp. Bot. 2011;72:223–231. doi: 10.1016/j.envexpbot.2011.03.011. DOI
Münzbergová Z, et al. Plant origin, but not phylogeny, drive species ecophysiological response to projected climate. Front. Plant Sci. 2020;11:400. doi: 10.3389/fpls.2020.00400. PubMed DOI PMC
Beerling DJ, Chaloner WG. The impact of atmospheric CO2 and temperature change on stomatal density—observations from Quercus robur lammas leaves. Ann. Bot. 1993;71:231–235. doi: 10.1006/anbo.1993.1029. DOI
Tang YL, et al. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 2007;143:629–638. doi: 10.1104/pp.106.090712. PubMed DOI PMC
Jahns P, Holzwarth AR. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BBA-Bioenerget. 2012;1817:182–193. doi: 10.1016/j.bbabio.2011.04.012. PubMed DOI
Baker NR, Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004;55:1607–1621. doi: 10.1093/jxb/erh196. PubMed DOI
Baker HG. In: The Genetics of Colonizing Species. Baker HG, Stebbins GL, editors. Academic Press; 1965. pp. 147–168.
Bartlett MK, et al. Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol. Lett. 2014;17:1580–1590. doi: 10.1111/ele.12374. PubMed DOI
Raven JA. Selection pressures on stomatal evolution. New Phytol. 2002;153:371–386. doi: 10.1046/j.0028-646X.2001.00334.x. PubMed DOI
Zhang FF, et al. Effects of CO2 enrichment on growth and development of Impatiens hawkeri. Sci. World J. 2012 doi: 10.1100/2012/601263. PubMed DOI PMC
Gonzalez APR, et al. Stress-induced memory alters growth of clonal off spring of white clover (Trifolium repens) Am. J. Bot. 2016;103:1567–1574. doi: 10.3732/ajb.1500526. PubMed DOI
Jones PA, Taylor SM, Wilson VL. Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res. 1983;84:202–211. PubMed
Meineri E, Skarpaas O, Spindelbock J, Bargmann T, Vandvik V. Direct and size-dependent effects of climate on flowering performance in alpine and lowland herbaceous species. J. Veg. Sci. 2014;25:275–286. doi: 10.1111/jvs.12062. DOI
Šurinová M, Hadincová V, Vandvik V, Münzbergová Z. Temperature and precipitation, but not geographic distance, explain genetic relatedness among populations in the perennial grass Festuca rubra. J. Plant Ecol. 2019;12:730–741. doi: 10.1093/jpe/rtz010. DOI
Münzbergová Z, Hadincová V, Skálová H, Vandvik V. Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. J. Ecol. 2017;105:1358–1373. doi: 10.1111/1365-2745.12762. DOI
Klanderud K, Vandvik V, Goldberg D. The importance of biotic vs abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS One. 2015;10:e0130205. doi: 10.1371/journal.pone.0130205. PubMed DOI PMC
Meineri E, Skarpaas O, Vandvik V. Modeling alpine plant distributions at the landscape scale: Do biotic interactions matter? Ecol. Model. 2012;231:1–10. doi: 10.1016/j.ecolmodel.2012.01.021. DOI
Meineri E, Spindelbock J, Vandvik V. Seedling emergence responds to both seed source and recruitment site climates: A climate change experiment combining transplant and gradient approaches. Plant Ecol. 2013;214:607–619. doi: 10.1007/s11258-013-0193-y. DOI
Vandvik V, Klanderud K, Meineri E, Maren IE, Topper J. Seed banks are biodiversity reservoirs: Species-area relationships above versus below ground. Oikos. 2016;125:218–228. doi: 10.1111/oik.02022. DOI
Stojanova B, et al. Evolutionary potential of a widespread clonal grass under changing climate. J. Evol. Biol. 2019;32:1057–1068. doi: 10.1111/jeb.13507. PubMed DOI
Osorio-Montalvo P, Saenz-Carbonell L, De-la-Pena C. 5-azacytidine: A promoter of epigenetic changes in the quest to improve plant somatic embryogenesis. Int. J. Mol. Sci. 2018;19:20. doi: 10.3390/ijms19103182. PubMed DOI PMC
Hurlbert SH. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 1984;54:187–211. doi: 10.2307/1942661. DOI
Münzbergová Z, Hadincová V. Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol. Evol. 2017;7:5236–5247. doi: 10.1002/ece3.3105. PubMed DOI PMC
Oksanen L. Logic of experiments in ecology: Is pseudoreplication a pseudoissue? Oikos. 2001;94:27–38. doi: 10.1034/j.1600-0706.2001.11311.x. DOI
Johnson SN, Gherlenda AN, Frew A, Ryalls JMW. The importance of testing multiple environmental factors in legume-insect research: Replication, reviewers, and rebuttal. Front. Plant Sci. 2016;7:489. doi: 10.3389/fpls.2016.00489. PubMed DOI PMC
Hurlbert SH. On misinterpretations of pseudoreplication and related matters: A reply to Oksanen. Oikos. 2004;104:591–597. doi: 10.1111/j.0030-1299.2004.12752.x. DOI
Scheepens JF, Stocklin J. Flowering phenology and reproductive fitness along a mountain slope: Maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides. Oecologia. 2013;171:679–691. doi: 10.1007/s00442-012-2582-7. PubMed DOI
Gugger S, Kesselring H, Stoecklin J, Hamann E. Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought. Ann. Bot. 2015;116:953–962. doi: 10.1093/aob/mcv155. PubMed DOI PMC
Bezemer TM, Thompson LJ, Jones TH. Poa annua shows inter-generational differences in response to elevated CO2. Glob. Change Biol. 1998;4:687–691. doi: 10.1046/j.1365-2486.1998.00184.x. DOI
Cavieres LA, Arroyo MTK. Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae)—altitudinal variation in the mediterranean Andes of central Chile. Plant Ecol. 2000;149:1–8. doi: 10.1023/a:1009802806674. DOI
Souther S, Lechowicz MJ, McGraw JB. Experimental test for adaptive differentiation of ginseng populations reveals complex response to temperature. Ann. Bot. 2012;110:829–837. doi: 10.1093/aob/mcs155. PubMed DOI PMC
Matias L, Jump AS. Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. J. Exp. Bot. 2014;65:299–310. doi: 10.1093/jxb/ert376. PubMed DOI PMC
Zhang HX, et al. Germination shifts of C-3 and C-4 species under simulated global warming scenario. PLoS One. 2014;9:e105139. doi: 10.1371/journal.pone.0105139. PubMed DOI PMC
Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—a practical guide. J. Exp. Bot.51, 659–668 (2000). PubMed
Ashraf M, Harris PJC. Photosynthesis under stressful environments: An overview. Photosynthetica. 2013;51:163–190. doi: 10.1007/s11099-013-0021-6. DOI
Majekova M, Martinkova J, Hajek T. Grassland plants show no relationship between leaf drought tolerance and soil moisture affinity, but rapidly adjust to changes in soil moisture. Funct. Ecol. 2019;33:774–785. doi: 10.1111/1365-2435.13312. DOI
Volis S, Ormanbekova D, Yermekbayev K, Song MS, Shulgina I. Multi-approaches analysis reveals local adaptation in the emmer wheat (Triticum dicoccoides) at macro—but not micro-geographical scale. PLoS One. 2015;10:19. doi: 10.1371/journal.pone.0121153. PubMed DOI PMC
Younginger BS, Sirova D, Cruzan MB, Ballhorn DJ. Is biomass a reliable estimate of plant fitness? Appl. Plant Sci. 2017 doi: 10.3732/apps.1600094. PubMed DOI PMC
R Development Core Team . Version 4.0.3 A language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2011.
Bossdorf O, Arcuri D, Richards CL, Pigliucci M. Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol. Ecol. 2010;24:541–553. doi: 10.1007/s10682-010-9372-7. DOI
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. & Wagner, H. (2020). vegan: Community Ecology Package. R package version 2.5-7.
Lande R, Arnold SJ. The measurement of selection on correlated characters. Evolution. 1983;37:1210–1226. doi: 10.2307/2408842. PubMed DOI
Rolhauser AG, Nordenstahl M, Aguiar MR, Pucheta E. Community-level natural selection modes: A quadratic framework to link multiple functional traits with competitive ability. J. Ecol. 2019;107:1457–1468. doi: 10.1111/1365-2745.13094. DOI
Yan WM, Zhong YQW, Shangguan ZP. Contrasting responses of leaf stomatal characteristics to climate change: A considerable challenge to predict carbon and water cycles. Glob. Change Biol. 2017;23:3781–3793. doi: 10.1111/gcb.13654. PubMed DOI
González APR, Dumalasová V, Rosenthal J, Skuhrovec J, Latzel V. The role of transgenerational effects in adaptation of clonal offspring of white clover (Trifolium repens) to drought and herbivory. Evol. Ecol. 2017;31:345–361. doi: 10.1007/s10682-016-9844-5. DOI
Shi W, et al. Transient stability of epigenetic population differentiation in a clonal invader. Front. Plant Sci. 2019 doi: 10.3389/fpls.2018.01851. PubMed DOI PMC
Quan J, Münzbergová Z, Latzel V. Time dynamics of stress legacy in clonal transgenerational effects: A case study on Trifolium repens. Ecol. Evol. 2022 doi: 10.1002/ece3.8959. PubMed DOI PMC
Harris CJ, et al. A DNA methylation reader complex that enhances gene transcription. Science. 2018;362:1182. doi: 10.1126/science.aar7854. PubMed DOI PMC
Zhang KR, Cheng XL, Shu X, Liu Y, Zhang QF. Linking soil bacterial and fungal communities to vegetation succession following agricultural abandonment. Plant Soil. 2018;431:19–36. doi: 10.1007/s11104-018-3743-1. DOI
Xiao XL, et al. A group of SUVH methyl-DNA binding proteins regulate expression of the DNA demethylase ROS1 in Arabidopsis. J. Integr. Plant Biol. 2019;61:110–119. doi: 10.1111/jipb.12768. PubMed DOI
Gallego-Bartolome J. DNA methylation in plants: Mechanisms and tools for targeted manipulation. New Phytol. 2020;227:38–44. doi: 10.1111/nph.16529. PubMed DOI
Wang ZW, Bossdorf O, Prati D, Fischer M, van Kleunen M. Transgenerational effects of land use on offspring performance and growth in Trifolium repens. Oecologia. 2016;180:409–420. doi: 10.1007/s00442-015-3480-6. PubMed DOI
Muir CD, Pease JB, Moyle LC. Quantitative genetic analysis indicates natural selection on leaf phenotypes across wild tomato species (Solanum sect. Lycopersicon; Solanaceae) Genetics. 2014;198:1629. doi: 10.1534/genetics.114.169276. PubMed DOI PMC
Ramirez-Valiente JA, et al. Natural selection and neutral evolutionary processes contribute to genetic divergence in leaf traits across a precipitation gradient in the tropical oak Quercus oleoides. Mol. Ecol. 2018;27:2176–2192. doi: 10.1111/mec.14566. PubMed DOI
Jueterbock A, et al. The seagrass methylome is associated with variation in photosynthetic performance among clonal shoots. Front. Plant Sci. 2020;11:19. doi: 10.3389/fpls.2020.571646. PubMed DOI PMC
Ganguly DR, Crisp PA, Eichten SR, Pogson BJ. The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiol. 2017;175:1893–1912. doi: 10.1104/pp.17.00744. PubMed DOI PMC
Ganguly DR, Crisp PA, Eichten SR, Pogson BJ. Maintenance of pre-existing DNA methylation states through recurring excess-light stress. Plant Cell Environ. 2018;41:1657–1672. doi: 10.1111/pce.13324. PubMed DOI
Nixon PJ, Michoux F, Yu JF, Boehm M, Komenda J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot. 2010;106:1–16. doi: 10.1093/aob/mcq059. PubMed DOI PMC
Perez TM, Feeley KJ. Photosynthetic heat tolerances and extreme leaf temperatures. Funct. Ecol. 2020;34:2236–2245. doi: 10.1111/1365-2435.13658. DOI
Kitayama K, Pattison R, Cordell S, Webb D, MuellerDombois D. Ecological and genetic implications of foliar polymorphism in Metrosideros polymorpha Gaud (Myrtaceae) in a habitat matrix on Mauna Loa, Hawaii. Ann. Bot. 1997;80:491–497. doi: 10.1006/anbo.1996.0473. DOI
Konopkova A, et al. Nucleotide polymorphisms associated with climate and physiological traits in silver fir (Abies alba Mill.) provenances. Flora. 2019;250:37–43. doi: 10.1016/j.flora.2018.11.012. DOI
Baer A, Wheeler JK, Pittermann J. Limited hydraulic adjustments drive the acclimation response of Pteridium aquilinum to variable light. Ann. Bot. 2020;125:691–700. doi: 10.1093/aob/mcaa006. PubMed DOI PMC
Hao XF, Jin ZP, Wang ZQ, Qin WS, Pei YX. Hydrogen sulfide mediates DNA methylation to enhance osmotic stress tolerance in Setaria italic L. Plant Soil. 2020;453:355–370. doi: 10.1007/s11104-020-04590-5. DOI
Colaneri AC, Jones AM. Genome-wide quantitative identification of DNA differentially methylated sites in Arabidopsis seedlings growing at different water potential. PLoS One. 2013;8:10. doi: 10.1371/journal.pone.0059878. PubMed DOI PMC
Becker C, Weigel D. Epigenetic variation: Origin and transgenerational inheritance. Curr. Opin. Plant Biol. 2012;15:562–567. doi: 10.1016/j.pbi.2012.08.004. PubMed DOI
Spens AE, Douhovnikoff V. Epigenetic variation within Phragmites australis among lineages, genotypes, and ramets. Biol. Invas. 2016;18:2457–2462. doi: 10.1007/s10530-016-1223-1. DOI
Herrera CM, Pozo MI, Bazaga P. Jack of all nectars, master of most: DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Mol. Ecol. 2012;21:2602–2616. doi: 10.1111/j.1365-294X.2011.05402.x. PubMed DOI
Herrera CM, Bazaga P. Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees. Bot. J. Linn. Soc. 2013;171:441–452. doi: 10.1111/boj.12007. DOI
Keller TE, Lasky JR, Yi SV. The multivariate association between genomewide DNA methylation and climate across the range of Arabidopsis thaliana. Mol. Ecol. 2016;25:1823–1837. doi: 10.1111/mec.13573. PubMed DOI
Madliger CL, Love OP, Hultine KR, Cooke SJ. The conservation physiology toolbox: Status and opportunities. Conserv. Physiol. 2018;6:16. doi: 10.1093/conphys/coy029. PubMed DOI PMC
Münzbergová Z, Haisel D. Effects of polyploidization on the contents of photosynthetic pigments are largely population-specific. Photosynth. Res. 2019;140:289–299. doi: 10.1007/s11120-018-0604-y. PubMed DOI
Balachandran S, et al. Concepts of plant biotic stress. Some insights into the stress physiology of virus-infected plants, from the perspective of photosynthesis. Physiol. Plant. 1997;100:203–213. doi: 10.1034/j.1399-3054.1997.1000201.x. DOI
Pavlíková Z, Holá D, Vlasáková B, Procházka T, Münzbergová Z. Physiological and fitness differences between cytotypes vary with stress in a grassland perennial herb. PLoS One. 2017 doi: 10.1371/journal.pone.0188795. PubMed DOI PMC
Zhang BB, Zhang H, Jing Q, Wang JX. Light pollution on the growth, physiology and chlorophyll fluorescence response of landscape plant perennial ryegrass (Lolium perenne L.) Ecol. Indic. 2020;115:9. doi: 10.1016/j.ecolind.2020.106448. DOI
Cameron DD, Geniez JM, Seel WE, Irving LJ. Suppression of host photosynthesis by the parasitic plant Rhinanthus minor. Ann. Bot. 2008;101:573–578. doi: 10.1093/aob/mcm324. PubMed DOI PMC
Molina-Montenegro MA, Salgado-Luarte C, Oses R, Torres-Diaz C. Is physiological performance a good predictor for fitness? Insights from an invasive plant species. PLoS One. 2013;8:9. doi: 10.1371/journal.pone.0076432. PubMed DOI PMC
dos Santos V, Ferreira MJ. Are photosynthetic leaf traits related to the first-year growth of tropical tree seedlings? A light-induced plasticity test in a secondary forest enrichment planting. For. Ecol. Manage. 2020;460:9. doi: 10.1016/j.foreco.2020.117900. DOI
Shi QW, et al. Phosphorus-fertilisation has differential effects on leaf growth and photosynthetic capacity of Arachis hypogaea L. Plant Soil. 2020;447:99–116. doi: 10.1007/s11104-019-04041-w. DOI
Madriaza K, Saldana A, Salgado-Luarte C, Escobedo VM, Gianoli E. Chlorophyll fluorescence may predict tolerance to herbivory. Int. J. Plant Sci. 2019;180:81–85. doi: 10.1086/700583. DOI
Franks PJ, Drake PL, Beerling DJ. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: An analysis using Eucalyptus globulus. Plant Cell Environ. 2009;32:1737–1748. doi: 10.1111/j.1365-3040.2009.002031.x. PubMed DOI
Belluau M, Shipley B. Linking hard and soft traits: Physiology, morphology and anatomy interact to determine habitat affinities to soil water availability in herbaceous dicots. PLoS One. 2018;13:25. doi: 10.1371/journal.pone.0193130. PubMed DOI PMC
Jerbi A, et al. High biomass yield increases in a primary effluent wastewater phytofiltration are associated to altered leaf morphology and stomatal size in Salix miyabeana. Sci. Total Environ. 2020;738:12. doi: 10.1016/j.scitotenv.2020.139728. PubMed DOI
Sakoda K, et al. Higher stomatal density improves photosynthetic induction and biomass production in Arabidopsis under fluctuating light. Front. Plant Sci. 2020;11:11. doi: 10.3389/fpls.2020.589603. PubMed DOI PMC
Liu JY, et al. Effect of summer warming on growth, photosynthesis and water status in female and male Populus cathayana: Implications for sex-specific drought and heat tolerances. Tree Physiol. 2020;40:1178–1191. doi: 10.1093/treephys/tpaa069. PubMed DOI
Griffin PT, Niederhuth CE, Schmitz RJ. A comparative analysis of 5-azacytidine- and zebularine-induced DNA demethylation. G3 Genes Genomes Genet. 2016;6:2773–2780. doi: 10.1534/g3.116.030262. PubMed DOI PMC
Zhang YX, et al. Application of 5-azacytidine induces DNA hypomethylation and accelerates dormancy release in buds of tree peony. Plant Physiol. Biochem. 2020;147:91–100. doi: 10.1016/j.plaphy.2019.12.010. PubMed DOI
Sammarco I, Muenzbergova Z, Latzel V. DNA methylation can mediate local adaptation and response to climate change in the clonal plant Fragaria vesca: Evidence from a European-scale reciprocal transplant experiment. Front. Plant Sci. 2022 doi: 10.3389/fpls.2022.827166. PubMed DOI PMC
Atighi MR, Verstraeten B, De Meyer T, Kyndt T. Genome-wide DNA hypomethylation shapes nematode pattern-triggered immunity in plants. New Phytol. 2020;227:545–558. doi: 10.1111/nph.16532. PubMed DOI PMC
Nowicka A, et al. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J. 2020;102:68–84. doi: 10.1111/tpj.14612. PubMed DOI
Christman JK. 5-Azacytidine and 5-aza-2 '-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21:5483–5495. doi: 10.1038/sj.onc.1205699. PubMed DOI
Issa JPJ, Kantarjian HM. Targeting DNA methylation. Clin. Cancer Res. 2009;15:3938–3946. doi: 10.1158/1078-0432.ccr-08-2783. PubMed DOI PMC
Amoah S, et al. A hypomethylated population of Brassica rapa for forward and reverse epi-genetics. BMC Plant Biol. 2012 doi: 10.1186/1471-2229-12-193. PubMed DOI PMC
McGuigan K, Hoffmann AA, Sgro CM. How is epigenetics predicted to contribute to climate change adaptation? What evidence do we need? Philos. Trans. R. Soc. B Biol. Sci. 2021;376:10. doi: 10.1098/rstb.2020.0119. PubMed DOI PMC
Sano H, Kamada I, Youssefian S, Katsumi M, Wabiko H. A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. Mol. Gen. Genet. 1990;220:441–447. doi: 10.1007/bf00391751. DOI
Kondo H, Ozaki H, Itoh K, Kato A, Takeno K. Flowering induced by 5-azacytidine, a DNA demethylating reagent in a short-day plant, Perilla frutescens var. crispa. Physiol. Plant. 2006;127:130–137. doi: 10.1111/j.1399-3054.2005.00635.x. DOI
Kumpatla SP, Hall TC. Longevity of 5-azacytidine-mediated gene expression and re-establishment of silencing in transgenic rice. Plant Mol. Biol. 1998;38:1113–1122. doi: 10.1023/a:1006071018039. PubMed DOI
Lira-Medeiros CF, et al. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One. 2010 doi: 10.1371/journal.pone.0010326. PubMed DOI PMC
Raj S, et al. Clone history shapes Populus drought responses. Proc. Natl. Acad. Sci. USA. 2011;108:12521–12526. doi: 10.1073/pnas.1103341108. PubMed DOI PMC
Richards CL, Schrey AW, Pigliucci M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 2012;15:1016–1025. doi: 10.1111/j.1461-0248.2012.01824.x. PubMed DOI
Platt A, Gugger PF, Pellegrini M, Sork VL. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations. Mol. Ecol. 2015;24:3823–3830. doi: 10.1111/mec.13230. PubMed DOI
Pfeifer GP. Mutagenesis at methylated CpG sequences. DNA Methyl. Basic Mech. 2006;301:259–281. doi: 10.1007/3-540-31390-7_10. PubMed DOI
Walsh CP, Xu GL. Cytosine methylation and DNA repair. DNA Methyl. Basic Mech. 2006;301:283–315. doi: 10.1007/3-540-31390-7_11. PubMed DOI