Effect of Mental Task on Sex Differences in Muscle Fatigability: A Review

. 2022 Oct 20 ; 19 (20) : . [epub] 20221020

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36294199

Previous research demonstrated that there are observable sex differences in developing muscle fatigue when mental task during fatiguing activity is present; however, there is no available review on this matter. Therefore, this review aimed to summarize the findings of previous studies investigating the effect of mental task on muscle fatigue in men and women. To conduct the review, we utilized searches using the electronic databases Web of Science, PubMed, Scopus, and EBSCO Cinahl Ultimate. The studies included had no limited publication date and examined the effects of mental task on muscle fatigue in a healthy adult population of any age. The evaluation was performed using the following criteria: time to failure, or subjective scale in various modifications (visual analog scale-VAS, rate of perceived effort-RPE, rate of perceived fatigue-RPF, rate of perceived discomfort-RPD). A total of seven studies met the set criteria, which were subsequently analyzed. Heavy mental task (more demanding math tasks) can reduce the time to failure for both men and women, with the reduction being more pronounced for women than for men. For light mental task (simple math tasks), no reduction in time to failure was observed to a great extent. The mental task in any of the included studies did not affect the subjective perception of fatigue, effort, discomfort, or pain. Although the studies investigating the effect of mental task on sex differences in muscle fatigability are limited, based on our findings we can assume that in jobs requiring heavier mental task, women may be more prone to the faster development of muscle fatigue; thus, employers might consider paying attention to the possibility of adequate rest.

Zobrazit více v PubMed

Wan J., Qin Z., Wang P., Sun Y., Liu X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017;49:384. doi: 10.1038/emm.2017.194. PubMed DOI PMC

Norheim K.B., Jonsson G., Omdal R. Biological mechanisms of chronic fatigue. Rheumatology. 2011;50:1009–1018. doi: 10.1093/rheumatology/keq454. PubMed DOI

Gruet M., Temesi J., Rupp T., Levy P., Millet G.Y., Verges S. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue. Neuroscience. 2013;231:384–399. doi: 10.1016/j.neuroscience.2012.10.058. PubMed DOI

Silverman M., Heim C.M., Nater U.M., Marques A.H., Sternberg E.M. Neuroendocrine and Immune Contributors to Fatigue. PM&R. 2010;2:338–346. PubMed PMC

Brown D.M.Y., Farias Zuniga A., Mulla D.M., Mendoca D., Keir P.J., Bray S.R. Investigating the Effects of Mental Fatigue on Resistance Exercise Performance. Int. J. Environ. Res. Public Health. 2021;18:6794. doi: 10.3390/ijerph18136794. PubMed DOI PMC

Hunter S.K., Enoka R.M. Sex differences in the fatigability of arm muscles depends on absolute force during isometric contractions. J. Appl. Physiol. 2001;91:2686–2694. doi: 10.1152/jappl.2001.91.6.2686. PubMed DOI

Clark B.C., Manini T.M., Thé D.T., Doldo N.A., Snyder L.L. Gender differences in skeletal muscle fatigability are related to contraction type and EMG spectral compression. J. Appl. Physiol. 2003;94:2263–2272. doi: 10.1152/japplphysiol.00926.2002. PubMed DOI

Senefeld J., Yoon T., Bement M.H., Hunter S.K. Fatigue and recovery from dynamic contractions in men and women differ for arm and leg muscles. Muscle Nerve. 2013;48:436–439. doi: 10.1002/mus.23836. PubMed DOI PMC

Temesi J., Arnal P.J., Rupp T. Are Females More Resistant to Extreme Neuromuscular Fatigue? Med. Sci. Sport. Exerc. 2015;47:1372–1382. doi: 10.1249/MSS.0000000000000540. PubMed DOI

Yoon T., Doyel R., WIdule C., Hunter S.K. Sex differences with aging in the fatigability of dynamic contractions. Exp. Gerontol. 2015;70:1–10. doi: 10.1016/j.exger.2015.07.001. PubMed DOI PMC

Gallagher S., Schall M.C. Musculoskeletal disorders as a fatigue failure process: Evidence, implications and research needs. Ergonomics. 2016;60:255–269. doi: 10.1080/00140139.2016.1208848. PubMed DOI

Hunt I. The prevalence and associated features of chronic widespread pain in the community using the ’Manchester’ definition of chronic widespread pain. Rheumatology. 1999;38:275–279. doi: 10.1093/rheumatology/38.3.275. PubMed DOI

Lundberg U. Psychophysiology of work: Task, gender, endocrine response, and work-related upper extremity disorders. Am. J. Ind. Med. 2002;41:383–392. doi: 10.1002/ajim.10038. PubMed DOI

Wijnhoven H.A.H., de Vet H.C.W., Picavet S.J.H. Explaining sex differences in chronic musculoskeletal pain in a general population. Pain. 2006;124:158–166. doi: 10.1016/j.pain.2006.04.012. PubMed DOI

Hunter S.K. Sex differences in human fatigability: Mechanisms and insight to physiological responses. Acta Physiol. 2014;210:768–789. doi: 10.1111/apha.12234. PubMed DOI PMC

Brown D.M.Y., Graham J.D., Innes K.I., Harris S., Flemington A., Bray S.R. Effects of prior cognitive exertion on physical performance: A systematic review and meta-analysis. Sport. Med. 2020;50:497–529. doi: 10.1007/s40279-019-01204-8. PubMed DOI

Van Cutsem J., Marcora S., De Pauw K., Bailey S., Meeusen B., Roelands B. The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sport. Med. 2017;47:1569–1588. doi: 10.1007/s40279-016-0672-0. PubMed DOI

Mehta R.K., Agnew M.J. Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work. Eur. J. Appl. Physiol. 2012;112:2891–2902. doi: 10.1007/s00421-011-2264-x. PubMed DOI

Mehta R.K., Nussbaum M.A., Agnew M.J. Muscle- and task-dependent responses to concurrent physical and mental workload during intermittent static work. Ergonomics. 2012;55:1166–1179. doi: 10.1080/00140139.2012.703695. PubMed DOI

Waersted M., Westgaard R.H. Attention-related muscle activity in different body regions during VDU work with minimal physical activity. Ergonomics. 1996;39:661–676. doi: 10.1080/00140139608964488. PubMed DOI

Srinivasan D., Mathiassen S.E., Hallman D.M., Samani A., Madeleine P., Lyskov E. Effects of concurrent physical and cognitive demands on muscle activity and heart rate variability in a repetitive upper-extremity precision task. Eur. J. Appl. Physiol. 2016;116:227–239. doi: 10.1007/s00421-015-3268-8. PubMed DOI

Yoon T., Keller M.L., De-Lap B.S., Harkins A., Lepers R., Hunter S.K. Sex differences in response to cognitive task during a fatiguing contraction. J. Appl. Physiol. 2009;107:1486–1496. doi: 10.1152/japplphysiol.00238.2009. PubMed DOI PMC

Lorist M.M., Kernell D., Meijman T.F., Zijdewind I. Motor fatigue and cognitive task performance in humans. J. Physiol. 2002;545:313–319. doi: 10.1113/jphysiol.2002.027938. PubMed DOI PMC

Morris A.J., Christie A.D. The Effect of Mental Fatigue on Neuromuscular Function is Similar in Young and Older Women. Brain Sci. 2020;10:2076–3425. doi: 10.3390/brainsci10040191. PubMed DOI PMC

Gurubhagavatula I., Barger L.K., Barnes C.M. Guiding principles for determining work shift duration and addressing the effects of work shift duration on performance, safety, and health: Guidance from the American Academy of Sleep Medicine and the Sleep Research Society. J. Clin. Sleep Med. 2021;17:2283–2306. doi: 10.5664/jcsm.9512. PubMed DOI PMC

Hunter S.K. Performance Fatigability: Mechanisms and Task Specificity. Cold Spring Harb. Perspect. Med. 2018;8:a029728. doi: 10.1101/cshperspect.a029728. PubMed DOI PMC

Thomas G.D., Segal S.S. Neural control of muscle blood flow during exercise. J. Appl. Physiol. 2004;97:731–738. doi: 10.1152/japplphysiol.00076.2004. PubMed DOI

Wohlgemuth K.J., Arieta L.R., Brewer G.J., Hoselton A.L., Gould L.M., Smith-Ryan A.E. Sex differences and considerations for female specific nutritional strategies: A narrative review. J. Int. Soc. Sport. Nutr. 2021;18:1550–2783. doi: 10.1186/s12970-021-00422-8. PubMed DOI PMC

Moher D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009;151:0003–4819. doi: 10.7326/0003-4819-151-4-200908180-00135. PubMed DOI

Keller-Ross M.L., Pereira H.M., Pruse J., Yoon T., Schlinder-Delap B., Nielson K.A., Hunter S.K. Taskor-induced increase in muscle fatigability of young men and women is predicted by strength but not voluntary activation. J. Appl. Physiol. 2014;116:767–778. doi: 10.1152/japplphysiol.01129.2013. PubMed DOI PMC

Pereira H.M., Spears V.C., Schlinder-Delap B., Yoon T., Harkins A., Nielson K.A., Bement M.H., Hunter S.K. Sex Differences in Arm Muscle Fatigability with Cognitive Demand in Older Adults. Clin. Orthop. Relat. Res. 2015;473:2568–2577. doi: 10.1007/s11999-015-4205-1. PubMed DOI PMC

Shortz A.E., Pickens A., Zheng Q., Mehta R.K. The effect of cognitive fatigue on prefrontal cortex correlates of neuromuscular fatigue in older women. J. NeuroEng. Rehabil. 2015;12:1–10. doi: 10.1186/s12984-015-0108-3. PubMed DOI PMC

Vanden Noven M.L., Pereira H.M., Yoon T., Stevens A.A., Nielson K.A., Hunter S.K. Motor Variability during Sustained Contractions Increases with Cognitive Demand in Older Adults. Front. Aging Neurosci. 2014;6:97. doi: 10.3389/fnagi.2014.00097. PubMed DOI PMC

Roatta S., Arendt-Nielsen L., Farina D. Sympathetic-induced changes in discharge rate and spike-triggered average twitch torque of low-threshold motor units in humans. J. Physiol. 2008;586:5561–5574. doi: 10.1113/jphysiol.2008.160770. PubMed DOI PMC

Gandevia S.C. Spinal and Supraspinal Factors in Human Muscle Fatigue. Physiol. Rev. 2001;81:1725–1789. doi: 10.1152/physrev.2001.81.4.1725. PubMed DOI

Allman B.L., Rice C.L. Neuromuscular fatigue and aging: Central and peripheral factors. Muscle Nerve. 2002;25:785–796. doi: 10.1002/mus.10116. PubMed DOI

Enoka R.M., Duchateau J. Muscle fatigue: What, why and how it influences muscle function. J. Physiol. 2008;586:11–23. doi: 10.1113/jphysiol.2007.139477. PubMed DOI PMC

Hill C.A., Thompson M.W., Ruell P.A., Thom J.M., White M.J. Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. J. Physiol. 2001;531:871–878. doi: 10.1111/j.1469-7793.2001.0871h.x. PubMed DOI PMC

Donatelli R. Sports-Specific Rehabilitation. Churchill Livingstone; London, UK: 2007.

Hunter S.K., Critchlow A., Shin I.S., Enoka R.M. Fatigability of the elbow flexor muscles for a sustained submaximal contraction is similar in men and women matched for strength. J. Appl. Physiol. 2004;96:195–202. doi: 10.1152/japplphysiol.00893.2003. PubMed DOI

Li P., Yang X., Yin G., Guo J. Skeletal Muscle Fatigue State Evaluation with Ultrasound Image Entropy. Ultrason. Imaging. 2020;42:235–244. doi: 10.1177/0161734620952683. PubMed DOI

Adam A., De Luca C.J. Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions. J. Appl. Physiol. 2005;99:268–280. doi: 10.1152/japplphysiol.01344.2004. PubMed DOI

González-Izal M., Malanda A., Gorostiaga E., Izquierdo M. Electromyographic models to assess muscle fatigue. J. Electromyogr. Kinesiol. 2012;22:501–512. doi: 10.1016/j.jelekin.2012.02.019. PubMed DOI

Behm D.G., Alizadeh S., Hadjizedah Anvar S. Non-local Muscle Fatigue Effects on Muscle Strength, Power, and Endurance in Healthy Individuals: A Systematic Review with Meta-analysis. Sport. Med. 2021;51:1893–1907. doi: 10.1007/s40279-021-01456-3. PubMed DOI

Boyas S., Guével A. Neuromuscular fatigue in healthy muscle: Underlying factors and adaptation mechanisms. Ann. Phys. Rehabil. Med. 2011;54:88–108. doi: 10.1016/j.rehab.2011.01.001. PubMed DOI

Meeusen R., Watson P., Hasegawa H., Roelands B., Piacentini M.F. Central Fatigue. Sport. Med. 2006;36:881–909. doi: 10.2165/00007256-200636100-00006. PubMed DOI

Vollestad N.K. Measurement of human muscle fatigue. J. Neurosci. Methods. 1997;74:219–227. doi: 10.1016/S0165-0270(97)02251-6. PubMed DOI

Williams C., Ratel S. Human Muscle Fatigue. 1st ed. Routledge; London, UK: 2009.

Hunter S.K. The Relevance of Sex Differences in Performance Fatigability. Med. Sci. Sport. Exerc. 2016;48:2247–2256. doi: 10.1249/MSS.0000000000000928. PubMed DOI PMC

Russ D.W., Lanza I.R., Rothman D., Kent-Braun J.A. Sex differences in glycolysis during brief, intense isometric contractions. Muscle Nerve. 2005;32:647–655. doi: 10.1002/mus.20396. PubMed DOI

Sundberg C.W., Fitts R.H. Bioenergetic basis of skeletal muscle fatigue. Curr. Opin. Physiol. 2019;10:118–127. doi: 10.1016/j.cophys.2019.05.004. PubMed DOI PMC

Whittaker R.L., Sonne M.W., Potvin J.R. Ratings of perceived fatigue predict fatigue induced declines in muscle strength during tasks with different distributions of effort and recovery. J. Electromyogr. Kinesiol. 2019;47:88–95. doi: 10.1016/j.jelekin.2019.05.012. PubMed DOI

Frey Law L.A., Lee J.E., McMullen T.R., Xia T. Relationships between maximum holding time and ratings of pain and exertion differ for static and dynamic tasks. Appl. Ergon. 2010;42:9–15. doi: 10.1016/j.apergo.2010.03.007. PubMed DOI PMC

Rashedi E., Nussbaum M.A. Cycle time influences the development of muscle fatigue at low to moderate levels of intermittent muscle contraction. J. Electromyogr. Kinesiol. 2016;28:37–45. doi: 10.1016/j.jelekin.2016.03.001. PubMed DOI

Rose L.M., Neumann W.P., Hägg G.M., Kenttä G. Fatigue and recovery during and after static loading. Ergonomics. 2014;57:1696–1710. doi: 10.1080/00140139.2014.952347. PubMed DOI

Micklewright D., St Clair Gibson A., Gladwell V., Al Salman A. Development and Validity of the Rating-of-Fatigue Scale. Sport. Med. 2017;47:2375–2393. doi: 10.1007/s40279-017-0711-5. PubMed DOI PMC

Enoka R.M., Duchateau J. Translating Fatigue to Human Performance. Med. Sci. Sport. Exerc. 2016;48:2228–2238. doi: 10.1249/MSS.0000000000000929. PubMed DOI PMC

Albert W.J., Wrigley A.T., McLean R.B., Sleivert G.G. A differences in the rate of fatigue development and recovery. Dyn. Med. 2006;5:2. doi: 10.1186/1476-5918-5-2. PubMed DOI PMC

Fulco C.S., Rock P.B., Muza S.R., Lammi E., Cymerman A., Butterfield G., Moore L.G., Braun B., Lewis S.F. Slower fatigue and faster recovery of the adductor pollicis muscle in women matched for strength with men. Acta Physiol. Scand. 1999;167:233–239. doi: 10.1046/j.1365-201x.1999.00613.x. PubMed DOI

Laurent C.M., Green C.M., Bishop P.A., Sjökvist J., Schumacker R.E., Richardson M.T., Curtner-Smith M. Effect of gender on fatigue and recovery following maximal intensity repeated sprint performance. J. Sport. Med. Phys. Fit. 2010;50:243–253. PubMed

Billaut F., Bishop D.J. Muscle Fatigue in Males and Females during Multiple-Sprint Exercise. Sport. Med. 2009;39:257–278. doi: 10.2165/00007256-200939040-00001. PubMed DOI

Billaut F., Bishop D.J. Mechanical work accounts for sex differences in fatigue during repeated sprints. Eur. J. Appl. Physiol. 2012;112:1429–1436. doi: 10.1007/s00421-011-2110-1. PubMed DOI

Glace B.W., Kremenic I.J., McHugh M.P. Sex differences in central and peripheral mechanisms of fatigue in cyclists. Eur. J. Appl. Physiol. 2013;113:1091–1098. doi: 10.1007/s00421-012-2516-4. PubMed DOI

Salomoni S., Soares F.A., De Oliveira Nascimento F.A., Da Rocha A.F. Gender differences in muscle fatigue of the biceps brachii and influences of female menstrual cycle in electromyography variables; Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Vancouver, BC, Canada. 20–25 August 2008; pp. 2598–2601. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...