The Human Mycobiome: Colonization, Composition and the Role in Health and Disease
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
APVV-17-0505
Slovak Research and Development Agency
APVV-21-0370
Slovak Research and Development Agency
VEGA 1/0649/21
Ministry of Education, Science, Research and Sport of the Slovak Republic
PubMed
36294611
PubMed Central
PMC9605233
DOI
10.3390/jof8101046
PII: jof8101046
Knihovny.cz E-resources
- Keywords
- colonization, composition, dysbiosis, fungi, genitourinary tract mycobiome, gut mycobiome, oral mycobiome, respiratory tract mycobiome, skin mycobiome,
- Publication type
- Journal Article MeSH
- Review MeSH
The mycobiome is the fungal component of the human microbial ecosystem that represents only a small part of this environment but plays an essential role in maintaining homeostasis. Colonization by fungi begins immediately after birth. The initial mycobiome is influenced by the gestational age of a newborn, birth weight, delivery method and feeding method. During a human's life, the composition of the mycobiome is further influenced by a large number of endogenous and exogenous factors. The most important factors are diet, body weight, age, sex and antibiotic and antifungal therapy. The human mycobiome inhabits the oral cavity, gastrointestinal tract, respiratory tract, urogenital tract and skin. Its composition can influence the gut-brain axis through immune and non-immune mediated crosstalk systems. It also interacts with other commensals of the ecosystem through synergistic and antagonistic relationships. Moreover, colonization of the gut by opportunistic fungal pathogens in immunocompromised individuals can lead to clinically relevant disease states. Thus, the mycobiome represents an essential part of the microbiome associated with a variety of physiological and pathological processes. This review summarizes the current knowledge on the composition of the mycobiome in specific sites of the human body and its role in health and disease.
See more in PubMed
Matijasic M., Mestrovic T., Paljetak H.C., Peric M., Baresic A., Verbanac D. Gut Microbiota beyond Bacteria-Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD. Int. J. Mol. Sci. 2020;21:2668. doi: 10.3390/ijms21082668. PubMed DOI PMC
Hawksworth D.L., Lücking R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol. Spectr. 2017;5:4. doi: 10.1128/microbiolspec.FUNK-0052-2016. PubMed DOI PMC
Seed P.C. The Human Mycobiome. Cold Spring Harb. Perspect. Med. 2015;5:a019810. doi: 10.1101/cshperspect.a019810. PubMed DOI PMC
Gouba N., Drancourt M. Digestive Tract Mycobiota: A Source of Infection. Médecine Et Mal. Infect. 2015;45:9–16. doi: 10.1016/j.medmal.2015.01.007. PubMed DOI
Underhill D.M., Iliev I.D. The Mycobiota: Interactions between Commensal Fungi and the Host Immune System. Nat. Rev. Immunol. 2014;14:405–416. doi: 10.1038/nri3684. PubMed DOI PMC
Santus W., Devlin J.R., Behnsen J. Crossing Kingdoms: How the Mycobiota and Fungal-Bacterial Interactions Impact Host Health and Disease. Infect. Immun. 2021;89:e00648–20. doi: 10.1128/IAI.00648-20. PubMed DOI PMC
Ghannoum M.A., Jurevic R.J., Mukherjee P.K., Cui F., Sikaroodi M., Naqvi A., Gillevet P.M. Characterization of the Oral Fungal Microbiome (Mycobiome) in Healthy Individuals. PLoS Pathog. 2010;6:e1000713. doi: 10.1371/journal.ppat.1000713. PubMed DOI PMC
Drell T., Lillsaar T., Tummeleht L., Simm J., Aaspõllu A., Väin E., Saarma I., Salumets A., Donders G.G.G., Metsis M. Characterization of the Vaginal Micro- and Mycobiome in Asymptomatic Reproductive-Age Estonian Women. PLoS ONE. 2013;8:e54379. doi: 10.1371/journal.pone.0054379. PubMed DOI PMC
Oh J., Freeman A.F., NISC Comparative Sequencing Program. Park M., Sokolic R., Candotti F., Holland S.M., Segre J.A., Kong H.H. The Altered Landscape of the Human Skin Microbiome in Patients with Primary Immunodeficiencies. Genome Res. 2013;23:2103–2114. doi: 10.1101/gr.159467.113. PubMed DOI PMC
van Woerden H.C., Gregory C., Brown R., Marchesi J.R., Hoogendoorn B., Matthews I.P. Differences in Fungi Present in Induced Sputum Samples from Asthma Patients and Non-Atopic Controls: A Community Based Case Control Study. BMC Infect. Dis. 2013;13:69. doi: 10.1186/1471-2334-13-69. PubMed DOI PMC
Nash A.K., Auchtung T.A., Wong M.C., Smith D.P., Gesell J.R., Ross M.C., Stewart C.J., Metcalf G.A., Muzny D.M., Gibbs R.A., et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017;5:153. doi: 10.1186/s40168-017-0373-4. PubMed DOI PMC
Frau A., Kenny J.G., Lenzi L., Campbell B.J., Ijaz U.Z., Duckworth C.A., Burkitt M.D., Hall N., Anson J., Darby A.C., et al. DNA Extraction and Amplicon Production Strategies Deeply Inf Luence the Outcome of Gut Mycobiome Studies. Sci. Rep. 2019;9:9328. doi: 10.1038/s41598-019-44974-x. PubMed DOI PMC
Huseyin C.E., Rubio R.C., O’Sullivan O., Cotter P.D., Scanlan P.D. The Fungal Frontier: A Comparative Analysis of Methods Used in the Study of the Human Gut Mycobiome. Front. Microbiol. 2017;8:1432. doi: 10.3389/fmicb.2017.01432. PubMed DOI PMC
De Filippis F., Laiola M., Blaiotta G., Ercolini D. Different Amplicon Targets for Sequencing-Based Studies of Fungal Diversity. Appl. Environ. Microbiol. 2017;83:e00905-17. doi: 10.1128/AEM.00905-17. PubMed DOI PMC
Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., Bolchacova E., Voigt K., Crous P.W., et al. Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proc. Natl. Acad. Sci. USA. 2012;109:6241–6246. doi: 10.1073/pnas.1117018109. PubMed DOI PMC
Huseyin C.E., O’Toole P.W., Cotter P.D., Scanlan P.D. Forgotten Fungi—the Gut Mycobiome in Human Health and Disease. Fems Microbiol. Rev. 2017;41:479–511. doi: 10.1093/femsre/fuw047. PubMed DOI
Tiew P.Y., Mac Aogain M., Ali N.A.B.M., Thng K.X., Goh K., Lau K.J.X., Chotirmall S.H. The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and Challenges. Mycopathologia. 2020;185:207–231. doi: 10.1007/s11046-019-00413-z. PubMed DOI PMC
Cui L., Morris A., Ghedin E. The Human Mycobiome in Health and Disease. Genome Med. 2013;5:63. doi: 10.1186/gm467. PubMed DOI PMC
Findley K., Oh J., Yang J., Conlan S., Deming C., Meyer J.A., Schoenfeld D., Nomicos E., Park M., NIH Intramural Sequencing Center Comparative Sequencing Program et al. Topographic Diversity of Fungal and Bacterial Communities in Human Skin. Nature. 2013;498:367. doi: 10.1038/nature12171. PubMed DOI PMC
Cui L., Lucht L., Tipton L., Rogers M.B., Fitch A., Kessinger C., Camp D., Kingsley L., Leo N., Greenblatt R.M., et al. Topographic Diversity of the Respiratory Tract Mycobiome and Alteration in HIV and Lung Disease. Am. J. Respir. Crit. Care Med. 2015;191:932–942. doi: 10.1164/rccm.201409-1583OC. PubMed DOI PMC
Chin V.K., Yong V.C., Chong P.P., Amin Nordin S., Basir R., Abdullah M. Mycobiome in the Gut: A Multiperspective Review. Mediat. Inflamm. 2020;2020:9560684. doi: 10.1155/2020/9560684. PubMed DOI PMC
Enaud R., Vandenborght L.-E., Coron N., Bazin T., Prevel R., Schaeverbeke T., Berger P., Fayon M., Lamireau T., Delhaes L. The Mycobiome: A Neglected Component in the Microbiota-Gut-Brain Axis. Microorganisms. 2018;6:UNSP 22. doi: 10.3390/microorganisms6010022. PubMed DOI PMC
Hallen-Adams H.E., Suhr M.J. Fungi in the Healthy Human Gastrointestinal Tract. Virulence. 2016;8:352–358. doi: 10.1080/21505594.2016.1247140. PubMed DOI PMC
Lai G.C., Tan T.G., Pavelka N. The Mammalian Mycobiome: A Complex System in a Dynamic Relationship with the Host. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018;11:e1438. doi: 10.1002/wsbm.1438. PubMed DOI PMC
Forbes J.D., Bernstein C.N., Tremlett H., Van Domselaar G., Knox N.C. A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease? Front. Microbiol. 2019;9:3249. doi: 10.3389/fmicb.2018.03249. PubMed DOI PMC
Schei K., Avershina E., Øien T., Rudi K., Follestad T., Salamati S., Ødegård R.A. Early Gut Mycobiota and Mother-Offspring Transfer. Microbiome. 2017;5:107. doi: 10.1186/s40168-017-0319-x. PubMed DOI PMC
Wampach L., Heintz-Buschart A., Hogan A., Muller E.E.L., Narayanasamy S., Laczny C.C., Hugerth L.W., Bindl L., Bottu J., Andersson A.F., et al. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life. Front. Microbiol. 2017;8:738. doi: 10.3389/fmicb.2017.00738. PubMed DOI PMC
Ward T.L., Knights D., Gale C.A. Infant Fungal Communities: Current Knowledge and Research Opportunities. BMC Med. 2017;15:30. doi: 10.1186/s12916-017-0802-z. PubMed DOI PMC
Suhr M.J., Banjara N., Hallen-Adams H.E. Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett. Appl. Microbiol. 2016;62:209–215. doi: 10.1111/lam.12539. PubMed DOI
Hallen-Adams H.E., Kachman S.D., Kim J., Legge R.M., Martínez I. Fungi Inhabiting the Healthy Human Gastrointestinal Tract: A Diverse and Dynamic Community. Fungal Ecol. 2015;15:9–17. doi: 10.1016/j.funeco.2015.01.006. DOI
Borges F.M., de Paula T.O., Sarmiento M.R.A., de Oliveira M.G., Pereira M.L.M., Toledo I.V., Nascimento T.C., Ferreira-Machado A.B., Silva V.L., Diniz C.G. Fungal Diversity of Human Gut Microbiota Among Eutrophic, Overweight, and Obese Individuals Based on Aerobic Culture-Dependent Approach. Curr. Microbiol. 2018;75:726–735. doi: 10.1007/s00284-018-1438-8. PubMed DOI
Gouba N., Raoult D., Drancourt M. Gut Microeukaryotes during Anorexia Nervosa: A Case Report. BMC Res. Notes. 2014;7:33. doi: 10.1186/1756-0500-7-33. PubMed DOI PMC
Mar Rodriguez M., Perez D., Javier Chaves F., Esteve E., Marin-Garcia P., Xifra G., Vendrell J., Jove M., Pamplona R., Ricart W., et al. Obesity Changes the Human Gut Mycobiome. Sci. Rep. 2015;5:14600. doi: 10.1038/srep14600. PubMed DOI PMC
Hoffmann C., Dollive S., Grunberg S., Chen J., Li H., Wu G.D., Lewis J.D., Bushman F.D. Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents. PLoS ONE. 2013;8:e66019. doi: 10.1371/journal.pone.0066019. PubMed DOI PMC
Strati F., Di Paola M., Stefanini I., Albanese D., Rizzetto L., Lionetti P., Calabrò A., Jousson O., Donati C., Cavalieri D., et al. Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract. Front. Microbiol. 2016;7:1227. doi: 10.3389/fmicb.2016.01227. PubMed DOI PMC
Jo J.-H., Deming C., Kennedy E.A., Conlan S., Polley E.C., Ng W.-I., Segre J.A., Kong H.H. Diverse Human Skin Fungal Communities in Children Converge in Adulthood. J. Invest. Dermatol. 2016;136:2356–2363. doi: 10.1016/j.jid.2016.05.130. PubMed DOI PMC
Ezeonu I.M., Ntun N.W., Ugwu K.O. Intestinal Candidiasis and Antibiotic Usage in Children: Case Study of Nsukka, South Eastern Nigeria. Afr. Health Sci. 2017;17:1178–1184. doi: 10.4314/ahs.v17i4.27. PubMed DOI PMC
Tao R., Wang R., Wan Z., Song Y., Wu Y., Li R. Ketoconazole 2% Cream Alters the Skin Fungal Microbiome in Seborrhoeic Dermatitis: A Cohort Study. Clin. Exp. Dermatol. 2022;47:1088–1096. doi: 10.1111/ced.15115. PubMed DOI
Leung M.H.Y., Chan K.C.K., Lee P.K.H. Skin Fungal Community and Its Correlation with Bacterial Community of Urban Chinese Individuals. Microbiome. 2016;4:46. doi: 10.1186/s40168-016-0192-z. PubMed DOI PMC
Fechney J.M., Browne G.V., Prabhu N., Irinyi L., Meyer W., Hughes T., Bockmann M., Townsend G., Salehi H., Adler C.J. Preliminary Study of the Oral Mycobiome of Children with and without Dental Caries. J. Oral Microbiology. 2019;11:1536182. doi: 10.1080/20002297.2018.1536182. PubMed DOI PMC
Mishra K., Bukavina L., Ghannoum M. Symbiosis and Dysbiosis of the Human Mycobiome. Front. Microbiol. 2021;12:636131. doi: 10.3389/fmicb.2021.636131. PubMed DOI PMC
Sam Q.H., Chang M.W., Chai L.Y.A. The Fungal Mycobiome and Its Interaction with Gut Bacteria in the Host. Int. J. Mol. Sci. 2017;18:330. doi: 10.3390/ijms18020330. PubMed DOI PMC
Mims T.S., Abdallah Q.A., Stewart J.D., Watts S.P., White C.T., Rousselle T.V., Gosain A., Bajwa A., Han J.C., Willis K.A., et al. The Gut Mycobiome of Healthy Mice Is Shaped by the Environment and Correlates with Metabolic Outcomes in Response to Diet. Commun. Biol. 2021;4:281. doi: 10.1038/s42003-021-01820-z. PubMed DOI PMC
Leonardi I., Gao I.H., Lin W.-Y., Allen M., Li X.V., Fiers W.D., De Celie M.B., Putzel G.G., Yantiss R.K., Johncilla M., et al. Mucosal Fungi Promote Gut Barrier Function and Social Behavior via Type 17 Immunity. Cell. 2022;185:831–846. doi: 10.1016/j.cell.2022.01.017. PubMed DOI PMC
Raimondi S., Amaretti A., Gozzoli C., Simone M., Righini L., Candeliere F., Brun P., Ardizzoni A., Colombari B., Paulone S., et al. Longitudinal Survey of Fungi in the Human Gut: ITS Profiling, Phenotyping, and Colonization. Front. Microbiol. 2019;10:1575. doi: 10.3389/fmicb.2019.01575. PubMed DOI PMC
Schulze J., Sonnenborn U. Yeasts in the Gut: From Commensals to Infectious Agents. Dtsch. Arztebl. Int. 2009;106:837–842. PubMed PMC
Li Q., Wang C., Tang C., He Q., Li N., Li J. Dysbiosis of Gut Fungal Microbiota Is Associated with Mucosal Inflammation in Crohn’s Disease. J. Clin. Gastroenterol. 2014;48:513–523. doi: 10.1097/MCG.0000000000000035. PubMed DOI PMC
Huët M.A.L., Wong L.W., Goh C.B.S., Hussain M.H., Muzahid N.H., Dwiyanto J., Lee S.W.H., Ayub Q., Reidpath D., Lee S.M., et al. Investigation of Culturable Human Gut Mycobiota from the Segamat Community in Johor, Malaysia. World. J. Microbiol. Biotechnol. 2021;37:113. doi: 10.1007/s11274-021-03083-6. PubMed DOI
Chen Y., Chen Z., Guo R., Chen N., Lu H., Huang S., Wang J., Li L. Correlation between Gastrointestinal Fungi and Varying Degrees of Chronic Hepatitis B Virus Infection. Diagn. Microbiol. Infect. Dis. 2011;70:492–498. doi: 10.1016/j.diagmicrobio.2010.04.005. PubMed DOI
Khatib R., Riederer K.M., Ramanathan J., Baran J. Faecal Fungal Flora in Healthy Volunteers and Inpatients. Mycoses. 2001;44:151–156. doi: 10.1046/j.1439-0507.2001.00639.x. PubMed DOI
Hamad I., Sokhna C., Raoult D., Bittar F. Molecular Detection of Eukaryotes in a Single Human Stool Sample from Senegal. PLoS ONE. 2012;7:e40888. doi: 10.1371/journal.pone.0040888. PubMed DOI PMC
Motooka D., Fujimoto K., Tanaka R., Yaguchi T., Gotoh K., Maeda Y., Furuta Y., Kurakawa T., Goto N., Yasunaga T., et al. Fungal ITS1 Deep-Sequencing Strategies to Reconstruct the Composition of a 26-Species Community and Evaluation of the Gut Mycobiota of Healthy Japanese Individuals. Front. Microbiol. 2017;8:238. doi: 10.3389/fmicb.2017.00238. PubMed DOI PMC
Pandey P.K., Siddharth J., Verma P., Bavdekar A., Patole M.S., Shouche Y.S. Molecular Typing of Fecal Eukaryotic Microbiota of Human Infants and Their Respective Mothers. J. Biosci. 2012;37:221–226. doi: 10.1007/s12038-012-9197-3. PubMed DOI
Kabwe M.H., Vikram S., Mulaudzi K., Jansson J.K., Makhalanyane T.P. The Gut Mycobiota of Rural and Urban Individuals Is Shaped by Geography. BMC Microbiol. 2020;20:257. doi: 10.1186/s12866-020-01907-3. PubMed DOI PMC
Botschuijver S., Roeselers G., Levin E., Jonkers D.M., Welting O., Heinsbroek S.E.M., de Weerd H.H., Boekhout T., Fornai M., Masclee A.A., et al. Intestinal Fungal Dysbiosis Is Associated with Visceral Hypersensitivity in Patients with Irritable Bowel Syndrome and Rats. Gastroenterology. 2017;153:1026–1039. doi: 10.1053/j.gastro.2017.06.004. PubMed DOI
Ott S.J., Kühbacher T., Musfeldt M., Rosenstiel P., Hellmig S., Rehman A., Drews O., Weichert W., Timmis K.N., Schreiber S. Fungi and Inflammatory Bowel Diseases: Alterations of Composition and Diversity. Scand. J. Gastroenterol. 2008;43:831–841. doi: 10.1080/00365520801935434. PubMed DOI
Coker O.O., Nakatsu G., Dai R.Z., Wu W.K.K., Wong S.H., Ng S.C., Chan F.K.L., Sung J.J.Y., Yu J. Enteric Fungal Microbiota Dysbiosis and Ecological Alterations in Colorectal Cancer. Gut. 2019;68:654–662. doi: 10.1136/gutjnl-2018-317178. PubMed DOI PMC
Gouba N., Raoult D., Drancourt M. Plant and Fungal Diversity in Gut Microbiota as Revealed by Molecular and Culture Investigations. PLoS ONE. 2013;8:e59474. doi: 10.1371/journal.pone.0059474. PubMed DOI PMC
Agırbaslı H., Özcan S.A.K., Gedikoğlu G. Fecal Fungal Flora of Pediatric Healthy Volunteers and Immunosuppressed Patients. Mycopathologia. 2005;159:515–520. doi: 10.1007/s11046-005-3451-2. PubMed DOI
Robert V., Stegehuis G., Stalpers J. The MycoBank Engine and Related Databases. 2005. [(accessed on 15 August 2022)]. Available online: www.mycobank.org.
Auchtung T.A., Fofanova T.Y., Stewart C.J., Nash A.K., Wong M.C., Gesell J.R., Auchtung J.M., Ajami N.J., Petrosino J.F. Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi. mSphere. 2018;3:e00092. doi: 10.1128/mSphere.00092-18. PubMed DOI PMC
Richard M.L., Lamas B., Liguori G., Hoffmann T.W., Sokol H. Gut Fungal Microbiota: The Yin and Yang of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015;21:656–665. doi: 10.1097/MIB.0000000000000261. PubMed DOI
Nagata R., Nagano H., Ogishima D., Nakamura Y., Hiruma M., Sugita T. Transmission of the Major Skin Microbiota, Malassezia, from Mother to Neonate. Pediatr. Int. 2012;54:350–355. doi: 10.1111/j.1442-200X.2012.03563.x. PubMed DOI
David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820. PubMed DOI PMC
Sun Y., Zuo T., Cheung C.P., Gu W., Wan Y., Zhang F., Chen N., Zhan H., Yeoh Y.K., Niu J., et al. Population-Level Configurations of Gut Mycobiome Across 6 Ethnicities in Urban and Rural China. Gastroenterology. 2021;160:272–286. doi: 10.1053/j.gastro.2020.09.014. PubMed DOI
Moubasher A.-A.H., Abdel–Sater M.A., Soliman Z. Biodiversity of Filamentous and Yeast Fungi in Citrus and Grape Fruits and Juices in Assiut Area, Egypt. JMBFS. 2018;7:353–365. doi: 10.15414/jmbfs.2018.7.4.353-365. DOI
Vadkertiová R., Molnárová J., Vránová D., Sláviková E. Yeasts and Yeast-like Organisms Associated with Fruits and Blossoms of Different Fruit Trees. Can. J. Microbiol. 2012;58:1344–1352. doi: 10.1139/cjm-2012-0468. PubMed DOI
Tournas V.H., Heeres J., Burgess L. Moulds and Yeasts in Fruit Salads and Fruit Juices. Food Microbiol. 2006;23:684–688. doi: 10.1016/j.fm.2006.01.003. PubMed DOI
Tournas V., Niazi N., Kohn J. Fungal Presence in Selected Tree Nuts and Dried Fruits. Microbiol. Insights. 2015;8:1–6. doi: 10.4137/MBI.S24308. PubMed DOI PMC
Tournas V.H. Moulds and Yeasts in Fresh and Minimally Processed Vegetables, and Sprouts. Int. J. Food Microbiol. 2005;99:71–77. doi: 10.1016/j.ijfoodmicro.2004.08.009. PubMed DOI
Reed G., Nagodawithana T.W. Yeast Technology. Springer; Dordrecht, The Netherlands: 1990. Use of Yeasts in the Dairy Industry; pp. 441–445.
Griffin S., Falzon O., Camilleri K., Valdramidis V.P. Bacterial and Fungal Contaminants in Caprine and Ovine Cheese: A Meta-Analysis Assessment. Food Res. Int. 2020;137:109445. doi: 10.1016/j.foodres.2020.109445. PubMed DOI
Venturini Copetti M. Yeasts and Molds in Fermented Food Production: An Ancient Bioprocess. Curr. Opin. Food Sci. 2019;25:57–61. doi: 10.1016/j.cofs.2019.02.014. DOI
Jolly N.P., Varela C., Pretorius I.S. Not Your Ordinary Yeast: Non-Saccharomyces Yeasts in Wine Production Uncovered. FEMS Yeast Res. 2014;14:215–237. doi: 10.1111/1567-1364.12111. PubMed DOI
Endo A., Irisawa T., Dicks L., Tanasupawat S. FERMENTED FOODS|Fermentations of East and Southeast Asia. In: Batt C.A., Tortorello M.L., editors. Encyclopedia of Food Microbiology. 2nd ed. Academic Press; Oxford, UK: 2014. pp. 846–851.
Suo B., Nie W., Wang Y., Ma J., Xing X., Huang Z., Xu C., Li Z., Ai Z. Microbial Diversity of Fermented Dough and Volatile Compounds in Steamed Bread Prepared with Traditional Chinese Starters. LWT. 2020;126:109350. doi: 10.1016/j.lwt.2020.109350. DOI
Li Z., Li H., Song K., Cui M. Performance of Non-Saccharomyces Yeasts Isolated from Jiaozi in Dough Fermentation and Steamed Bread Making. LWT. 2019;111:46–54. doi: 10.1016/j.lwt.2019.05.019. DOI
Shah S., Locca A., Dorsett Y., Cantoni C., Ghezzi L., Lin Q., Bokoliya S., Panier H., Suther C., Gormley M., et al. Alterations of the Gut Mycobiome in Patients with MS. EBioMedicine. 2021;71:103557. doi: 10.1016/j.ebiom.2021.103557. PubMed DOI PMC
Gosiewski T., Salamon D., Szopa M., Sroka A., Malecki M.T., Bulanda M. Quantitative Evaluation of Fungi of the Genus Candida in the Feces of Adult Patients with Type 1 and 2 Diabetes—a Pilot Study. Gut. Pathog. 2014;6:43. doi: 10.1186/s13099-014-0043-z. PubMed DOI PMC
Chiaro T.R., Soto R., Stephens W.Z., Kubinak J.L., Petersen C., Gogokhia L., Bell R., Delgado J.C., Cox J., Voth W., et al. A Member of the Gut Mycobiota Modulates Host Purine Metabolism Exacerbating Colitis in Mice. Sci. Transl. Med. 2017;9:eaaf9044. doi: 10.1126/scitranslmed.aaf9044. PubMed DOI PMC
Sokol H., Leducq V., Aschard H., Pham H.-P., Jegou S., Landman C., Cohen D., Liguori G., Bourrier A., Nion-Larmurier I., et al. Fungal Microbiota Dysbiosis in IBD. Gut. 2017;66:1039–1048. doi: 10.1136/gutjnl-2015-310746. PubMed DOI PMC
Hong G., Li Y., Yang M., Li G., Qian W., Xiong H., Bai T., Song J., Zhang L., Hou X. Gut Fungal Dysbiosis and Altered Bacterial-Fungal Interaction in Patients with Diarrhea-Predominant Irritable Bowel Syndrome: An Explorative Study. Neurogastroenterol. Motil. 2020;32:e13891. doi: 10.1111/nmo.13891. PubMed DOI
Lang S., Duan Y., Liu J., Torralba M.G., Kuelbs C., Ventura-Cots M., Abraldes J.G., Bosques-Padilla F., Verna E.C., Brown R.S., et al. Intestinal Fungal Dysbiosis and Systemic Immune Response to Fungi in Patients With Alcoholic Hepatitis. Hepatology. 2020;71:522–538. doi: 10.1002/hep.30832. PubMed DOI PMC
Jayasudha R., Das T., Kalyana Chakravarthy S., Sai Prashanthi G., Bhargava A., Tyagi M., Rani P.K., Pappuru R.R., Shivaji S. Gut Mycobiomes Are Altered in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. PLoS ONE. 2020;15:e0243077. doi: 10.1371/journal.pone.0243077. PubMed DOI PMC
Bhute S.S., Suryavanshi M.V., Joshi S.M., Yajnik C.S., Shouche Y.S., Ghaskadbi S.S. Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes. Front. Microbiol. 2017;8:214. doi: 10.3389/fmicb.2017.00214. PubMed DOI PMC
Honkanen J., Vuorela A., Muthas D., Orivuori L., Luopajärvi K., Tejesvi M.V.G., Lavrinienko A., Pirttilä A.M., Fogarty C.L., Härkönen T., et al. Fungal Dysbiosis and Intestinal Inflammation in Children with Beta-Cell Autoimmunity. Front. Immunol. 2020;11:468. doi: 10.3389/fimmu.2020.00468. PubMed DOI PMC
Yadav M., Ali S., Shrode R.L., Shahi S.K., Jensen S.N., Hoang J., Cassidy S., Olalde H., Guseva N., Paullus M., et al. Multiple Sclerosis Patients Have an Altered Gut Mycobiome and Increased Fungal to Bacterial Richness. PLoS ONE. 2022;17:e0264556. doi: 10.1371/journal.pone.0264556. PubMed DOI PMC
Hu J., Wei S., Gu Y., Wang Y., Feng Y., Sheng J., Hu L., Gu C., Jiang P., Tian Y., et al. Gut Mycobiome in Patients with Chronic Kidney Disease Was Altered and Associated with Immunological Profiles. Front. Immunol. 2022;13:843695. doi: 10.3389/fimmu.2022.843695. PubMed DOI PMC
Mok K., Suratanon N., Roytrakul S., Charoenlappanit S., Patumcharoenpol P., Chatchatee P., Vongsangnak W., Nakphaichit M. ITS2 Sequencing and Targeted Meta-Proteomics of Infant Gut Mycobiome Reveal the Functional Role of Rhodotorula Sp. during Atopic Dermatitis Manifestation. J. Fungi. 2021;7:748. doi: 10.3390/jof7090748. PubMed DOI PMC
Pablo-Fernandez E.D., Gebeyehu G.G., Flain L., Slater R., Frau A., Ijaz U.Z., Warner T., Probert C. The Faecal Metabolome and Mycobiome in Parkinson’s Disease. Parkinsonism Relat. Disord. 2022;95:65–69. doi: 10.1016/j.parkreldis.2022.01.005. PubMed DOI
Zhang X., Pan L., Zhang Z., Zhou Y., Jiang H., Ruan B. Analysis of Gut Mycobiota in First-Episode, Drug-Naïve Chinese Patients with Schizophrenia: A Pilot Study. Behav. Brain Res. 2020;379:112374. doi: 10.1016/j.bbr.2019.112374. PubMed DOI
Gosalbes M.J., Jimenéz-Hernandéz N., Moreno E., Artacho A., Pons X., Ruíz-Pérez S., Navia B., Estrada V., Manzano M., Talavera-Rodriguez A., et al. Interactions among the Mycobiome, Bacteriome, Inflammation, and Diet in People Living with HIV. Gut Microbes. 2022;14:2089002. doi: 10.1080/19490976.2022.2089002. PubMed DOI PMC
Chehoud C., Albenberg L.G., Judge C., Hoffmann C., Grunberg S., Bittinger K., Baldassano R.N., Lewis J.D., Bushman F.D., Wu G.D. Fungal Signature in the Gut Microbiota of Pediatric Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015;21:1948–1956. doi: 10.1097/MIB.0000000000000454. PubMed DOI PMC
Hoarau G., Mukherjee P.K., Gower-Rousseau C., Hager C., Chandra J., Retuerto M.A., Neut C., Vermeire S., Clemente J., Colombel J.F., et al. Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn’s Disease. mBio. 2016;7:e01250-16. doi: 10.1128/mBio.01250-16. PubMed DOI PMC
Liguori G., Lamas B., Richard M.L., Brandi G., da Costa G., Hoffmann T.W., Di Simone M.P., Calabrese C., Poggioli G., Langella P., et al. Fungal Dysbiosis in Mucosa-Associated Microbiota of Crohn’s Disease Patients. J. Crohns Colitis. 2016;10:296–305. doi: 10.1093/ecco-jcc/jjv209. PubMed DOI PMC
Lewis J.D., Chen E.Z., Baldassano R.N., Otley A.R., Griffiths A.M., Lee D., Bittinger K., Bailey A., Friedman E.S., Hoffmann C., et al. Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn’s Disease. Cell Host Microbe. 2015;18:489–500. doi: 10.1016/j.chom.2015.09.008. PubMed DOI PMC
Prochazkova P., Roubalova R., Dvorak J., Kreisinger J., Hill M., Tlaskalova-Hogenova H., Tomasova P., Pelantova H., Cermakova M., Kuzma M., et al. The Intestinal Microbiota and Metabolites in Patients with Anorexia Nervosa. Gut Microbes. 2021;13:1902771. doi: 10.1080/19490976.2021.1902771. PubMed DOI PMC
Li B.-Y., Xu X.-Y., Gan R.-Y., Sun Q.-C., Meng J.-M., Shang A., Mao Q.-Q., Li H.-B. Targeting Gut Microbiota for the Prevention and Management of Diabetes Mellitus by Dietary Natural Products. Foods. 2019;8:440. doi: 10.3390/foods8100440. PubMed DOI PMC
Soyucen E., Gulcan A., Aktuglu-Zeybek A.C., Onal H., Kiykim E., Aydin A. Differences in the Gut Microbiota of Healthy Children and Those with Type 1 Diabetes. Pediatr. Int. 2014;56:336–343. doi: 10.1111/ped.12243. PubMed DOI
Monteiro-da-Silva F., Araujo R., Sampaio-Maia B. Interindividual Variability and Intraindividual Stability of Oral Fungal Microbiota over Time. Med. Mycol. 2014;52:498–505. doi: 10.1093/mmy/myu027. PubMed DOI
Li Y., Wang K., Zhang B., Tu Q., Yao Y., Cui B., Ren B., He J., Shen X., Van Nostrand J.D., et al. Salivary Mycobiome Dysbiosis and Its Potential Impact on Bacteriome Shifts and Host Immunity in Oral Lichen Planus. Int. J. Oral Sci. 2019;11:1–10. doi: 10.1038/s41368-019-0045-2. PubMed DOI PMC
Oba P.M., Holscher H.D., Mathai R.A., Kim J., Swanson K.S. Diet Influences the Oral Microbiota of Infants during the First Six Months of Life. Nutrients. 2020;12:3400. doi: 10.3390/nu12113400. PubMed DOI PMC
Azevedo M.J., Pereira M.d.L., Araujo R., Ramalho C., Zaura E., Sampaio-Maia B. Influence of Delivery and Feeding Mode in Oral Fungi Colonization—A Systematic Review. Microb. Cell. 2020;7:36–45. doi: 10.15698/mic2020.02.706. PubMed DOI PMC
Diaz P.I., Dongari-Bagtzoglou A. Critically Appraising the Significance of the Oral Mycobiome. J. Dent. Res. 2021;100:133–140. doi: 10.1177/0022034520956975. PubMed DOI PMC
Peters B.A., Wu J., Hayes R.B., Ahn J. The Oral Fungal Mycobiome: Characteristics and Relation to Periodontitis in a Pilot Study. BMC Microbiol. 2017;17:157. doi: 10.1186/s12866-017-1064-9. PubMed DOI PMC
Dupuy A.K., David M.S., Li L., Heider T.N., Peterson J.D., Montano E.A., Dongari-Bagtzoglou A., Diaz P.I., Strausbaugh L.D. Redefining the Human Oral Mycobiome with Improved Practices in Amplicon-Based Taxonomy: Discovery of Malassezia as a Prominent Commensal. PLoS ONE. 2014;9:e90899. doi: 10.1371/journal.pone.0090899. PubMed DOI PMC
Khadija B., Imran M., Faryal R. Keystone Salivary Mycobiome in Postpartum Period in Health and Disease Conditions. J. Mycol. Med. 2021;31:101101. doi: 10.1016/j.mycmed.2020.101101. PubMed DOI
Stehlikova Z., Tlaskal V., Galanova N., Roubalova R., Kreisinger J., Dvorak J., Prochazkova P., Kostovcikova K., Bartova J., Libanska M., et al. Oral Microbiota Composition and Antimicrobial Antibody Response in Patients with Recurrent Aphthous Stomatitis. Microorganisms. 2019;7:636. doi: 10.3390/microorganisms7120636. PubMed DOI PMC
Diaz P.I., Hong B.-Y., Dupuy A.K., Strausbaugh L.D. Mining the Oral Mycobiome: Methods, Components, and Meaning. Virulence. 2017;8:313–323. doi: 10.1080/21505594.2016.1252015. PubMed DOI PMC
Charlson E.S., Diamond J.M., Bittinger K., Fitzgerald A.S., Yadav A., Haas A.R., Bushman F.D., Collman R.G. Lung-Enriched Organisms and Aberrant Bacterial and Fungal Respiratory Microbiota after Lung Transplant. Am. J. Respir. Crit. Care Med. 2012;186:536–545. doi: 10.1164/rccm.201204-0693OC. PubMed DOI PMC
Bandara H.M.H.N., Panduwawala C.P., Samaranayake L.P. Biodiversity of the Human Oral Mycobiome in Health and Disease. Oral Dis. 2019;25:363–371. doi: 10.1111/odi.12899. PubMed DOI
Ikebe K., Morii K., Matsuda K., Hata K., Nokubi T. Association of Candidal Activity with Denture Use and Salivary Flow in Symptom-Free Adults over 60 Years1. J. Oral Rehab. 2006;33:36–42. doi: 10.1111/j.1365-2842.2006.01527.x. PubMed DOI
Ward T.L., Dominguez-Bello M.G., Heisel T., Al-Ghalith G., Knights D., Gale C.A. Development of the Human Mycobiome over the First Month of Life and across Body Sites. mSystems. 2018;3:e00140–17. doi: 10.1128/mSystems.00140-17. PubMed DOI PMC
Darwazeh A.M., al-Bashir A. Oral Candidal Flora in Healthy Infants. J. Oral Pathol. Med. 1995;24:361–364. doi: 10.1111/j.1600-0714.1995.tb01200.x. PubMed DOI
Burcham Z.M., Garneau N.L., Comstock S.S., Tucker R.M., Knight R., Metcalf J.L. Genetics of Taste Lab Citizen Scientists Patterns of Oral Microbiota Diversity in Adults and Children: A Crowdsourced Population Study. Sci. Rep. 2020;10:2133. doi: 10.1038/s41598-020-59016-0. PubMed DOI PMC
Zakaria M.N., Furuta M., Takeshita T., Shibata Y., Sundari R., Eshima N., Ninomiya T., Yamashita Y. Oral Mycobiome in Community-Dwelling Elderly and Its Relation to Oral and General Health Conditions. Oral Dis. 2017;23:973–982. doi: 10.1111/odi.12682. PubMed DOI
O’Connell L.M., Santos R., Springer G., Burne R.A., Nascimento M.M., Richards V.P. Site-Specific Profiling of the Dental Mycobiome Reveals Strong Taxonomic Shifts during Progression of Early-Childhood Caries. Appl. Environ. Microbiol. 2020;86:e02825–19. doi: 10.1128/AEM.02825-19. PubMed DOI PMC
Tati S., Davidow P., McCall A., Hwang-Wong E., Rojas I.G., Cormack B., Edgerton M. Candida Glabrata Binding to Candida Albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis. PLoS Pathog. 2016;12:e1005522. doi: 10.1371/journal.ppat.1005522. PubMed DOI PMC
Sajid M., Sharma P., Srivastava S., Hariprasad R., Singh H., Bharadwaj M. Smokeless Tobacco Consumption Induces Dysbiosis of Oral Mycobiome: A Pilot Study. Appl. Microbiol. Biotechnol. 2022;106:5643–5657. doi: 10.1007/s00253-022-12096-6. PubMed DOI
Zhu T., Duan Y.-Y., Kong F.-Q., Galzote C., Quan Z.-X. Dynamics of Skin Mycobiome in Infants. Front. Microbiol. 2020;11:1790. doi: 10.3389/fmicb.2020.01790. PubMed DOI PMC
Ratanapokasatit Y., Laisuan W., Rattananukrom T., Petchlorlian A., Thaipisuttikul I., Sompornrattanaphan M. How Microbiomes Affect Skin Aging: The Updated Evidence and Current Perspectives. Life. 2022;12:936. doi: 10.3390/life12070936. PubMed DOI PMC
Boxberger M., Cenizo V., Cassir N., La Scola B. Challenges in Exploring and Manipulating the Human Skin Microbiome. Microbiome. 2021;9:125. doi: 10.1186/s40168-021-01062-5. PubMed DOI PMC
Jo J.-H., Kennedy E.A., Kong H.H. Topographical and Physiological Differences of the Skin Mycobiome in Health and Disease. Virulence. 2016;8:324–333. doi: 10.1080/21505594.2016.1249093. PubMed DOI PMC
Li H., Goh B.N., Teh W.K., Jiang Z., Goh J.P.Z., Goh A., Wu G., Hoon S.S., Raida M., Camattari A., et al. Skin Commensal Malassezia Globosa Secreted Protease Attenuates Staphylococcus Aureus Biofilm Formation. J. Investig. Dermatol. 2018;138:1137–1145. doi: 10.1016/j.jid.2017.11.034. PubMed DOI
Leong C., Schmid B., Toi M.J., Wang J., Irudayaswamy A.S., Goh J.P.Z., Bosshard P.P., Glatz M., Dawson T.L. Geographical and Ethnic Differences Influence Culturable Commensal Yeast Diversity on Healthy Skin. Front. Microbiol. 2019;10:1891. doi: 10.3389/fmicb.2019.01891. PubMed DOI PMC
Huffnagle G.B., Noverr M.C. The Emerging World of the Fungal Microbiome. Trends Microbiol. 2013;21:334–341. doi: 10.1016/j.tim.2013.04.002. PubMed DOI PMC
Keum H.L., Kim H., Kim H.-J., Park T., Kim S., An S., Sul W.J. Structures of the Skin Microbiome and Mycobiome Depending on Skin Sensitivity. Microorganisms. 2020;8:E1032. doi: 10.3390/microorganisms8071032. PubMed DOI PMC
Grice E.A., Segre J.A. The Skin Microbiome. Nat. Rev. Microbiol. 2011;9:244–253. doi: 10.1038/nrmicro2537. PubMed DOI PMC
Cho Y.-J., Kim T., Croll D., Park M., Kim D., Keum H.L., Sul W.J., Jung W.H. Genome of Malassezia Arunalokei and Its Distribution on Facial Skin. Microbiol. Spectr. 2022;10:e00506-22. doi: 10.1128/spectrum.00506-22. PubMed DOI PMC
Gupta A.K., Kohli Y., Summerbell R.C., Faergemann J. Quantitative Culture of Malassezia Species from Different Body Sites of Individuals with or without Dermatoses. Med. Mycol. 2001;39:243–251. doi: 10.1080/mmy.39.3.243.251. PubMed DOI
Tong X., Leung M.H.Y., Wilkins D., Cheung H.H.L., Lee P.K.H. Neutral Processes Drive Seasonal Assembly of the Skin Mycobiome. mSystems. 2019;4:e00004-19. doi: 10.1128/mSystems.00004-19. PubMed DOI PMC
Koike Y., Kuwatsuka S., Nishimoto K., Motooka D., Murota H. Skin Mycobiome of Psoriasis Patients Is Retained during Treatment with TNF and IL-17 Inhibitors. Int. J. Mol. Sci. 2020;21:3892. doi: 10.3390/ijms21113892. PubMed DOI PMC
Crespo-Erchiga V., Florencio V.D. Malassezia Yeasts and Pityriasis Versicolor. Curr. Opin. Infect. Dis. 2006;19:139–147. doi: 10.1097/01.qco.0000216624.21069.61. PubMed DOI
Moosbrugger-Martinz V., Hackl H., Gruber R., Pilecky M., Knabl L., Orth-Höller D., Dubrac S. Initial Evidence of Distinguishable Bacterial and Fungal Dysbiosis in the Skin of Patients with Atopic Dermatitis or Netherton Syndrome. J. Investig. Dermatol. 2021;141:114–123. doi: 10.1016/j.jid.2020.05.102. PubMed DOI
Stehlikova Z., Kostovcik M., Kostovcikova K., Kverka M., Juzlova K., Rob F., Hercogova J., Bohac P., Pinto Y., Uzan A., et al. Dysbiosis of Skin Microbiota in Psoriatic Patients: Co-Occurrence of Fungal and Bacterial Communities. Front. Microbiol. 2019;10:438. doi: 10.3389/fmicb.2019.00438. PubMed DOI PMC
Bjerre R.D., Holm J.B., Palleja A., Sølberg J., Skov L., Johansen J.D. Skin Dysbiosis in the Microbiome in Atopic Dermatitis Is Site-Specific and Involves Bacteria, Fungus and Virus. BMC Microbiol. 2021;21:256. doi: 10.1186/s12866-021-02302-2. PubMed DOI PMC
Dylag M., Leniak E., Gnat S., Szepietowski J.C., Kozubowski L. A Case of Anti-Pityriasis Versicolortherapy That Preserves Healthy Mycobiome. BMC Dermatol. 2020;20:9. doi: 10.1186/s12895-020-00106-x. PubMed DOI PMC
Honnavar P., Prasad G.S., Ghosh A., Dogra S., Handa S., Rudramurthy S.M. Malassezia Arunalokei Sp. Nov., a Novel Yeast Species Isolated from Seborrheic Dermatitis Patients and Healthy Individuals from India. J. Clin. Microbiol. 2016;54:1826–1834. doi: 10.1128/JCM.00683-16. PubMed DOI PMC
Sahni K., Singh S., Dogra S. Newer Topical Treatments in Skin and Nail Dermatophyte Infections. Indian Dermatol. Online J. 2018;9:149–158. PubMed PMC
Chng K.R., Tay A.S.L., Li C., Ng A.H.Q., Wang J., Suri B.K., Matta S.A., McGovern N., Janela B., Wong X.F.C.C., et al. Whole Metagenome Profiling Reveals Skin Microbiome-Dependent Susceptibility to Atopic Dermatitis Flare. Nat. Microbiol. 2016;1:1–10. doi: 10.1038/nmicrobiol.2016.106. PubMed DOI
Crespo Erchiga V., Ojeda Martos A., Vera Casaño A., Crespo Erchiga A., Sanchez Fajardo F. Malassezia Globosa as the Causative Agent of Pityriasis Versicolor. Br. J. Dermatol. 2000;143:799–803. doi: 10.1046/j.1365-2133.2000.03779.x. PubMed DOI
Shah A., Koticha A., Ubale M., Wanjare S., Mehta P., Khopkar U. Identification and Speciation of Malassezia in Patients Clinically Suspected of Having Pityriasis Versicolor. Indian. J. Dermatol. 2013;58:239. doi: 10.4103/0019-5154.110841. PubMed DOI PMC
Carter B., Jones C.P., Creadick R.N., Parker R.T., Turner V. The Vaginal Fungi. Ann. N.Y. Acad. Sci. 1959;83:265–279. doi: 10.1111/j.1749-6632.1960.tb40900.x. PubMed DOI
Bradford L.L., Ravel J. The Vaginal Mycobiome: A Contemporary Perspective on Fungi in Women’s Health and Diseases. Virulence. 2017;8:342–351. doi: 10.1080/21505594.2016.1237332. PubMed DOI PMC
Ackerman A.L., Underhill D.M. The Mycobiome of the Human Urinary Tract: Potential Roles for Fungi in Urology. Ann. Transl. Med. 2017;5:31. doi: 10.21037/atm.2016.12.69. PubMed DOI PMC
Guo R., Zheng N., Lu H., Yin H., Yao J., Chen Y. Increased Diversity of Fungal Flora in the Vagina of Patients with Recurrent Vaginal Candidiasis and Allergic Rhinitis. Microb. Ecol. 2012;64:918–927. doi: 10.1007/s00248-012-0084-0. PubMed DOI
Pearce M.M., Hilt E.E., Rosenfeld A.B., Zilliox M.J., Thomas-White K., Fok C., Kliethermes S., Schreckenberger P.C., Brubaker L., Gai X., et al. The Female Urinary Microbiome: A Comparison of Women with and without Urgency Urinary Incontinence. mBio. 2014;5:e01283-01214. doi: 10.1128/mBio.01283-14. PubMed DOI PMC
Holland J., Young M., Lee O., Chen C.-A. Vulvovaginal Carriage of Yeasts Other than Candida Albicans. Sex. Transm. Infect. 2003;79:249–250. doi: 10.1136/sti.79.3.249. PubMed DOI PMC
Papaemmanouil V., Georgogiannis N., Plega M., Lalaki J., Lydakis D., Dimitriou M., Papadimitriou A. Prevalence and Susceptibility of Saccharomyces Cerevisiae Causing Vaginitis in Greek Women. Anaerobe. 2011;17:298–299. doi: 10.1016/j.anaerobe.2011.04.008. PubMed DOI
Kalia N., Singh J., Kaur M. Microbiota in Vaginal Health and Pathogenesis of Recurrent Vulvovaginal Infections: A Critical Review. Ann. Clin. Microbiol. Antimicrob. 2020;19:5. doi: 10.1186/s12941-020-0347-4. PubMed DOI PMC
Pytka M., Kordowska-Wiater M., Jarocki P. Mikrobiome of the Women’s Genital System. Adv. Microbiol. 2019;58:227–236.
Noverr M.C., Huffnagle G.B. Does the Microbiota Regulate Immune Responses Outside the Gut? Trends Microbiol. 2004;12:562–568. doi: 10.1016/j.tim.2004.10.008. PubMed DOI
Sabbatini S., Visconti S., Gentili M., Lusenti E., Nunzi E., Ronchetti S., Perito S., Gaziano R., Monari C. Lactobacillus Iners Cell-Free Supernatant Enhances Biofilm Formation and Hyphal/Pseudohyphal Growth by Candida Albicans Vaginal Isolates. Microorganisms. 2021;9:2577. doi: 10.3390/microorganisms9122577. PubMed DOI PMC
Liu N.-N., Zhao X., Tan J.-C., Liu S., Li B.-W., Xu W.-X., Peng L., Gu P., Li W., Shapiro R., et al. Mycobiome Dysbiosis in Women with Intrauterine Adhesions. Microbiol. Spectr. 2022;10:e01324-22. doi: 10.1128/spectrum.01324-22. PubMed DOI PMC
Kovachev S.M. Cervical Cancer and Vaginal Microbiota Changes. Arch. Microbiol. 2020;202:323–327. doi: 10.1007/s00203-019-01747-4. PubMed DOI
Tipton L., Ghedin E., Morris A. The Lung Mycobiome in the Next-Generation Sequencing Era. Virulence. 2017;8:334–341. doi: 10.1080/21505594.2016.1235671. PubMed DOI PMC
Krause R., Moissl-Eichinger C., Halwachs B., Gorkiewicz G., Berg G., Valentin T., Prattes J., Högenauer C., Zollner-Schwetz I. Mycobiome in the Lower Respiratory Tract—A Clinical Perspective. Front. Microbiol. 2017;7:2169. doi: 10.3389/fmicb.2016.02169. PubMed DOI PMC
Nguyen L.D.N., Viscogliosi E., Delhaes L. The Lung Mycobiome: An Emerging Field of the Human Respiratory Microbiome. Front. Microbiol. 2015;6:89. doi: 10.3389/fmicb.2015.00089. PubMed DOI PMC
Carpagnano G.E., Susca A., Scioscia G., Lacedonia D., Cotugno G., Soccio P., Santamaria S., Resta O., Logrieco G., Barbaro M.P.F. A Survey of Fungal Microbiota in Airways of Healthy Volunteer Subjects from Puglia (Apulia), Italy. BMC Infect. Dis. 2019;19:78. doi: 10.1186/s12879-019-3718-8. PubMed DOI PMC
Gago S., Overton N.L.D., Ben-Ghazzi N., Novak-Frazer L., Read N.D., Denning D.W., Bowyer P. Lung Colonization by Aspergillus Fumigatus Is Controlled by ZNF77. Nat. Commun. 2018;9:3835. doi: 10.1038/s41467-018-06148-7. PubMed DOI PMC
Martinsen E.M.H., Eagan T.M.L., Leiten E.O., Haaland I., Husebø G.R., Knudsen K.S., Drengenes C., Sanseverino W., Paytuví-Gallart A., Nielsen R. The Pulmonary Mycobiome—A Study of Subjects with and without Chronic Obstructive Pulmonary Disease. PLoS ONE. 2021;16:e0248967. doi: 10.1371/journal.pone.0248967. PubMed DOI PMC
Ali N.A.B.M., Mac Aogain M., Morales R.F., Tiew P.Y., Chotirmall S.H. Optimisation and Benchmarking of Targeted Amplicon Sequencing for Mycobiome Analysis of Respiratory Specimens. Int. J. Mol. Sci. 2019;20:4991. doi: 10.3390/ijms20204991. PubMed DOI PMC
Kim S.H., Clark S.T., Surendra A., Copeland J.K., Wang P.W., Ammar R., Collins C., Tullis D.E., Nislow C., Hwang D.M., et al. Global Analysis of the Fungal Microbiome in Cystic Fibrosis Patients Reveals Loss of Function of the Transcriptional Repressor Nrg1 as a Mechanism of Pathogen Adaptation. PLOS Pathog. 2015;11:e1005308. doi: 10.1371/journal.ppat.1005308. PubMed DOI PMC
Kramer R., Sauer-Heilborn A., Welte T., Guzman C.A., Abraham W.-R., Hoefle M.G. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements. J. Clin. Microbiol. 2015;53:2900–2907. doi: 10.1128/JCM.01094-15. PubMed DOI PMC
Soret P., Vandenborght L.-E., Francis F., Coron N., Enaud R., Avalos M., Schaeverbeke T., Berger P., Fayon M., Thiebaut R., et al. Respiratory Mycobiome and Suggestion of Inter-Kingdom Network during Acute Pulmonary Exacerbation in Cystic Fibrosis. Sci. Rep. 2020;10:3589. doi: 10.1038/s41598-020-60015-4. PubMed DOI PMC
Weaver D., Gago S., Bromley M., Bowyer P. The Human Lung Mycobiome in Chronic Respiratory Disease: Limitations of Methods and Our Current Understanding. Curr. Fungal Infect. Rep. 2019;13:109–119. doi: 10.1007/s12281-019-00347-5. DOI
Huffnagle G.B. The Microbiota and Allergies/Asthma. PLOS Pathog. 2010;6:e1000549. doi: 10.1371/journal.ppat.1000549. PubMed DOI PMC