Heterocyclic Compounds as Hsp90 Inhibitors: A Perspective on Anticancer Applications

. 2022 Oct 18 ; 14 (10) : . [epub] 20221018

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36297655
Odkazy

PubMed 36297655
PubMed Central PMC9610671
DOI 10.3390/pharmaceutics14102220
PII: pharmaceutics14102220
Knihovny.cz E-zdroje

Heat shock proteins (Hsps) have garnered special attention in cancer therapy as molecular chaperones with regulatory/mediatory effects on folding, maintenance/stability, maturation, and conformation of proteins as well as their effects on prevention of protein aggregation. Hsp90 ensures the stability of various client proteins needed for the growth of cells or the survival of tumor cells; therefore, they are overexpressed in tumor cells and play key roles in carcinogenesis. Accordingly, Hsp90 inhibitors are recognized as attractive therapeutic agents for investigations pertaining to tumor suppression. Natural Hsp90 inhibitors comprising geldanamycin (GM), reclaimed analogs of GM including 17-AAG and DMAG, and radicicol, a natural macrocyclic antifungal, are among the first potent Hsp90 inhibitors. Herein, recently synthesized heterocyclic compounds recognized as potent Hsp90 inhibitors are reviewed along with the anticancer effects of heterocyclic compounds, comprising purine, pyrazole, triazine, quinolines, coumarin, and isoxazoles molecules.

Zobrazit více v PubMed

Mahboubi-Rabbani M., Zarghi A. Lipoxygenase Inhibitors as Cancer Chemopreventives: Discovery, Recent Developments and Future Perspectives. Curr. Med. Chem. 2021;28:1143–1175. doi: 10.2174/0929867326666191210104820. PubMed DOI

Schopf F.H., Biebl M.M., Buchner J. The Hsp90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 2017;18:345–360. doi: 10.1038/nrm.2017.20. PubMed DOI

Mahalingam D., Swords R., Carew J.S., Nawrocki S.T., Bhalla K., Giles F.J. Targeting HSP90 for cancer therapy. Br. J. Cancer. 2009;100:1523–1529. doi: 10.1038/sj.bjc.6605066. PubMed DOI PMC

Ischia J., So A.I. The role of heat shock proteins in bladder cancer. Nat. Rev. Urol. 2013;10:386–395. doi: 10.1038/nrurol.2013.108. PubMed DOI

Davenport J., Manjarrez J.R., Peterson L., Krumm B., Blagg B.S.J., Matts R.L. Gambogic Acid, a Natural Product Inhibitor of Hsp90. J. Nat. Prod. 2011;74:1085–1092. doi: 10.1021/np200029q. PubMed DOI PMC

Bhat R., Tummalapalli S.R., Rotella D.P.J. Progress in the Discovery and Development of Heat Shock Protein 90 (Hsp90) Inhibitors: Miniperspective. Med. Chem. 2014;57:8718–8728. doi: 10.1021/jm500823a. PubMed DOI

Jaeger A.M., Whitesell L. Hsp90: Enabler of Cancer Adaptation. Annu. Rev. Cancer Biol. 2019;3:275–297. doi: 10.1146/annurev-cancerbio-030518-055533. DOI

Gupta S.D., Bommaka M.K., Banerjee A. Inhibiting protein-protein interactions of Hsp90 as a novel approach for targeting cancer. Eur. J. Med. Chem. 2019;178:48–63. doi: 10.1016/j.ejmech.2019.05.073. PubMed DOI

Wang L., Zhang Q., You Q. Targeting the HSP90–CDC37–kinase chaperone cycle: A promising therapeutic strategy for cancer. Med. Res. Rev. 2022;42:156–182. doi: 10.1002/med.21807. PubMed DOI

Li L., Chen N.-N., You Q.-D., Xu X.-L. An updated patent review of anticancer Hsp90 inhibitors (2013–present) Expert Opin. Ther. Patents. 2021;31:67–80. doi: 10.1080/13543776.2021.1829595. PubMed DOI

Niu M., Song S., Su Z., Wei L., Li L., Pu W., Zhao C., Ding Y., Wang J., Cao W., et al. Inhibition of heat shock protein (HSP) 90 reverses signal transducer and activator of transcription (STAT) 3-mediated muscle wasting in cancer cachexia mice. Br. J. Pharmacol. 2021;178:4485–4500. doi: 10.1111/bph.15625. PubMed DOI

Jafari A., Rezaei-Tavirani M., Farhadihosseinabadi B., Taranejoo S., Zali H. HSP90 and Co-chaperones: Impact on Tumor Progression and Prospects for Molecular-Targeted Cancer Therapy. Cancer Investig. 2020;38:310–328. doi: 10.1080/07357907.2020.1752227. PubMed DOI

Sanchez J., Carter T.R., Cohen M.S., Blagg B.S.J. Old and New Approaches to Target the Hsp90 Chaperone. Curr. Cancer Drug Targets. 2020;20:253–270. doi: 10.2174/1568009619666191202101330. PubMed DOI PMC

Trepel J., Mollapour M., Giaccone G., Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat. Rev. Cancer. 2010;10:537–549. doi: 10.1038/nrc2887. PubMed DOI PMC

Nazaripour E., Mousazadeh F., Moghadam M.D., Najafi K., Borhani F., Sarani M., Ghasemi M., Rahdar A., Iravani S., Khatami M. Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. Inorg. Chem. Commun. 2021;131:108800. doi: 10.1016/j.inoche.2021.108800. DOI

Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI

Delfi M., Sartorius R., Ashrafizadeh M., Sharifi E., Zhang Y., De Berardinis P., Zarrabi A., Varma R.S., Tay F.R., Smith B.R., et al. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today. 2021;38:101119. doi: 10.1016/j.nantod.2021.101119. PubMed DOI PMC

Alavi M., Varma R.S. Overview of Novel Strategies for the Delivery of Anthracyclines to Cancer Cells by Liposomal and Polymeric Nano Formulations. Int. J. Biol. Macromol. 2020;164:2197–2203. doi: 10.1016/j.ijbiomac.2020.07.274. PubMed DOI

Makvandi P., Baghbantaraghdari Z., Zhou W., Zhang Y., Manchanda R., Agarwal T., Wu A., Maiti T.K., Varma R.S., Smith B.R. Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnol. Adv. 2021;48:107711. doi: 10.1016/j.biotechadv.2021.107711. PubMed DOI

Hajipour A.R., Khorsandi Z., Mortazavi M., Farrokhpour H. Green, efficient and large-scale synthesis of benzimidazoles, benzoxazoles and benzothiazoles derivatives using ligand-free cobalt-nanoparticles: As potential anti-estrogen breast cancer agents, and study of their interactions with estrogen receptor by molecular docking. RSC Adv. 2015;5:107822–107828. doi: 10.1039/c5ra22207a. DOI

Khorsandi Z., Hajipour A.R., Sarfjoo M.R., Varma R.S. A Pd/Cu-Free magnetic cobalt catalyst for C–N cross coupling reactions: Synthesis of abemaciclib and fedratinib. Green Chem. 2021;23:5222–5229. doi: 10.1039/D1GC00518A. DOI

Khorsandi Z., Keshavarzipour F., Varma R.S., Hajipour A.R., Sadeghi-Aliabadi H. Sustainable synthesis of potential antitumor new derivatives of Abemaciclib and Fedratinib via C-N cross coupling reactions using Pd/Cu-free Co-catalyst. Mol. Catal. 2021;517:112011. doi: 10.1016/j.mcat.2021.112011. DOI

Whitesell L., Lindquist S.L. HSP90 and the chaperoning of cancer. Nat. Rev. Cancer. 2005;5:761–772. doi: 10.1038/nrc1716. PubMed DOI

Jego G., Hazoumé A., Seigneuric R., Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013;332:275–285. doi: 10.1016/j.canlet.2010.10.014. PubMed DOI

Calderwood S.K., Khaleque M.A., Sawyer D.B., Ciocca D.R. Heat Shock Proteins in Cancer: Chaperones of Tum Origenesis. J. Pet. Sci. Eng. 2006;31:164–172. PubMed

Patel H.J., Patel P.D., Ochiana S.O., Yan P., Sun W., Patel M.R., Shah S.K., Tramentozzi E., Brooks J., Bolaender A.J. Structure–Activity Relationship in a Purine-Scaffold Compound Series with Selectivity for the Endoplasmic Reticulum Hsp90 ParalogGrp94. Med. Chem. 2015;58:3922–3943. doi: 10.1021/acs.jmedchem.5b00197. PubMed DOI PMC

Johnson J.L. Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim. Biophys. Acta Mol. Cell Res. 2012;1823:607–613. doi: 10.1016/j.bbamcr.2011.09.020. PubMed DOI

Csermely P., Miyata Y., Schnaider T., Yahara I. Autophosphorylation of grp94 (Endoplasmin) J. Biol. Chem. 1995;270:6381–6388. doi: 10.1074/jbc.270.11.6381. PubMed DOI

Mishra P., Bolon D.N. Designed Hsp90 Heterodimers Reveal an Asymmetric ATPase-Driven Mechanism In Vivo. Mol. Cell. 2014;53:344–350. doi: 10.1016/j.molcel.2013.12.024. PubMed DOI PMC

Meyer P., Prodromou C., Hu B., Vaughan C., Roe S.M., Panaretou B., Piper P.W., Pearl L.H. Structural and Functional Analysis of the Middle Segment of Hsp90: Implications for ATP Hydrolysis and Client Protein and Cochaperone Interactions. Mol. Cell. 2003;11:647–658. doi: 10.1016/S1097-2765(03)00065-0. PubMed DOI

Gupta S.D. Hsp90 Flexibility and Development of its Inhibitors for the Treatment of Cancer. Curr. Chem. Biol. 2018;12:53–64. doi: 10.2174/2212796812666180405144003. DOI

Gupta S.D. Medicinal Chemistry with Pharma-Ceutical Product Development. Apple Academic Press; New York, NY, USA: 2019. Novel Anti-Cancer Drugs Based on Hsp90 Inhibitory Mechanisms: A Recent Report; pp. 57–104.

Gupta S.D., Pan C.H. Recent update on discovery and development of Hsp90 inhibitors as senolytic agents. Int. J. Biol. Macromol. 2020;161:1086–1098. doi: 10.1016/j.ijbiomac.2020.06.115. PubMed DOI

Hanahan D., Weinberg R.A. The Hallmarks of Cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. PubMed DOI

Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Vartholomaiou E., Echeverría P.C., Picard D. Unusual Suspects in the Twilight Zone Between the Hsp90 Interactome and Carcinogenesis. Adv. Cancer Res. 2016;129:1–30. doi: 10.1016/bs.acr.2015.08.001. PubMed DOI

Hayat U., Elliott G.T., Olszanski A.J., Altieri D.C. Feasibility and safety of targeting mitochondria for cancer therapy–preclinical characterization of gamitrinib, a first-in-class, mitochondriaL-targeted small molecule Hsp90 inhibitor. Cancer Biol. Ther. 2022;23:117–126. doi: 10.1080/15384047.2022.2029132. PubMed DOI PMC

Biondini M., Kiepas A., El-Houjeiri L., Annis M.G., Hsu B.E., Fortier A.-M., Morin G., Martina J.A., Sirois I., Aguilar-Mahecha A., et al. HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene. 2022;41:1701–1717. doi: 10.1038/s41388-022-02206-z. PubMed DOI

Epp-Ducharme B., Dunne M., Fan L., Evans J.C., Ahmed L., Bannigan P., Allen C. Heat-activated nanomedicine formulation improves the anticancer potential of the HSP90 inhibitor luminespib in vitro. Sci. Rep. 2021;11:11103. doi: 10.1038/s41598-021-90585-w. PubMed DOI PMC

Wu Y.-W., Chao M.-W., Tu H.-J., Chen L.-C., Hsu K.-C., Liou J.-P., Yang C.-R., Yen S.-C., HuangFu W.-C., Pan S.-L. A novel dual HDAC and HSP90 inhibitor, MPT0G449, downregulates oncogenic pathways in human acute leukemia in vitro and in vivo. Oncogenesis. 2021;10:39. doi: 10.1038/s41389-021-00331-0. PubMed DOI PMC

Mshaik R., Simonet J., Georgievski A., Jamal L., Bechoua S., Ballerini P., Bellaye P.-S., Mlamla Z., de Barros J.-P.P., Geissler A., et al. HSP90 inhibitor NVP-BEP800 affects stability of SRC kinases and growth of T-cell and B-cell acute lymphoblastic leukemias. Blood Cancer J. 2021;11:61. doi: 10.1038/s41408-021-00450-2. PubMed DOI PMC

Abdelmoaty A.A.A., Zhang P., Lin W., Fan Y.-J., Ye S.-N., Xu J.-H. C0818, a novel curcumin derivative, induces ROS-dependent cytotoxicity in human hepatocellular carcinoma cells in vitro via disruption of Hsp90 function. Acta Pharmacol. Sin. 2022;43:446–456. doi: 10.1038/s41401-021-00642-3. PubMed DOI PMC

Zhao S., Zhou L., Dicker D.T., Lev A., Zhang S., Ross E., El-Deiry W.S. Anti-Cancer Efficacy Including Rb-Deficient Tumors and VHL-Independent HIF1α Proteasomal Destabilization by Dual Targeting of CDK1 or CDK4/6 and Hsp90. Sci. Rep. 2021;11:20871. doi: 10.1038/s41598-021-00150-8. PubMed DOI PMC

Chen X.-L., Liu P., Zhu W.-L., Lou L.-G. DCZ5248, a novel dual inhibitor of Hsp90 and autophagy, exerts antitumor activity against colon cancer. Acta Pharmacol. Sin. 2021;42:132–141. doi: 10.1038/s41401-020-0398-2. PubMed DOI PMC

Cheng C.-J., Liu K.-X., Zhang M., Shen F.-K., Ye L.-L., Wu W.-B., Hou X.-T., Hao E.-W., Hou Y.-Y., Bai G. Okicamelliaside targets the N-terminal chaperone pocket of HSP90 disrupts the chaperone protein interaction of HSP90-CDC37 and exerts antitumor activity. Acta Pharmacol. Sin. 2021;43:1046–1058. doi: 10.1038/s41401-021-00737-x. PubMed DOI PMC

Konstantinopoulos P.A., Cheng S.-C., Supko J.G., Polak M., Wahner-Hendrickson A.E., Ivy S.P., Bowes B., Sawyer H., Basada P., Hayes M., et al. Combined PARP and HSP90 inhibition: Preclinical and Phase 1 evaluation in patients with advanced solid tumours. Br. J. Cancer. 2021;126:1027–1036. doi: 10.1038/s41416-021-01664-8. PubMed DOI PMC

Magwenyane A.M., Lawal M.M., Amoako D.G., Somboro A.M., Agoni C., Khan R.B., Mhlongo N.N., Kumalo H.M. Exploring the inhibitory mechanism of resorcinylic isoxazole amine NVP-AUY922 towards the discovery of potential heat shock protein 90 (Hsp90) inhibitors. Sci. Afr. 2022;15:e01107. doi: 10.1016/j.sciaf.2022.e01107. DOI

Serwetnyk M.A., Blagg S.J. The Disruption of Protein−Protein Interactions with Co-chaperones and Client Substrates as a Strategy Towards Hsp90 Inhibition. Acta. Pharm. Sin. B. 2021;11:1446–1468. doi: 10.1016/j.apsb.2020.11.015. PubMed DOI PMC

Roe S.M., Prodromou C., O’Brien R., Ladbury J.E., Piper P.W., Pearl L.H. Structural Basis for Inhibition of the Hsp90 Molecular Chaperone by the Antitumor Antibiotics Radicicol and Geldanamycin. J. Med. Chem. 1999;42:260–266. doi: 10.1021/jm980403y. PubMed DOI

Supko J.G., Hickman R.L., Grever M.R., Malspeis L. Preclinical Pharmacologic Evaluation of Geldanamycin as an Antitumor Agent. Cancer Chemother. Pharmacol. 1995;36:305–315. doi: 10.1007/BF00689048. PubMed DOI

Banerji U., O’Donnell A., Scurr M., Benson C., Hanwell J., Clark S., Raynaud F., Turner A., Walton M., Workman P., et al. Phase I Trial of the Heat Shock Protein 90 (Hsp90) Inhibitor 17-Allylamino 17-Demethoxygeldanamycin (17AAG). Pharmacokinetic (PK) Profile and Pharmacodynamic (PD) Endpoints. Proc. Am. Soc. Clin. Oncol. 2001;20:326.

Egorin M.J., Zuhowski E.G., Rosen D.M., Sentz D.L., Covey J.M., Eiseman J.L. Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1. Cancer Chemother. Pharmacol. 2001;47:291–302. doi: 10.1007/s002800000242. PubMed DOI

Egorin M.J., Lagattuta T.F., Hamburger D.R., Covey J.M., White K.D., Musser S.M., Eiseman J.L. Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother. Pharmacol. 2002;49:7–19. doi: 10.1007/s00280-001-0380-8. PubMed DOI

Munster P.N., Tong L., Schwartz L., Larson S., Kenneson K., De La Cruz A., Rosen N., Scher H. Phase I Trial of 17(Allylamino)-17-demethoxygeldanamycin (17AAG) in Patients (Pts) with Advanced Solid Malignancies. Proc. Am. Soc. Clin. Oncol. 2001;20:83–91.

Soga S., Sharma S.V., Shiotsu Y., Shimizu M., Tahara H., Yamaguchi K., Ikuina Y., Murakata C., Tamaoki T., Kurebayashi J., et al. Stereospecific antitumor activity of radicicol oxime derivatives. Cancer Chemother. Pharmacol. 2001;48:435–445. doi: 10.1007/s002800100373. PubMed DOI

Johnson V.A., Singh E.K., Nazarova L.A., Alexander L.D., McAlpine S.R. Macrocyclic inhibitors of hsp90. Curr. Top. Med. Chem. 2010;10:1380–1402. doi: 10.2174/156802610792232088. PubMed DOI PMC

Porter J.R., Ge J., Lee J., Normant E., West K. Ansamycin Inhibitors of Hsp90: Nature’s Prototype for Anti-chaperone Therapy. Curr. Top. Med. 2009;9:1386–1418. doi: 10.2174/156802609789895719. PubMed DOI

Tanida S., Hasegawa T., Higashide E., Macbecins I., Macbecins I.I. New Antitumor Antibiotics. I. Producing Organism, Fermentation and Antimicrobial Activities. J. Antibiot. 1980;33:199–204. doi: 10.7164/antibiotics.33.199. PubMed DOI

Tian Z.-Q., Liu Y., Zhang D., Wang Z., Dong S.D., Carreras C.W., Zhou Y., Rastelli G., Santi D.V., Myles D.C. Synthesis and biological activities of novel 17-aminogeldanamycin derivatives. Bioorg. Med. Chem. 2004;12:5317–5329. doi: 10.1016/j.bmc.2004.07.053. PubMed DOI

Wagner A.J., Chugh R., Rosen L.S., Morgan J.A., George S., Gordon M., Dunbar J., Normant E., Grayzel D., Demetri G.D. A Phase I Study of the HSP90 Inhibitor Retaspimycin Hydrochloride (IPI-504) in Patients with Gastrointestinal Stromal Tumors or Soft-Tissue Sarcomas. Clin. Cancer Res. 2013;19:6020–6029. doi: 10.1158/1078-0432.CCR-13-0953. PubMed DOI PMC

Floris G., Debiec-Rychter M., Wozniak A., Stefan C., Normant E., Faa G., Machiels K., Vanleeuw U., Sciot R., Schöffski P. The Heat Shock Protein 90 Inhibitor IPI-504 Induces KIT Degradation, Tumor Shrinkage, and Cell Proliferation Arrest in Xenograft Models of Gastrointestinal Stromal Tumors. Mol. Cancer Ther. 2011;10:1897–1908. doi: 10.1158/1535-7163.MCT-11-0148. PubMed DOI

Floris G., Sciot R., Wozniak A., Van Looy T., Wellens J., Faa G., Normant E., Debiec-Rychter M., Schöffski P. The Novel Hsp90 inhibitor, IPI-493, is Highly Effective in Human Gastrostrointestinal Stromal Tumor Xenografts Carrying Heterogeneous KIT Mutations. Clin. Cancer Res. 2011;17:5604–5614. doi: 10.1158/1078-0432.CCR-11-0562. PubMed DOI

Whitesell L., Mimnaugh E.G., De Costa B., Myers C.E., Neckers L.M. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: Essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. USA. 1994;91:8324–8328. doi: 10.1073/pnas.91.18.8324. PubMed DOI PMC

Stebbins C.E., Russo A.A., Schneider C., Rosen N., Hartl F., Pavletich N.P. Crystal Structure of an Hsp90–Geldanamycin Complex: Targeting of a Protein Chaperone by an Antitumor Agent. Cell. 1997;89:239–250. doi: 10.1016/S0092-8674(00)80203-2. PubMed DOI

Soga S., Shiotsu Y., Akinaga S., Sharma S. Development of Radicicol Analogues. Curr. Cancer Drug Targets. 2003;3:359–369. doi: 10.2174/1568009033481859. PubMed DOI

Miyata Y. Hsp90 Inhibitor Geldanamycin and Its Derivatives as Novel Cancer Chemotherapeutic Agents. Curr. Pharm. Des. 2005;11:1131–1138. doi: 10.2174/1381612053507585. PubMed DOI

Chiosis G., Lucas B., Huezo H., Solit D., Basso A., Rosen N. Development of Purine-Scaffold Small Molecule Inhibitors of Hsp90. Curr. Cancer Drug Targets. 2003;3:371–376. doi: 10.2174/1568009033481778. PubMed DOI

Conejo-García A., García-Rubiño M.E., Marchal J.A., Núñez M.C., Ramírez A., Cimino S., García M., Aránega A., Gallo M.A., Campos J.M. Synthesis and anticancer activity of (RS)-9-(2,3-dihydro-1,4-benzoxaheteroin-2-ylmethyl)-9H-purines. Eur. J. Med. Chem. 2011;46:3795–3801. doi: 10.1016/j.ejmech.2011.05.046. PubMed DOI

Pelliccia S., Amato J., Capasso D., Di Gaetano S., Massarotti A., Piccolo M., Irace C., Tron G.C., Pagano B., Randazzo A.J. Bio-Inspired Dual-Selective BCL-2/c-MYC G-Quadruplex Binders: Design, Synthesis, and Anticancer Activity of Drug-like Imidazo [2,1-i] purine Derivatives. Med. Chem. 2019;63:2035–2050. doi: 10.1021/acs.jmedchem.9b00262. PubMed DOI

Ashour F.A., Rida S.M., El-Hawash S.A., ElSemary M.M., Badr M.H. Synthesis, Anticancer, Anti-HIV-1, and Antimicrobial Activity of Some Tricyclic Triazino and Triazolo [4,3-e] purine Derivatives. Cancer Causes Control. 2012;21:1107–1119. doi: 10.1007/s00044-011-9612-6. DOI

Kinali-Demirci S., İdil Ö., Dişli A. Synthesis of Some Novel Purine Derivatives Incorporating Tetrazole Ring and Investigation of their Antimicrobial Activity and DNA Interactions. Cancer Cell Int. J. Mol. Histol. 2015;24:1218–1225. doi: 10.1007/s00044-014-1209-4. DOI

Abdallah A.E., Elgemeie G.H. Development; Therapy, Design, Synthesis, Docking, and Antimicrobial Evaluation of Some Novel Pyrazolo [1,5-a] Pyrimidines and their Corresponding Cycloalkane Ring-fused Derivatives as Purine Analogs. Drug Des. Devel. Ther. 2018;12:1785–1798. doi: 10.2147/DDDT.S159310. PubMed DOI PMC

Rosemeyer H. The Chemodiversity of Purine as a Constituent of Natural Products. Chem. Biodivers. 2004;1:361–401. doi: 10.1002/cbdv.200490033. PubMed DOI

Kaneko K., Aoyagi Y., Fukuuchi T., Inazawa K., Yamaoka N. Total Purine and Purine Base Content of Common Foodstuffs for Facilitating Nutritional Therapy for Gout and Hyperuricemia. Biol. Pharm. Bull. 2014;37:709–721. doi: 10.1248/bpb.b13-00967. PubMed DOI

Yin J., Ren W., Huang X., Deng J., Li T., Yin Y. Potential Mechanisms Connecting Purine Metabolism and Cancer Therapy. Front. Immunol. 2018;9:1697. doi: 10.3389/fimmu.2018.01697. PubMed DOI PMC

Chiosis G., Timaul M.N., Lucas B., Munster P.N., Zheng F.F., Sepp-Lorenzino L., Rosen N. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem. Biol. 2001;8:289–299. doi: 10.1016/S1074-5521(01)00015-1. PubMed DOI

Bao R., Lai C.-J., Qu H., Wang D., Yin L., Zifcak B., Atoyan R., Wang J., Samson M., Forrester J., et al. CUDC-305, a Novel Synthetic HSP90 Inhibitor with Unique Pharmacologic Properties for Cancer Therapy. Clin. Cancer Res. 2009;15:4046–4057. doi: 10.1158/1078-0432.CCR-09-0152. PubMed DOI

Zhang H., Neely L., Lundgren K., Yang Y.-C., Lough R., Timple N., Burrows F. BIIB021, a synthetic HSP90 inhibitor, has broad application against tumors with acquired multidrug resistance. Int. J. Cancer. 2010;126:1226–1234. doi: 10.1002/ijc.24825. PubMed DOI

Yin X., Zhang H., Lundgren K., Wilson L., Burrows F., Shores C.G. BIIB021, a novel HSP90 inhibitor, sensitizes head and neck squamous cell carcinoma to radiotherapy. Int. J. Cancer. 2010;126:1216–1225. doi: 10.1002/ijc.24815. PubMed DOI

Chaurasiya A., Wahan S.K., Sahu C., Chawla P.A. An insight into the rational design of recent purine-based scaffolds in targeting various cancer pathways. J. Mol. Struct. 2022:134308. doi: 10.1016/j.molstruc.2022.134308. DOI

Wang X.-T., Bao C.-H., Jia Y.-B., Wang N., Ma W., Liu F., Wang C., Wang J.-B., Song Q.-X., Cheng Y.-F. BIIB021, a novel Hsp90 inhibitor, sensitizes esophageal squamous cell carcinoma to radiation. Biochem. Biophys. Res. Commun. 2014;452:945–950. doi: 10.1016/j.bbrc.2014.09.026. PubMed DOI

ElFiky A., Saif M.W., Beeram M., Brien S.O., Lammanna N., Castro J.E., Woodworth J., Perea R., Storgard C., Von Hoff D.D. BIIB021, an oral, synthetic non-ansamycin Hsp90 inhibitor: Phase I experience. J. Clin. Oncol. 2008;26:2503. doi: 10.1200/jco.2008.26.15_suppl.2503. DOI

Dickson M.A., Okuno S.H., Keohan M.L., Maki R.G., D’Adamo D.R., Akhurst T.J., Antonescu C.R., Schwartz G.K. Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann. Oncol. 2013;24:252–257. doi: 10.1093/annonc/mds275. PubMed DOI PMC

Emami S., Dadashpour S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem. 2015;102:611–630. doi: 10.1016/j.ejmech.2015.08.033. PubMed DOI

Zhang L., Xu Z. Coumarin-containing hybrids and their anticancer activities. Eur. J. Med. Chem. 2019;181:111587. doi: 10.1016/j.ejmech.2019.111587. PubMed DOI

Al-Warhi T., Sabt A., Elkaeed E.B., Eldehna W.M. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg. Chem. 2020;103:104163. doi: 10.1016/j.bioorg.2020.104163. PubMed DOI

Song X., Fan J., Liu L., Liu X., Gao F. Coumarin derivatives with anticancer activities: An update. Arch. Pharm. 2020;353:2000025. doi: 10.1002/ardp.202000025. PubMed DOI

Qin H.-L., Zhang Z.-W., Ravindar L., Rakesh K. Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur. J. Med. Chem. 2020;207:112832. doi: 10.1016/j.ejmech.2020.112832. PubMed DOI

Keshavarzipour F., Tavakol H. The synthesis of coumarin derivatives using choline chloride/zinc chloride as a deep eutectic solvent. J. Iran. Chem. Soc. 2016;13:149–153. doi: 10.1007/s13738-015-0722-9. DOI

Ahmed E.Y., Elserwy W.S., El-Mansy M.F., Serry A.M., Salem A.M., Abdou A.M., Abdelrahman B.A., Elsayed K.H., Elaziz M.R.A. Angiokinase inhibition of VEGFR-2, PDGFR and FGFR and cell growth inhibition in lung cancer: Design, synthesis, biological evaluation and molecular docking of novel azaheterocyclic coumarin derivatives. Bioorg. Med. Chem. Lett. 2021;48:128258. doi: 10.1016/j.bmcl.2021.128258. PubMed DOI

Burlison J.A., Neckers L., Smith A.B., Maxwell A.A., Blagg B.S.J. Novobiocin: Redesigning a DNA Gyrase Inhibitor for Selective Inhibition of Hsp90. J. Am. Chem. Soc. 2006;128:15529–15536. doi: 10.1021/ja065793p. PubMed DOI

Shelton S.N., Shawgo M.E., Matthews S.B., Lu Y., Donnelly A.C., Szabla K., Tanol M., Vielhauer G.A., Rajewski R.A., Matts R.L., et al. KU135, a Novel Novobiocin-Derived C-Terminal Inhibitor of the 90-kDa Heat Shock Protein, Exerts Potent Antiproliferative Effects in Human Leukemic Cells. Mol. Pharmacol. 2009;76:1314–1322. doi: 10.1124/mol.109.058545. PubMed DOI PMC

Garg G., Zhao H., Blagg B.S.J. Design, Synthesis, and Biological Evaluation of Ring-Constrained Novobiocin Analogues as Hsp90 C-Terminal Inhibitors. ACS Med. Chem. Lett. 2015;6:204–209. doi: 10.1021/ml5004475. PubMed DOI PMC

Wei Q., Ning J.-Y., Dai X., Gao Y.-D., Su L., Zhao B.-X., Miao J.-Y. Discovery of novel HSP90 inhibitors that induced apoptosis and impaired autophagic flux in A549 lung cancer cells. Eur. J. Med. Chem. 2018;145:551–558. doi: 10.1016/j.ejmech.2018.01.024. PubMed DOI

Kouznetsov V.V., Méndez L.Y.V., Galvis C.E.P., Villamizar M.C.O. The direct C–H alkenylation of quinoline N-oxides as a suitable strategy for the synthesis of promising antiparasitic drugs. New J. Chem. 2020;44:12–19. doi: 10.1039/C9NJ05054J. DOI

Keshavarzipour F., Tavakol H. Zinc Cation Supported on Carrageenan Magnetic Nanoparticles: A Novel, Green and Efficient Catalytic System for One-pot Three-Component Synthesis of Quinoline Derivatives. Appl. Organomet. Chem. 2017;31:3682–3692. doi: 10.1002/aoc.3682. DOI

Insuasty D., García S., Abonia R., Insuasty B., Quiroga J., Nogueras M., Laali K.K. Design, Synthesis, and Molecular Docking Study of Novel Quinoline-Based Bis-Chalcones as Potential Antitumor Agents. Arch. Pharm. 2021;354:2100094–2100103. doi: 10.1002/ardp.202100094. PubMed DOI

Jin G., Li Z., Xiao F., Qi X., Sun X. Optimization of activity localization of quinoline derivatives: Design, synthesis, and dual evaluation of biological activity for potential antitumor and antibacterial agents. Bioorg. Chem. 2020;99:103837. doi: 10.1016/j.bioorg.2020.103837. PubMed DOI

Mishra S., Salahuddin R.K., Majumder A., Kumar A., Singh C., Tiglani D. Updates on Synthesis and Biological Activities of Quinoline Derivatives: A Review. Int. J. Pharm. Sci. Rev. Res. 2021;13:3941–3960.

Goyal S., Binnington B., McCarthy S.D., Desmaële D., Férrié L., Figadère B., Loiseau P.M., Branch D.R. Inhibition of in vitro Ebola infection by anti-parasitic quinoline derivatives. F1000Research. 2020;9:268. doi: 10.12688/f1000research.22352.1. PubMed DOI PMC

Verma C., Quraishi M., Ebenso E.E. Quinoline and its derivatives as corrosion inhibitors: A review. Surfaces Interfaces. 2020;21:100634. doi: 10.1016/j.surfin.2020.100634. DOI

Kayamba F., Malimabe T., Ademola I.K., Pooe O.J., Kushwaha N.D., Mahlalela M., van Zyl R.L., Gordon M., Mudau P.T., Zininga T., et al. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. Eur. J. Med. Chem. 2021;217:113330. doi: 10.1016/j.ejmech.2021.113330. PubMed DOI

Rao K.V., Cullen W.P. Streptonigrin, an Antitumor Substance. I. Isolation and Characterization. Antibiot. Annu. 1959;7:950–953. PubMed

Chirigos M.A., Pearson J.W., Papas T.S., Woods W.A., Wood H.B., Jr., Spahn G. Effect of Three Strains of BeG Against a Murine Leukemia After Drug Therapy. Cancer Chemother. Rep. 1973;57:305–309. PubMed

Balitz D.M., Bush J.A., Bradner W.T., Doyle T.W., O’Herron F.A., Nettleton D.E. Isolation of lavendamycin. A new antibiotic from Streptomyces lavendulae. J. Antibiot. 1982;35:259–265. doi: 10.7164/antibiotics.35.259. PubMed DOI

Ganesh T., Min J., Thepchatri P., Du Y., Li L., Lewis I., Wilson L., Fu H., Chiosis G., Dingledine R., et al. Discovery of aminoquinolines as a new class of potent inhibitors of heat shock protein 90 (Hsp90): Synthesis, biology, and molecular modeling. Bioorg. Med. Chem. 2008;16:6903–6910. doi: 10.1016/j.bmc.2008.05.047. PubMed DOI PMC

Audisio D., Messaoudi S., Cegielkowski L., Peyrat J.-F., Brion J.-D., Methy-Gonnot D., Radanyi C., Renoir J.-M., Alami M. Discovery and Biological Activity of 6BrCaQ as an Inhibitor of the Hsp90 Protein Folding Machinery. Chem. Med. Chem. 2011;6:804–815. doi: 10.1002/cmdc.201000489. PubMed DOI

Nepali K., Kumar S., Huang H.-L., Kuo F.-C., Lee C.-H., Kuo C.-C., Yeh T.-K., Li Y.-H., Chang J.-Y., Liou J.-P., et al. 2-Aroylquinoline-5,8-diones as potent anticancer agents displaying tubulin and heat shock protein 90 (HSP90) inhibition. Org. Biomol. Chem. 2015;14:716–723. doi: 10.1039/C5OB02100F. PubMed DOI

Malayeri S.O., Abnous K., Arab A., Akaberi M., Mehri S., Zarghi A., Ghodsi R. Design, Synthesis and Biological Evaluation of 7-(Aryl)-2,3-dihydro-[1,4] dioxino [2,3-g] Quinoline Derivatives as Potential Hsp90 Inhibitors and Anticancer Agents. Bioorg. Med. Chem. 2017;25:1294–1302. doi: 10.1016/j.bmc.2016.12.050. PubMed DOI

Liang C., Hao H., Wu X., Li Z., Zhu J., Lu C., Shen Y. Design and synthesis of N-(5-chloro-2,4-dihydroxybenzoyl)-(R)-1,2,3,4-tetrahydroisoquinoline-3-carboxamides as novel Hsp90 inhibitors. Eur. J. Med. Chem. 2016;121:272–282. doi: 10.1016/j.ejmech.2016.05.033. PubMed DOI

Nepali K., Lin M.-H., Chao M.-W., Peng S.-J., Hsu K.-C., Lin T.E., Chen M.-C., Lai M.-J., Pan S.-L., Liou J.-P. Amide-tethered quinoline-resorcinol conjugates as a new class of HSP90 inhibitors suppressing the growth of prostate cancer cells. Bioorg. Chem. 2019;91:103119. doi: 10.1016/j.bioorg.2019.103119. PubMed DOI

Relitti N., Saraswati A.P., Chemi G., Brindisi M., Brogi S., Herp D., Schmidtkunz K., Saccoccia F., Ruberti G., Ulivieri C., et al. Novel quinolone-based potent and selective HDAC6 inhibitors: Synthesis, molecular modeling studies and biological investigation. Eur. J. Med. Chem. 2021;212:112998. doi: 10.1016/j.ejmech.2020.112998. PubMed DOI

Liu H., Long S., Rakesh K.P., Zha G.F. Structure-Activity Relationships (SAR) of Triazine Derivatives: Promising Antimicrobial Agents. Eur. J. Med. Chem. 2020;185:111804. doi: 10.1016/j.ejmech.2019.111804. PubMed DOI

Gavade S.N., Markad V.L., Kodam K.M., Shingare M.S., Mane D.V. Synthesis and Biological Evaluation of Novel 2, 4, 6-Triazine Derivatives as Antimicrobial Agents. Bioorg. Med. Chem. Lett. 2012;22:5075–5077. doi: 10.1016/j.bmcl.2012.05.111. PubMed DOI

Cascioferro S., Parrino B., Spanò V., Carbone A., Montalbano A., Barraja P., Diana P., Cirrincione G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur. J. Med. Chem. 2017;142:328–375. doi: 10.1016/j.ejmech.2017.08.009. PubMed DOI

Singla P., Luxami V., Paul K. Triazine as a Promising Scaffold for its Versatile Biological Behavior. Eur. J. Med. Chem. 2015;102:39–57. doi: 10.1016/j.ejmech.2015.07.037. PubMed DOI

Patel P.K., Patel R.V., Mahajan D.H., Parikh P.A., Mehta G.N., Pannecouque C., Chikhalia K.H. Different Heterocycles Functionalized s-Triazine Analogues: Design, Synthesis and In Vitro Antimicrobial, Antituberculosis, and Anti-HIV Assessment. J. Heterocycl. Chem. 2014;51:1641–1658. doi: 10.1002/jhet.1769. DOI

Feldman R.I., Mintzer B., Zhu D., Wu J.M., Biroc S.L., Yuan S., Emayan K., Chang Z., Chen D., Arnaiz D.O., et al. Potent Triazolothione Inhibitor of Heat-Shock Protein-90. Oncol. Lett. 2009;74:43–50. doi: 10.1111/j.1747-0285.2009.00833.x. PubMed DOI

Lee T., Seo Y.H. Targeting the hydrophobic region of Hsp90′s ATP binding pocket with novel 1,3,5-triazines. Bioorg. Med. Chem. Lett. 2013;23:6427–6431. doi: 10.1016/j.bmcl.2013.09.050. PubMed DOI

Miura T., Fukami T.A., Hasegawa K., Ono N., Suda A., Shindo H., Yoon D.-O., Kim S.-J., Na Y.-J., Aoki Y., et al. Lead generation of heat shock protein 90 inhibitors by a combination of fragment-based approach, virtual screening, and structure-based drug design. Bioorg. Med. Chem. Lett. 2011;21:5778–5783. doi: 10.1016/j.bmcl.2011.08.001. PubMed DOI

Suda A., Koyano H., Hayase T., Hada K., Kawasaki K.-I., Komiyama S., Hasegawa K., Fukami T.A., Sato S., Miura T., et al. Design and synthesis of novel macrocyclic 2-amino-6-arylpyrimidine Hsp90 inhibitors. Bioorg. Med. Chem. Lett. 2012;22:1136–1141. doi: 10.1016/j.bmcl.2011.11.100. PubMed DOI

Suda A., Kawasaki K.-I., Komiyama S., Isshiki Y., Yoon D.-O., Kim S.-J., Na Y.-J., Hasegawa K., Fukami T.A., Sato S., et al. Design and synthesis of 2-amino-6-(1H,3H-benzo[de]isochromen-6-yl)-1,3,5-triazines as novel Hsp90 inhibitors. Bioorg. Med. Chem. 2014;22:892–905. doi: 10.1016/j.bmc.2013.11.036. PubMed DOI

Zhao Z., Zhu J., Quan H., Wang G., Li B., Zhu W., Xie C., Lou L. X66, a novel N-terminal heat shock protein 90 inhibitor, exerts antitumor effects without induction of heat shock response. Oncotarget. 2016;7:29648–29663. doi: 10.18632/oncotarget.8818. PubMed DOI PMC

Ali I., Lone M., Al-Othman Z., Al-Warthan A., Sanagi M. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development. Curr. Drug Targets. 2015;16:711–734. doi: 10.2174/1389450116666150309115922. PubMed DOI

Çalışkan B., Sinoplu E., İbiş K., Akhan Güzelcan E., Atalay R.Ç., Banoglu E. Synthesis and Cellular Bioactivities of Novel Isoxazole Derivatives Incorporating an Arylpiperazine Moiety as Anticancer Agents. J. Enzym. Inhib. Med. Chem. 2018;33:1352–1361. doi: 10.1080/14756366.2018.1504041. PubMed DOI PMC

Shaik A., Bhandare R.R., Palleapati K., Nissankararao S., Kancharlapalli V., Shaik S. Antimicrobial, Antioxidant, and Anticancer Activities of Some Novel Isoxazole Ring Containing Chalcone and Dihydropyrazole Derivatives. Molecules. 2020;25:1047. doi: 10.3390/molecules25051047. PubMed DOI PMC

Barmade M.A., Murumkar P.R., Sharma M.K., Yadav M.R. Medicinal Chemistry Perspective of Fused Isoxazole Derivatives. Curr. Top. Med. Chem. 2016;16:2863–2883. doi: 10.2174/1568026616666160506145700. PubMed DOI

Galenko A.V., Khlebnikov A.F., Novikov M.S., Pakalnis V.V., Rostovskii N.V. Recent advances in isoxazole chemistry. Russ. Chem. Rev. 2015;84:335–377. doi: 10.1070/RCR4503. DOI

Sysak A., Obmińska-Mrukowicz B. Isoxazole ring as a useful scaffold in a search for new therapeutic agents. Eur. J. Med. Chem. 2017;137:292–309. doi: 10.1016/j.ejmech.2017.06.002. PubMed DOI

Arya G.C., Kaur K., Jaitak V. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem. 2021;221:113511. doi: 10.1016/j.ejmech.2021.113511. PubMed DOI

Fernald K., Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol. 2013;23:620–633. doi: 10.1016/j.tcb.2013.07.006. PubMed DOI PMC

Tonks N.K. Protein Tyrosine Phosphatases: From Genes, to Function, to Disease. Nat. Rev. Mol. Cell Biol. 2006;7:833–846. doi: 10.1038/nrm2039. PubMed DOI

Taldone T., Gozman A., Maharaj R., Chiosis G. Targeting Hsp90: Small-molecule inhibitors and their clinical development. Curr. Opin. Pharmacol. 2008;8:370–374. doi: 10.1016/j.coph.2008.06.015. PubMed DOI PMC

Sharp S.Y., Prodromou C., Boxall K., Powers M.V., Holmes J.L., Box G., Workman P. Inhibition of The Heat Shock Protein 90 Molecular Chaperone in vitro and in vivo by Novel, Synthetic, Potent Resorcinylic Pyrazole/isoxazole Amide Analogues. Mol. Cancer Ther. 2007;6:1198–1211. doi: 10.1158/1535-7163.MCT-07-0149. PubMed DOI

Eccles S.A., Massey A., Raynaud F.I., Sharp S.Y., Box G., Valenti M., Patterson L., de Haven Brandon A., Gowan S., Boxall F., et al. NVP-AUY922: A Novel Heat Shock Protein 90 Inhibitor Active against Xenograft Tumor Growth, Angiogenesis, and Metastasis. Cancer Res. 2008;68:2850–2860. doi: 10.1158/0008-5472.CAN-07-5256. PubMed DOI

Chen D., Shen A., Li J., Shi F., Chen W., Ren J., Liu H., Xu Y., Wang X., Yang X., et al. Discovery of potent N-(isoxazol-5-yl)amides as HSP90 inhibitors. Eur. J. Med. Chem. 2014;87:765–781. doi: 10.1016/j.ejmech.2014.09.065. PubMed DOI

Sun J., Lin C., Qin X., Dong X., Tu Z., Tang F., Chen C., Zhang J. Synthesis and biological evaluation of 3,5-disubstituted-4-alkynylisoxozales as a novel class of HSP90 inhibitors. Bioorg. Med. Chem. Lett. 2015;25:3129–3134. doi: 10.1016/j.bmcl.2015.06.009. PubMed DOI

Shi W., Hu J., Bao N., Li D., Chen L., Sun J. Design, synthesis and cytotoxic activities of scopoletin-isoxazole and scopoletin-pyrazole hybrids. Bioorg. Med. Chem. Lett. 2017;27:147–151. doi: 10.1016/j.bmcl.2016.11.089. PubMed DOI

Abbasi M., Sadeghi-Aliabadi H., Amanlou M. Prediction of New Hsp90 Inhibitors Based on 3, 4-Isoxazolediamide Scaffold Using QSAR Study, Molecular Docking and Molecular Dynamic Simulation. Daru J. Pharm. Sci. 2017;25:17. doi: 10.1186/s40199-017-0182-0. PubMed DOI PMC

Abbasi M., Sadeghi-Aliabadi H., Amanlou M. 3D-QSAR, Molecular Docking, and Molecular Dynamic Simulations for Prediction of New Hsp90 Inhibitors Based on Isoxazole Scaffold. J. Biomol. Struct. Dyn. 2018;36:1463–1478. doi: 10.1080/07391102.2017.1326319. PubMed DOI

Kaushik S., Sanawar R., Lekshmi A., Chandrasekhar L., Nair M., Bhatnagar S., Santhoshkumar T.R. ER alpha selective chromone, isoxazolylchromones, induces ROS-mediated cell death without autophagy. Chem. Biol. Drug Des. 2019:1352–1367. PubMed

Jung J., Kwon J., Hong S., Moon A.-N., Jeong J., Kwon S., Kim J.-A., Lee M., Lee H., Lee J.H., et al. Discovery of novel heat shock protein (Hsp90) inhibitors based on luminespib with potent antitumor activity. Bioorg. Med. Chem. Lett. 2020;30:127165. doi: 10.1016/j.bmcl.2020.127165. PubMed DOI

Aissa I., Abdelkafi-Koubaa Z., Chouaïb K., Jalouli M., Assel A., Romdhane A., Harrath A.H., Marrakchi N., Ben Jannet H. Glioblastoma-specific anticancer activity of newly synthetized 3,5-disubstituted isoxazole and 1,4-disubstituted triazole-linked tyrosol conjugates. Bioorg. Chem. 2021;114:105071. doi: 10.1016/j.bioorg.2021.105071. PubMed DOI

Chaudhary M., Kumar N., Baldi A., Chandra R., Babu M.A., Madan J. Chloro and bromo-pyrazole curcumin Knoevenagel condensates augmented anticancer activity against human cervical cancer cells: Design, synthesis, in silico docking and in vitro cytotoxicity analysis. J. Biomol. Struct. Dyn. 2020;38:200–218. doi: 10.1080/07391102.2019.1578264. PubMed DOI

Rai G., Urban D.J., Mott B.T., Hu X., Yang S.-M., Benavides G.A., Johnson M.S., Squadrito G.L., Brimacombe K.R., Lee T.D., et al. Pyrazole-Based Lactate Dehydrogenase Inhibitors with Optimized Cell Activity and Pharmacokinetic Properties. J. Med. Chem. 2020;63:10984–11011. doi: 10.1021/acs.jmedchem.0c00916. PubMed DOI PMC

Azimi F., Azizian H., Najafi M., Hassanzadeh F., Sadeghi-Aliabadi H., Ghasemi J.B., Mahdavi M. Design and Synthesis of Novel Quinazolinone-Pyrazole Derivatives as Potential α-Glucosidase Inhibitors: Structure-activity Relationship, Molecular Modeling and Kinetic Study. Bioorg. Chem. 2021;114:105127–105134. doi: 10.1016/j.bioorg.2021.105127. PubMed DOI

Abbasi M., Amanlou M., Aghaei M., Bakherad M., Doosti R., Sadeghi-Aliabadi H. New heat shock protein (Hsp90) inhibitors, designed by pharmacophore modeling and virtual screening: Synthesis, biological evaluation and molecular dynamics studies. J. Biomol. Struct. Dyn. 2020;38:3462–3473. doi: 10.1080/07391102.2019.1660216. PubMed DOI

Bennani F.E., Doudach L., Cherrah Y., Ramli Y., Karrouchi K., Ansar M., Faouzi M.E.A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem. 2020;97:103470. doi: 10.1016/j.bioorg.2019.103470. PubMed DOI

Bai S.-Y., Dai X., Zhao B.-X., Miao J.-Y. Discovery of a novel fluorescent HSP90 inhibitor and its anti-lung cancer effect. RSC Adv. 2014;4:19887–19890. doi: 10.1039/C4RA01800A. DOI

Abbasi M., Sadeghi-Aliabadi H., Hassanzadeh F., Amanlou M. Prediction of dual agents as an activator of mutant p53 and inhibitor of Hsp90 by docking, molecular dynamic simulation and virtual screening. J. Mol. Graph. Model. 2015;61:186–195. doi: 10.1016/j.jmgm.2015.08.001. PubMed DOI

Uno T., Kawai Y., Yamashita S., Oshiumi H., Yoshimura C., Mizutani T., Kitade M. Discovery of 3-Ethyl-4-(3-isopropyl-4-(4-(1-methyl-1 H-pyrazol-4-yl)-1 H-imidazol-1-yl)-1 H-pyrazolo [3,4-b] pyridin-1-yl) benzamide (TAS-116) as a Potent, Selective, and Orally Available Hsp90 Inhibitor. J. Med. Chem. 2018;62:531–551. doi: 10.1021/acs.jmedchem.8b01085. PubMed DOI

Mettu A., Talla V., Bajaj D.M., Subhashini N.J. Design, Synthesis, Molecular Docking Studies of Novel Pyrazolyl 2-Aminopyrimidine Derivatives as Hsp90 Inhibitors. Arch. Pharm. 2019;352:1900063. doi: 10.1002/ardp.201900063. PubMed DOI

Mettu A., Talla V., Naikal S.J.P. Novel anticancer Hsp90 inhibitor disubstituted pyrazolyl 2-aminopyrimidine compound 7t induces cell cycle arrest and apoptosis via mitochondrial pathway in MCF-7 cells. Bioorg. Med. Chem. Lett. 2020;30:127470. doi: 10.1016/j.bmcl.2020.127470. PubMed DOI

Mohamady S., Ismail M., Mogheith S.M., Attia Y.M., Taylor S.D. Discovery of 5-aryl-3-thiophen-2-yl-1H-pyrazoles as a new class of Hsp90 inhibitors in hepatocellular carcinoma. Bioorg. Chem. 2020;94:103433. doi: 10.1016/j.bioorg.2019.103433. PubMed DOI

Kadasi S., Yerroju R., Gaddam S., Pullanagiri N., Chary M., Pingili D., Raghavendra N.M. Discovery of N-Pyridoyl-Δ2-pyrazolines as Hsp90 Inhibitors. Arch. Der Pharm. 2020;353:190019. doi: 10.1002/ardp.201900192. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...