Mechanical circulatory support in ventricular arrhythmias
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36304552
PubMed Central
PMC9593033
DOI
10.3389/fcvm.2022.987008
Knihovny.cz E-zdroje
- Klíčová slova
- arrhythmias, extracorporeal membrane oxygenation (ECMO), hemodynamic, mechanical circulatory support (MCS), review,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In atrial and ventricular tachyarrhythmias, reduced time for ventricular filling and loss of atrial contribution lead to a significant reduction in cardiac output, resulting in cardiogenic shock. This may also occur during catheter ablation in 11% of overall procedures and is associated with increased mortality. Managing cardiogenic shock and (supra) ventricular arrhythmias is particularly challenging. Inotropic support may exacerbate tachyarrhythmias or accelerate heart rate; antiarrhythmic drugs often come with negative inotropic effects, and electrical reconversions may risk worsening circulatory failure or even cardiac arrest. The drop in native cardiac output during an arrhythmic storm can be partly covered by the insertion of percutaneous mechanical circulatory support (MCS) devices guaranteeing end-organ perfusion. This provides physicians a time window of stability to investigate the underlying cause of arrhythmia and allow proper therapeutic interventions (e.g., percutaneous coronary intervention and catheter ablation). Temporary MCS can be used in the case of overt hemodynamic decompensation or as a "preemptive strategy" to avoid circulatory instability during interventional cardiology procedures in high-risk patients. Despite the increasing use of MCS in cardiogenic shock and during catheter ablation procedures, the recommendation level is still low, considering the lack of large observational studies and randomized clinical trials. Therefore, the evidence on the timing and the kinds of MCS devices has also scarcely been investigated. In the current review, we discuss the available evidence in the literature and gaps in knowledge on the use of MCS devices in the setting of ventricular arrhythmias and arrhythmic storms, including a specific focus on pathophysiology and related therapies.
Adult Intensive Care Unit Royal Brompton Hospital London United Kingdom
Cardiovascular Center Onze Lieve Vrouwziekenhuis Hospital Aalst Belgium
Centre for Inherited Cardiovascular Diseases Fondazione IRCCS Policlinico San Matteo Pavia Italy
Department of Cardiovascular Diseases University Hospitals Leuven Leuven Belgium
Department of Cardiovascular Sciences KU Leuven Leuven Belgium
Department of Clinical Surgical Diagnostic and Paediatric Sciences University of Pavia Pavia Italy
PhD in Experimental Medicine University of Pavia Pavia Italy
Zobrazit více v PubMed
Guerra F, Flori M, Bonelli P, Patani F, Capucci A. Electrical storm and heart failure worsening in implantable cardiac defibrillator patients. Europace. (2015) 17:247–54. 10.1093/europace/euu298 PubMed DOI
Moss AJ, Hall WJ, Cannom DS, Daubert JP, Higgins SL, Klein H, et al. . Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N Engl J Med. (1996) 335:1933–40. 10.1056/NEJM199612263352601 PubMed DOI
Antiarrhythmics versus Implantable Defibrillators I . A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med. (1997) 337:1576–83. 10.1056/NEJM199711273372202 PubMed DOI
Buxton AE, Lee KL, Fisher JD, Josephson ME, Prystowsky EN, Hafley G. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med. (1999) 341:1882–90. 10.1056/NEJM199912163412503 PubMed DOI
Sears SF, Jr., Conti JB. Quality of life and psychological functioning of ICD patients. Heart. (2002) 87:488–93. 10.1136/heart.87.5.488 PubMed DOI PMC
Zhang Y, Guallar E, Blasco-Colmenares E, Butcher B, Norgard S, Nauffal V, et al. . Changes in follow-up left ventricular ejection fraction associated with outcomes in primary prevention implantable cardioverter-defibrillator and cardiac resynchronization therapy device recipients. J Am Coll Cardiol. (2015) 66:524–31. 10.1016/j.jacc.2015.05.057 PubMed DOI PMC
Kusumoto FM, Calkins H, Boehmer J, Buxton AE, Chung MK, Gold MR, et al. . HRS/ACC/AHA expert consensus statement on the use of implantable cardioverter-defibrillator therapy in patients who are not included or not well represented in clinical trials. Circulation. (2014) 130:94–125. 10.1161/CIR.0000000000000056 PubMed DOI
Takano T, Tanaka K, Ozaki K, Sato A, Iijima K, Yanagawa T, et al. . Clinical predictors of recurrent ventricular arrhythmias in secondary prevention implantable cardioverter defibrillator recipients with coronary artery disease- lower left ventricular ejection fraction and incomplete revascularization. Circ J. (2018) 82:3037–43. 10.1253/circj.CJ-18-0646 PubMed DOI
Kammoun I, Bennour E, Laroussi L, Miled M, Sghaier A, Rahma K, et al. . Risk stratification for sudden cardiac death in patients with heart failure: emerging role of imaging parameters. Herz. (2021) 46:550–7. 10.1007/s00059-021-05032-3 PubMed DOI
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, et al. . (2019) HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Heart Rhythm. (2020) 17:e2-e154. 10.1016/j.hrthm.2019.03.002 PubMed DOI PMC
Guandalini GS, Liang JJ, Marchlinski FE. Ventricular tachycardia ablation: past, present, and future perspectives. JACC Clin Electrophysiol. (2019) 5:1363–83. 10.1016/j.jacep.2019.09.015 PubMed DOI
Santangeli P, Muser D, Zado ES, Magnani S, Khetpal S, Hutchinson MD, et al. . Acute hemodynamic decompensation during catheter ablation of scar-related ventricular tachycardia: incidence, predictors, and impact on mortality. Circ Arrhythm Electrophysiol. (2015) 8:68–75. 10.1161/CIRCEP.114.002155 PubMed DOI
Subramaniam AV, Barsness GW, Vallabhajosyula S, Vallabhajosyula S. Complications of temporary percutaneous mechanical circulatory support for cardiogenic shock: an appraisal of contemporary literature. Cardiol Ther. (2019) 8:211–28. 10.1007/s40119-019-00152-8 PubMed DOI PMC
Patel N, Sharma A, Dalia T, Rali A, Earnest M, Tadros P, et al. . Vascular complications associated with percutaneous left ventricular assist device placement: a 10-year US perspective. Catheter Cardiovasc Interv. (2020) 95:309–16. 10.1002/ccd.28560 PubMed DOI
Mathuria N, Wu G, Rojas-Delgado F, Shuraih M, Razavi M, Civitello A, et al. . Outcomes of pre-emptive and rescue use of percutaneous left ventricular assist device in patients with structural heart disease undergoing catheter ablation of ventricular tachycardia. J Interv Card Electrophysiol. (2017) 48:27–34. 10.1007/s10840-016-0168-8 PubMed DOI
Muser D, Liang JJ, Castro SA, Hayashi T, Enriquez A, Troutman GS, et al. . Outcomes with prophylactic use of percutaneous left ventricular assist devices in high-risk patients undergoing catheter ablation of scar-related ventricular tachycardia: a propensity-score matched analysis. Heart Rhythm. (2018) 15:1500–6. 10.1016/j.hrthm.2018.04.028 PubMed DOI
Mariani S, Napp LC, Lo Coco V, Delnoij TSR, Luermans J, Ter Bekke RMA, et al. . Mechanical circulatory support for life-threatening arrhythmia: a systematic review. Int J Cardiol. (2020) 308:42–9. 10.1016/j.ijcard.2020.03.045 PubMed DOI
Daly M, Long B, Koyfman A, Lentz S. Identifying cardiogenic shock in the emergency department. Am J Emerg Med. (2020) 38:2425–33. 10.1016/j.ajem.2020.09.045 PubMed DOI
Salvador M, Regazzoni F, Pagani S, Dede L, Trayanova N, Quarteroni A. The role of mechano-electric feedbacks and hemodynamic coupling in scar-related ventricular tachycardia. Comput Biol Med. (2022) 142:105203. 10.1016/j.compbiomed.2021.105203 PubMed DOI
Volle K, Delmas C, Rollin A, Voglimacci-Stephanopoli Q, Mondoly P, Cariou E, et al. . Successful reversal of severe tachycardia-induced cardiomyopathy with cardiogenic shock by urgent rhythm or rate control: only rhythm and rate matter. J Clin Med. (2021) 10(19) 10.3390/jcm10194504 PubMed DOI PMC
Hekimian G, Paulo N, Waintraub X, Brechot N, Schmidt M, Lebreton G, et al. . Arrhythmia-induced cardiomyopathy: a potentially reversible cause of refractory cardiogenic shock requiring venoarterial extracorporeal membrane oxygenation. Heart Rhythm. (2021) 18:1106–12. 10.1016/j.hrthm.2021.03.014 PubMed DOI
Kato H, Menon AS, Slutsky AS. Mechanisms mediating the heart rate response to hypoxemia. Circulation. (1988) 77:407–14. 10.1161/01.CIR.77.2.407 PubMed DOI
Pozzolini A, Rio T, Padeletti M, De Ponti R, Leonelli FM, Bagliani G. Complex arrhythmias due to reversible causes. Card Electrophysiol Clin. (2019) 11:375–90. 10.1016/j.ccep.2019.03.002 PubMed DOI
Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomstrom-Lundqvist C, et al. . 2020ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. (2021) 42:373–498. 10.1093/eurheartj/ehab648 PubMed DOI
Prabhu S, Taylor AJ, Costello BT, Kaye DM, McLellan AJA, Voskoboinik A, et al. . Catheter ablation versus medical rate control in atrial fibrillation and systolic dysfunction: the CAMERA-MRI study. J Am Coll Cardiol. (2017) 70:1949–61. 10.1016/j.jacc.2017.08.041 PubMed DOI
Sattler SM, Skibsbye L, Linz D, Lubberding AF, Tfelt-Hansen J, Jespersen T. Ventricular arrhythmias in first acute myocardial infarction: epidemiology, mechanisms, and interventions in large animal models. Front Cardiovasc Med. (2019) 6:158. 10.3389/fcvm.2019.00158 PubMed DOI PMC
Castelein T, Balthazar T, Adriaenssens T, Ector J, Janssens S, Meyns B, et al. . Impella to resist the storm. Circ Heart Fail. (2020) 13:e006698. 10.1161/CIRCHEARTFAILURE.119.006698 PubMed DOI
Werner N, Nickenig G, Sinning JM. Complex PCI procedures: challenges for the interventional cardiologist. Clin Res Cardiol. (2018) 107(Suppl. 2):64–73. 10.1007/s00392-018-1316-1 PubMed DOI
Viola F, Jermyn E, Warnock J, Querzoli G, Verzicco R. Left Ventricular hemodynamics with an implanted assist device: an in vitro fluid dynamics study. Ann Biomed Eng. (2019) 47:1799–814. 10.1007/s10439-019-02273-6 PubMed DOI
Sciomer S, Rellini C, Agostoni P, Moscucci F. A new pathophysiology in heart failure patients. Artif Organs. (2020) 44:1303–5. 10.1111/aor.13770 PubMed DOI
Enriquez A, Liang J, Gentile J, Schaller RD, Supple GE, Frankel DS, et al. . Outcomes of rescue cardiopulmonary support for periprocedural acute hemodynamic decompensation in patients undergoing catheter ablation of an electrical storm. Heart Rhythm. (2018) 15:75–80. 10.1016/j.hrthm.2017.09.005 PubMed DOI
Ellison KE, Stevenson WG, Sweeney MO, Lefroy DC, Delacretaz E, Friedman PL. Catheter ablation for hemodynamically unstable monomorphic ventricular tachycardia. J Cardiovasc Electrophysiol. (2000) 11:41–4. 10.1111/j.1540-8167.2000.tb00734.x PubMed DOI
Soejima K, Suzuki M, Maisel WH, Brunckhorst CB, Delacretaz E, Blier L, et al. . Catheter ablation in patients with multiple and unstable ventricular tachycardias after myocardial infarction: short ablation lines guided by reentry circuit isthmuses and sinus rhythm mapping. Circulation. (2001) 104:664–9. 10.1161/hc3101.093764 PubMed DOI
Della Bella P, Radinovic A, Limite LR, Baratto F. Mechanical circulatory support in the management of life-threatening arrhythmia. Europace. (2021) 23:1166–78. 10.1093/europace/euaa371 PubMed DOI
Miller MA, Dukkipati SR, Mittnacht AJ, Chinitz JS, Belliveau L, Koruth JS, et al. . Activation and entrainment mapping of hemodynamically unstable ventricular tachycardia using a percutaneous left ventricular assist device. J Am Coll Cardiol. (2011) 58:1363–71. 10.1016/j.jacc.2011.06.022 PubMed DOI
Bunch TJ, Darby A, May HT, Ragosta M, Lim DS, Taylor AM, et al. . Efficacy and safety of ventricular tachycardia ablation with mechanical circulatory support compared with substrate-based ablation techniques. Europace. (2012) 14:709–14. 10.1093/europace/eur347 PubMed DOI PMC
Aryana A, Gearoid O'Neill P, Gregory D, Scotti D, Bailey S, Brunton S, et al. . Procedural and clinical outcomes after catheter ablation of unstable ventricular tachycardia supported by a percutaneous left ventricular assist device. Heart Rhythm. (2014) 11:1122–30. 10.1016/j.hrthm.2014.04.018 PubMed DOI
Nakahara S, Tung R, Ramirez RJ, Michowitz Y, Vaseghi M, Buch E, et al. . Characterization of the arrhythmogenic substrate in ischemic and nonischemic cardiomyopathy implications for catheter ablation of hemodynamically unstable ventricular tachycardia. J Am Coll Cardiol. (2010) 55:2355–65. 10.1016/j.jacc.2010.01.041 PubMed DOI PMC
Wynn GJ, Todd DM, Webber M, Bonnett L, McShane J, Kirchhof P, et al. . The European Heart Rhythm Association symptom classification for atrial fibrillation: validation and improvement through a simple modification. Europace. (2014) 16:965–72. 10.1093/europace/eut395 PubMed DOI PMC
Reddy YM, Chinitz L, Mansour M, Bunch TJ, Mahapatra S, Swarup V, et al. . Percutaneous left ventricular assist devices in ventricular tachycardia ablation: a multicenter experience. Circ Arrhythm Electrophysiol. (2014) 7:244–50. 10.1161/CIRCEP.113.000548 PubMed DOI PMC
Kumar S, Baldinger SH, Romero J, Fujii A, Mahida SN, Tedrow UB, et al. . Substrate-based ablation versus ablation guided by activation and entrainment mapping for ventricular tachycardia: a systematic review and meta-analysis. J Cardiovasc Electrophysiol. (2016) 27:1437–47. 10.1111/jce.13088 PubMed DOI
Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest. Circ Heart Fail. (2018) 11:e004905. 10.1161/CIRCHEARTFAILURE.118.004905 PubMed DOI
Pineton de Chambrun M, Brechot N, Combes A. Venoarterial extracorporeal membrane oxygenation in cardiogenic shock: indications, mode of operation, and current evidence. Curr Opin Crit Care. (2019) 25:397–402. 10.1097/MCC.0000000000000627 PubMed DOI
Le Pennec-Prigent S, Flecher E, Auffret V, Leurent G, Daubert JC, Leclercq C, et al. . Effectiveness of extracorporeal life support for patients with cardiogenic shock due to intractable arrhythmic storm. Crit Care Med. (2017) 45:e281–9. 10.1097/CCM.0000000000002089 PubMed DOI
Shebani SO, Ng GA, Stafford P, Duke C. Radiofrequency ablation on veno-arterial extracorporeal life support in treating sick infants with incessant tachymyopathy. Europace. (2015) 17:622–7. 10.1093/europace/euu365 PubMed DOI
Salerno JC, Seslar SP, Chun TU, Vafaeezadeh M, Parrish AR, Permut LC, et al. . Predictors of ECMO support in infants with tachycardia-induced cardiomyopathy. Pediatr Cardiol. (2011) 32:754–8. 10.1007/s00246-011-9961-4 PubMed DOI
Dyamenahalli U, Tuzcu V, Fontenot E, Papagiannis J, Jaquiss RD, Bhutta A, et al. . Extracorporeal membrane oxygenation support for intractable primary arrhythmias and complete congenital heart block in newborns and infants: short-term and medium-term outcomes. Pediatr Crit Care Med. (2012) 13:47–52. 10.1097/PCC.0b013e3182196cb1 PubMed DOI
Lin KM, Li MH, Hsieh KS, Kuo HC, Cheng MC, Sheu JJ, et al. . Impact of extracorporeal membrane oxygenation on acute fulminant myocarditis-related hemodynamic compromise arrhythmia in children. Pediatr Neonatol. (2016) 57:480–7. 10.1016/j.pedneo.2016.02.002 PubMed DOI
Nesta M, Cammertoni F, Bruno P, Massetti M. Implantable ventricular assistance systems (VAD) as a bridge to transplant or as ‘destination therapy.' Eur Heart J Suppl. (2021) 23(Suppl. E):E99–102. 10.1093/eurheartj/suab101 PubMed DOI PMC
Nakahara S, Chien C, Gelow J, Dalouk K, Henrikson CA, Mudd J, et al. . Ventricular arrhythmias after left ventricular assist device. Circ Arrhythm Electrophysiol. (2013) 6:648–54. 10.1161/CIRCEP.113.000113 PubMed DOI
Griffin JM, Katz JN. The Burden of Ventricular Arrhythmias Following Left Ventricular Assist Device Implantation. Arrhythm Electrophysiol Rev. (2014) 3:145–8. 10.15420/aer.2014.3.3.145 PubMed DOI PMC
Shi J, Yu X, Liu Z. A review of new-onset ventricular arrhythmia after left ventricular assist device implantation. Cardiology. (2022) 147:315–27. 10.1159/000524779 PubMed DOI PMC
Kadado AJ, Akar JG, Hummel JP. Arrhythmias after left ventricular assist device implantation: incidence and management. Trends Cardiovasc Med. (2018) 28:41–50. 10.1016/j.tcm.2017.07.002 PubMed DOI
Garan AR, Levin AP, Topkara V, Thomas SS, Yuzefpolskaya M, Colombo PC, et al. . Early post-operative ventricular arrhythmias in patients with continuous-flow left ventricular assist devices. J Heart Lung Transplant. (2015) 34:1611–6. 10.1016/j.healun.2015.05.018 PubMed DOI
Raasch H, Jensen BC, Chang PP, Mounsey JP, Gehi AK, Chung EH, et al. . Epidemiology, management, and outcomes of sustained ventricular arrhythmias after continuous-flow left ventricular assist device implantation. Am Heart J. (2012) 164:373–8. 10.1016/j.ahj.2012.06.018 PubMed DOI
Martins RP, Leclercq C, Bourenane H, Auffret V, Boule S, Loobuyck V, et al. . Incidence, predictors, and clinical impact of electrical storm in patients with left ventricular assist devices: new insights from the ASSIST-ICD study. Heart Rhythm. (2019) 16:1506–12. 10.1016/j.hrthm.2019.06.021 PubMed DOI
Lin AY, Tran H, Brambatti M, Adler E, Pretorius V, Pollema T, et al. . Ventricular arrhythmias in patients with biventricular assist devices. J Interv Card Electrophysiol. (2020) 58:243–52. 10.1007/s10840-019-00682-0 PubMed DOI PMC
Sayer GT, Baker JN, Parks KA. Heart rescue: the role of mechanical circulatory support in the management of severe refractory cardiogenic shock. Curr Opin Crit Care. (2012) 18:409–16. 10.1097/MCC.0b013e328357f1e6 PubMed DOI
Kowlgi GN, Cha YM. Management of ventricular electrical storm: a contemporary appraisal. Europace. (2020) 22:1768–80. 10.1093/europace/euaa232 PubMed DOI
Belohlavek J, Smalcova J, Rob D, Franek O, Smid O, Pokorna M, et al. . Effect of intra-arrest transport, extracorporeal cardiopulmonary resuscitation, and immediate invasive assessment and treatment on functional neurologic outcome in refractory out-of-hospital cardiac arrest: a randomized clinical trial. JAMA. (2022) 327:737–47. 10.1001/jama.2022.6548 PubMed DOI PMC
Guglin M, Zucker MJ, Bazan VM, Bozkurt B, El Banayosy A, Estep JD, et al. . Venoarterial ECMO for adults: JACC scientific expert panel. J Am Coll Cardiol. (2019) 73:698–716. 10.1016/j.jacc.2018.11.038 PubMed DOI
Ouweneel DM, Schotborgh JV, Limpens J, Sjauw KD, Engström AE, Lagrand WK, et al. . Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intens Care Med. (2016) 42:1922–34. 10.1007/s00134-016-4536-8 PubMed DOI PMC
Stub D, Bernard S, Pellegrino V, Smith K, Walker T, Sheldrake J, et al. . Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial) Resuscitation. (2015) 86:88–94. 10.1016/j.resuscitation.2014.09.010 PubMed DOI
Patel NJ, Atti V, Kumar V, Panakos A, Anantha Narayanan M, Bhardwaj B, et al. . Temporal trends of survival and utilization of mechanical circulatory support devices in patients with in-hospital cardiac arrest secondary to ventricular tachycardia/ventricular fibrillation. Catheterization Cardiovasc Interv. (2019) 94:578–87. 10.1002/ccd.28138 PubMed DOI
Chung FP, Liao YC, Lin YJ, Chang SL, Lo LW, Hu YF, et al. . Outcome of rescue ablation in patients with refractory ventricular electrical storm requiring mechanical circulation support. J Cardiovasc Electrophysiol. (2020) 31:9–17. 10.1111/jce.14309 PubMed DOI
Brown DJ, Brugger H, Boyd J, Paal P. Accidental hypothermia. New Engl J Med. (2012) 367:1930–8. 10.1056/NEJMra1114208 PubMed DOI
Jarosz A, Darocha T, Kosinski S, Galazkowski R, Mazur P, Piatek J, et al. . Profound Accidental hypothermia: systematic approach to active recognition and treatment. ASAIO J. (2017) 63:e26–30. 10.1097/MAT.0000000000000422 PubMed DOI PMC
Paal P, Gordon L, Strapazzon G, Brodmann Maeder M, Putzer G, Walpoth B, et al. . Accidental hypothermia-an update : the content of this review is endorsed by the International Commission for Mountain Emergency Medicine (ICAR MEDCOM) Scand J Trauma Resuscit Emerg Med. (2016) 24:111. 10.1186/s13049-016-0303-7 PubMed DOI PMC
Brugger H, Putzer G, Paal P. [Accidental hypothermia]. Der Anaesthesist. (2013) 62:624–31. 10.1007/s00101-013-2205-7 PubMed DOI
Jarosz A, Darocha T, Kosinski S, Zietkiewicz M, Drwila R. Extracorporeal membrane oxygenation in severe accidental hypothermia. Intensive Care Med. (2015) 41:169–70. 10.1007/s00134-014-3543-x PubMed DOI PMC
Balik M, Porizka M, Matousek V, Brestovansky P, Svobodova E, Flaksa M, et al. . Management of accidental hypothermia: an established extracorporeal membrane oxygenation centre experience. Perfusion. (2019) 34:74–81. 10.1177/0267659119830551 PubMed DOI
Belohlavek J, Hunziker P, Donker DW. Left ventricular unloading and the role of ECpella. Eur Heart J Suppl. (2021) 23(Suppl. A):A27–34. 10.1093/eurheartj/suab006 PubMed DOI PMC
Xie A, Forrest P, Loforte A. Left ventricular decompression in veno-arterial extracorporeal membrane oxygenation. Ann Cardiothor Surg. (2019) 8:9–18. 10.21037/acs.2018.11.07 PubMed DOI PMC
Baudry G, Sonneville R, Waintraub X, Lebreton G, Deguillard C, Mertens E, et al. . Extracorporeal membrane oxygenation to support life-threatening drug-refractory electrical storm. Crit Care Med. (2020) 48:e856–63. 10.1097/CCM.0000000000004490 PubMed DOI
Fudim M, Qadri YJ, Waldron NH, Boortz-Marx RL, Ganesh A, Patel CB, et al. . Stellate ganglion blockade for the treatment of refractory ventricular arrhythmias. JACC Clin Electrophysiol. (2020) 6:562–71. 10.1016/j.jacep.2019.12.017 PubMed DOI
Tian Y, Wittwer ED, Kapa S, McLeod CJ, Xiao P, Noseworthy PA, et al. . Effective use of percutaneous stellate ganglion blockade in patients with electrical storm. Circ Arrhythm Electrophysiol. (2019) 12:e007118. 10.1161/CIRCEP.118.007118 PubMed DOI
Savastano S, Dusi V, Baldi E, Rordorf R, Sanzo A, Camporotondo R, et al. . Anatomical-based percutaneous left stellate ganglion block in patients with drug-refractory electrical storm and structural heart disease: a single-centre case series. Europace. (2021) 23:581–6. 10.1093/europace/euaa319 PubMed DOI
Coromilas EJ, Kochav S, Goldenthal I, Biviano A, Garan H, Goldbarg S, et al. . Worldwide survey of COVID-19-associated arrhythmias. Circ Arrhythm Electrophysiol. (2021) 14:e009458. 10.1161/CIRCEP.120.009458 PubMed DOI PMC
Lazzerini PE, Laghi-Pasini F, Boutjdir M, Capecchi PL. Inflammatory cytokines and cardiac arrhythmias: the lesson from COVID-19. Nat Rev Immunol. (2022) 22:270–2. 10.1038/s41577-022-00714-3 PubMed DOI PMC
Rubin GA, Desai AD, Chai Z, Wang A, Chen Q, Wang AS, et al. . Cardiac corrected QT interval changes among patients treated for COVID-19 infection during the early phase of the pandemic. JAMA Netw Open. (2021) 4:e216842. 10.1001/jamanetworkopen.2021.6842 PubMed DOI PMC
Barbaro RP, MacLaren G, Boonstra PS, Iwashyna TJ, Slutsky AS, Fan E, et al. . Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry. Lancet. (2020) 396:1071–8. 10.1016/S0140-6736(20)32008-0 PubMed DOI PMC
Saha SA, Russo AM, Chung MK, Deering TF, Lakkireddy D, Gopinathannair R. COVID-19 and cardiac arrhythmias: a contemporary review. Curr Treat Options Cardiovasc Med. (2022) 24: 87–107. 10.1007/s11936-022-00964-3 PubMed DOI PMC