Long Non-Coding RNA and microRNA Interplay in Colorectal Cancer and Their Effect on the Tumor Microenvironment

. 2022 Nov 05 ; 14 (21) : . [epub] 20221105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36358867

Grantová podpora
856620 European Union's Horizon 2020 research and innovation programme
AZV NU21-03-00506 Ministry of Health of the Czech Republic
AZV NU21-03-00145 Ministry of Health of the Czech Republic
SURG Cooperatio Program, research area
LX22NPO5102 National Institute for Cancer Research - NICR (Programme EXCELES)

As the current staging and grading systems are not sufficient to stratify patients for therapy and predict the outcome of the disease, there is an urgent need to understand cancer in its complexity. The mutual relationship between tumour and immune or stromal cells leads to rapid evolution and subsequent genetic and epigenetic changes. Immunoscore has been introduced as a diagnostic tool for colorectal cancer (CRC) only recently, emphasising the role of the specific tumor microenvironment in patient's prognosis and overall outcome. Despite the fact that non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), cannot be translated into proteins, they significantly affect cell's transcriptome and translatome. miRNA binding to mRNA efficiently blocks its translation and leads to mRNA destruction. On the other hand, miRNAs can be bound by lncRNAs or circular RNAs (circRNAs), which prevents them from interfering with translation. In this way, ncRNAs create a multi-step network that regulates the cell's translatome. ncRNAs are also shed by the cell as exogenous RNAs and they are also found in exosomes, suggesting their role in intercellular communication. Hence, these mechanisms affect the tumor microenvironment as much as protein signal molecules. In this review, we provide an insight into the current knowledge of the microenvironment, lncRNAs', and miRNAs' interplay. Understanding mechanisms that underlie the evolution of a tissue as complex as a tumour is crucial for the future success in therapy.

Zobrazit více v PubMed

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Stark V., Facey C., Viswanathan V., Boman B. The Role of miRNAs, miRNA Clusters, and isomiRs in Development of Cancer Stem Cell Populations in Colorectal Cancer. Int. J. Mol. Sci. 2021;22:1424. doi: 10.3390/ijms22031424. PubMed DOI PMC

Wang L., Cho K.B., Li Y., Tao G., Xie Z., Guo B. Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. Int. J. Mol. Sci. 2019;20:5758. doi: 10.3390/ijms20225758. PubMed DOI PMC

Poursheikhani A., Abbaszadegan M.R., Nokhandani N., Kerachian M.A. Integration analysis of long non-coding RNA (lncRNA) role in tumorigenesis of colon adenocarcinoma. BMC Med. Genom. 2020;13:1–16. doi: 10.1186/s12920-020-00757-2. PubMed DOI PMC

Xu J., Shao T., Song M., Xie Y., Zhou J., Yin J., Ding N., Zou H., Li Y., Zhang J. MIR22HG acts as a tumor suppressor via TGFβ/SMAD signaling and facilitates immunotherapy in colorectal cancer. Mol. Cancer. 2020;19:1–15. doi: 10.1186/s12943-020-01174-w. PubMed DOI PMC

Liu C., Liu R., Wang B., Lian J., Yao Y., Sun H., Zhang C., Fang L., Guan X., Shi J., et al. Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer. J. Immunother. Cancer. 2021;9:e001895. doi: 10.1136/jitc-2020-001895. PubMed DOI PMC

Zheng J., Yang T., Gao S., Cheng M., Shao Y., Xi Y., Guo L., Zhang D., Gao W., Zhang G., et al. miR-148a-3p silences the CANX/MHC-I pathway and impairs CD8 + T cell-mediated immune attack in colorectal cancer. FASEB J. 2021;35:e21776. doi: 10.1096/fj.202100235R. PubMed DOI

Colangelo T., Polcaro G., Ziccardi P., Pucci B., Muccillo L., Galgani M., Fucci A., Milone M.R., Budillon A., Santopaolo M., et al. Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer. Cell Death Dis. 2016;7:e2120. doi: 10.1038/cddis.2016.28. PubMed DOI PMC

Augustin I., Dewi D.L., Hundshammer J., Rempel E., Brunk F., Boutros M. Immune cell recruitment in teratomas is impaired by increased Wnt secretion. Stem Cell Res. 2016;17:607–615. doi: 10.1016/j.scr.2016.10.010. PubMed DOI

Duffy M.J., O’Grady S., Tang M., Crown J. MYC as a target for cancer treatment. Cancer Treat. Rev. 2021;94:102154. doi: 10.1016/j.ctrv.2021.102154. PubMed DOI

Bian J., Dannappel M., Wan C., Firestein R. Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells. 2020;9:2125. doi: 10.3390/cells9092125. PubMed DOI PMC

Pai S.G., Carneiro B.A., Mota J.M., Costa R., Leite C.A., Barroso-Sousa R., Kaplan J.B., Chae Y.K., Giles F.J. Wnt/beta-catenin pathway: Modulating anticancer immune response. J. Hematol. Oncol. 2017;10:1–12. doi: 10.1186/s13045-017-0471-6. PubMed DOI PMC

Ma Y., Yang Y., Wang F., Moyer M.-P., Wei Q., Zhang P., Yang Z., Liu W., Zhang H., Chen N., et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α. Gut. 2015;65:1494–1504. doi: 10.1136/gutjnl-2014-308392. PubMed DOI

Li S., Wu T., Zhang D., Sun X., Zhang X. The long non-coding RNA HCG18 promotes the growth and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/β-catenin. Clin. Exp. Pharmacol. Physiol. 2019;47:703–712. doi: 10.1111/1440-1681.13230. PubMed DOI

Jiao Y., Zhou J., Jin Y., Yang Y., Song M., Zhang L., Zhou J., Zhang J. Long Non-coding RNA TDRKH-AS1 Promotes Colorectal Cancer Cell Proliferation and Invasion Through the β-Catenin Activated Wnt Signaling Pathway. Front. Oncol. 2020;10:639. doi: 10.3389/fonc.2020.00639. PubMed DOI PMC

Ding D., Li C., Zhao T., Li D., Yang L., Zhang B. LncRNA H19/miR-29b-3p/PGRN Axis Promoted Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Acting on Wnt Signaling. Mol. Cells. 2018;41:423–435. doi: 10.14348/molcells.2018.2258. PubMed DOI PMC

Gao Q., Zhou R., Meng Y., Duan R., Wu L., Li R., Deng F., Lin C., Zhao L. Long noncoding RNA CMPK2 promotes colorectal cancer progression by activating the FUBP3–c-Myc axis. Oncogene. 2020;39:3926–3938. doi: 10.1038/s41388-020-1266-8. PubMed DOI

Tang J., Yan T., Bao Y., Shen C., Yu C., Zhu X., Tian X., Guo F., Liang Q., Liu Q., et al. LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-019-11447-8. PubMed DOI PMC

Eide P.W., Eilertsen I.A., Sveen A., Lothe R.A. Long noncoding RNA MIR31HG is a bona fide prognostic marker with colorectal cancer cell-intrinsic properties. Int. J. Cancer. 2018;144:2843–2853. doi: 10.1002/ijc.31998. PubMed DOI PMC

Nosho K., Igarashi H., Nojima M., Ito M., Maruyama R., Yoshii S., Naito T., Sukawa Y., Mikami M., Sumioka W., et al. Association of microRNA-31 with BRAF mutation, colorectal cancer survival and serrated pathway. Carcinogenesis. 2013;35:776–783. doi: 10.1093/carcin/bgt374. PubMed DOI

Pugh S., Thiébaut R., Bridgewater J., Grisoni M.-L., Moutasim K., Rousseau F., Thomas G.J., Griffiths G., Liebaert F., Primrose J., et al. Association between miR-31-3p expression and cetuximab efficacy in patients with KRAS wild-type metastatic colorectal cancer: A post-hoc analysis of the New EPOC trial. Oncotarget. 2017;8:93856–93866. doi: 10.18632/oncotarget.21291. PubMed DOI PMC

Qian J., Garg A., Li F., Shen Q., Xiao K. lncRNA LUNAR1 accelerates colorectal cancer progression by targeting the miR-495-3p/MYCBP axis. Int. J. Oncol. 2020;57:1157–1168. doi: 10.3892/ijo.2020.5128. PubMed DOI PMC

Tang R., Chen J., Tang M., Liao Z., Zhou L., Jiang J., Hu Y., Liao Q., Xiong W., Tang Y., et al. LncRNA SLCO4A1-AS1 predicts poor prognosis and promotes proliferation and metastasis via the EGFR/MAPK pathway in colorectal cancer. Int. J. Biol. Sci. 2019;15:2885–2896. doi: 10.7150/ijbs.38041. PubMed DOI PMC

Liu X., Li L., Bai J., Li L., Fan J., Fu Z., Liu J. Long noncoding RNA plasmacytoma variant translocation 1 promotes progression of colorectal cancer by sponging microRNA-152-3p and regulating E2F3/MAPK8 signaling. Cancer Sci. 2021;113:109–119. doi: 10.1111/cas.15113. PubMed DOI PMC

Carballo G.B., Honorato J.R., De Lopes G.P.F., de Sampaio e Spohr T.C.L. A highlight on Sonic hedgehog pathway. Cell Commun. Signal. 2018;16:11. doi: 10.1186/s12964-018-0220-7. PubMed DOI PMC

Zhou H., Xiong Y., Peng L., Wang R., Zhang H., Fu Z. LncRNA-cCSC1 modulates cancer stem cell properties in colorectal cancer via activation of the Hedgehog signaling pathway. J. Cell. Biochem. 2019;121:2510–2524. doi: 10.1002/jcb.29473. PubMed DOI

Deng X., Ruan H., Zhang X., Xu X., Zhu Y., Peng H., Zhang X., Kong F., Guan M. Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells. Int. J. Cancer. 2019;146:1700–1716. doi: 10.1002/ijc.32608. PubMed DOI

Ren J., Ding L., Zhang D., Shi G., Xu Q., Shen S., Wang Y., Wang T., Hou Y. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics. 2018;8:3932–3948. doi: 10.7150/thno.25541. PubMed DOI PMC

Xie Y.-H., Chen Y.-X., Fang J.-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020;5:1–30. doi: 10.1038/s41392-020-0116-z. PubMed DOI PMC

Ren T., Hou J., Liu C., Shan F., Xiong X., Qin A., Chen J., Ren W. The long non-coding RNA HOTAIRM1 suppresses cell progression via sponging endogenous miR-17-5p/ B-cell translocation gene 3 (BTG3) axis in 5-fluorouracil resistant colorectal cancer cells. Biomed. Pharmacother. 2019;117:109171. doi: 10.1016/j.biopha.2019.109171. PubMed DOI

Zhang P., Wu J., Wu Y., Huang W., Liu M., Dong Z., Xu B., Jin Y., Wang F., Zhang X. The lncRNA SCARNA2 mediates colorectal cancer chemoresistance through a conserved microRNA-342-3p target sequence. J. Cell. Physiol. 2018;234:10157–10165. doi: 10.1002/jcp.27684. PubMed DOI

Liang W., Wu J., Qiu X. LINC01116 facilitates colorectal cancer cell proliferation and angiogenesis through targeting EZH2-regulated TPM1. J. Transl. Med. 2021;19:1–13. doi: 10.1186/s12967-021-02707-7. PubMed DOI PMC

Jiang Z., Li L., Hou Z., Liu W., Wang H., Zhou T., Li Y., Chen S. LncRNA HAND2-AS1 inhibits 5-fluorouracil resistance by modulating miR-20a/PDCD4 axis in colorectal cancer. Cell. Signal. 2019;66:109483. doi: 10.1016/j.cellsig.2019.109483. PubMed DOI

Zhao Y., Li Y., Sheng J., Wu F., Li K., Huang R., Wang X., Jiao T., Guan X., Lu Y., et al. P53-R273H mutation enhances colorectal cancer stemness through regulating specific lncRNAs. J. Exp. Clin. Cancer Res. 2019;38:1–16. doi: 10.1186/s13046-019-1375-9. PubMed DOI PMC

Sun J., Zhou H., Bao X., Wu Y., Jia H., Zhao H., Liu G. lncRNA TUG1 Facilitates Colorectal Cancer Stem Cell Characteristics and Chemoresistance by Enhancing GATA6 Protein Stability. Stem Cells Int. 2021;2021:1–14. doi: 10.1155/2021/1075481. PubMed DOI PMC

Sur D., Balacescu L., Cainap S.S., Visan S., Pop L., Burz C., Havasi A., Buiga R., Cainap C., Irimie A., et al. Predictive Efficacy of MiR-125b-5p, MiR-17-5p, and MiR-185-5p in Liver Metastasis and Chemotherapy Response Among Advanced Stage Colorectal Cancer Patients. Front. Oncol. 2021;11:1659. doi: 10.3389/fonc.2021.651380. PubMed DOI PMC

Zichittella C., Barreca M.M., Cordaro A., Corrado C., Alessandro R., Conigliaro A. Mir-675-5p supports hypoxia-induced drug resistance in colorectal cancer cells. BMC Cancer. 2022;22:567. doi: 10.1186/s12885-022-09666-2. PubMed DOI PMC

Sun W., Li J., Zhou L., Han J., Liu R., Zhang H., Ning T., Gao Z., Liu B., Chen X., et al. The c-Myc/miR-27b-3p/ATG10 regulatory axis regulates chemoresistance in colorectal cancer. Theranostics. 2020;10:1981–1996. doi: 10.7150/thno.37621. PubMed DOI PMC

Bigagli E., Luceri C., Guasti D., Cinci L. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: Role of microRNA-210. Cancer Biol. Ther. 2016;17:1062–1069. doi: 10.1080/15384047.2016.1219815. PubMed DOI PMC

Wang D., Wang X., Song Y., Si M., Sun Y., Liu X., Cui S., Qu X., Yu X. Exosomal miR-146a-5p and miR-155-5p promote CXCL12/CXCR7-induced metastasis of colorectal cancer by crosstalk with cancer-associated fibroblasts. Cell Death Dis. 2022;13:1–15. doi: 10.1038/s41419-022-04825-6. PubMed DOI PMC

Singh N., Padi S.K.R., Bearss J.J., Pandey R., Okumura K., Beltran H., Song J.H., Kraft A.S., Olive V. PIM protein kinases regulate the level of the long noncoding RNA H19 to control stem cell gene transcription and modulate tumor growth. Mol. Oncol. 2020;14:974–990. doi: 10.1002/1878-0261.12662. PubMed DOI PMC

Chen X., Liu J., Zhang Q., Liu B., Cheng Y., Zhang Y., Sun Y., Ge H., Liu Y. Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFB3. J. Exp. Clin. Cancer Res. 2020;39:65. doi: 10.1186/s13046-019-1507-2. PubMed DOI PMC

Zhang H., Shi Y., Liu J., Wang H., Wang P., Wu Z., Li L., Gu L., Cao P., Wang G., et al. Cancer-associated fibroblast-derived exosomal microRNA-24-3p enhances colon cancer cell resistance to MTX by down-regulating CDX2/HEPH axis. J. Cell. Mol. Med. 2021;25:3699–3713. doi: 10.1111/jcmm.15765. PubMed DOI PMC

Zhang Y., Wang S., Lai Q., Fang Y., Wu C., Liu Y., Li Q., Wang X., Gu C., Chen J., et al. Cancer-associated fibroblasts-derived exosomal miR-17-5p promotes colorectal cancer aggressive phenotype by initiating a RUNX3/MYC/TGF-β1 positive feedback loop. Cancer Lett. 2020;491:22–35. doi: 10.1016/j.canlet.2020.07.023. PubMed DOI

Pagès F., Mlecnik B., Marliot F., Bindea G., Ou F.-S., Bifulco C., Lugli A., Zlobec I., Rau T.T., Berger M.D., et al. International validation of the consensus Immunoscore for the classification of colon cancer: A prognostic and accuracy study. Lancet. 2018;391:2128–2139. doi: 10.1016/S0140-6736(18)30789-X. PubMed DOI

Xu Y.-J., Zhao J.-M., Ni X.-F., Wang W., Hu W.-W., Wu C.-P. LncRNA HCG18 suppresses CD8+ T cells to confer resistance to cetuximab in colorectal cancer via miR-20b-5p/PD-L1 axis. Epigenomics. 2021;13:1283–1299. doi: 10.2217/epi-2021-0130. PubMed DOI

Tang D., Yang Z., Long F., Luo L., Yang B., Zhu R., Sang X., Cao G., Wang K. Long noncoding RNA MALAT1 mediates stem cell-like properties in human colorectal cancer cells by regulating miR-20b-5p/Oct4 axis. J. Cell. Physiol. 2019;234:20816–20828. doi: 10.1002/jcp.28687. PubMed DOI

Yu Z., Wang Y., Deng J., Liu D., Zhang L., Shao H., Wang Z., Zhu W., Zhao C., Ke Q. Long non-coding RNA COL4A2-AS1 facilitates cell proliferation and glycolysis of colorectal cancer cells via miR-20b-5p/hypoxia inducible factor 1 alpha subunit axis. Bioengineered. 2021;12:6251–6263. doi: 10.1080/21655979.2021.1969833. PubMed DOI PMC

Lou Q., Liu R.-X., Yang X., Li W., Huang L., Wei L., Tan H., Xiang N., Chan K., Chen J., et al. miR-448 targets IDO1 and regulates CD8+ T cell response in human colon cancer. J. Immunother. Cancer. 2019;7:210. doi: 10.1186/s40425-019-0691-0. PubMed DOI PMC

Chen J., Song Y., Li M., Zhang Y., Lin T., Sun J., Di Wang D., Liu Y., Guo J., Yu W. Comprehensive analysis of ceRNA networks reveals prognostic lncRNAs related to immune infiltration in colorectal cancer. BMC Cancer. 2021;21:1–17. doi: 10.1186/s12885-021-07995-2. PubMed DOI PMC

Lin Z.-B., Long P., Zhao Z., Zhang Y.-R., Chu X.-D., Zhao X.-X., Ding H., Huan S.-W., Pan Y.-L., Pan J.-H. Long Noncoding RNA KCNQ1OT1 is a Prognostic Biomarker and mediates CD8+ T cell exhaustion by regulating CD155 Expression in Colorectal Cancer. Int. J. Biol. Sci. 2021;17:1757–1768. doi: 10.7150/ijbs.59001. PubMed DOI PMC

Xian D., Niu L., Zeng J., Wang L. LncRNA KCNQ1OT1 Secreted by Tumor Cell-Derived Exosomes Mediates Immune Escape in Colorectal Cancer by Regulating PD-L1 Ubiquitination via MiR-30a-5p/USP22. Front. Cell Dev. Biol. 2021;9:653808. doi: 10.3389/fcell.2021.653808. PubMed DOI PMC

Wu Q., Zhang Z., Ji M., Yan T., Jiang Y., Chen Y., Chang J., Zhang J., Tang D., Zhu D., et al. The Establishment and Experimental Verification of an lncRNA-Derived CD8+ T Cell Infiltration ceRNA Network in Colorectal Cancer. Clin. Med. Insights Oncol. 2022;16:11795549221092218. doi: 10.1177/11795549221092218. PubMed DOI PMC

Wang H., Tian T., Zhang J. Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From Mechanism to Therapy and Prognosis. Int. J. Mol. Sci. 2021;22:8470. doi: 10.3390/ijms22168470. PubMed DOI PMC

Yu X., Wang D., Wang X., Sun S., Zhang Y., Wang S., Miao R., Xu X., Qu X. CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA signaling by sponging miR-133a-3p. J. Exp. Clin. Cancer Res. 2019;38:32. doi: 10.1186/s13046-018-1014-x. PubMed DOI PMC

Daniel S.K., Seo Y.D., Pillarisetty V.G. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin. Cancer Biol. 2019;65:176–188. doi: 10.1016/j.semcancer.2019.12.007. PubMed DOI

González-Llorente L., Santacatterina F., García-Aguilar A., Nuevo-Tapioles C., González-García S., Tirpakova Z., Toribio M.L., Cuezva J.M. Overexpression of Mitochondrial IF1 Prevents Metastatic Disease of Colorectal Cancer by Enhancing Anoikis and Tumor Infiltration of NK Cells. Cancers. 2019;12:22. doi: 10.3390/cancers12010022. PubMed DOI PMC

Zhou L., Li J., Liao M., Zhang Q., Yang M. LncRNA MIR155HG induces M2 macrophage polarization and drug resistance of colorectal cancer cells by regulating ANXA2. Cancer Immunol. Immunother. 2021;71:1075–1091. doi: 10.1007/s00262-021-03055-7. PubMed DOI PMC

Yin Y., Liu B., Cao Y., Yao S., Liu Y., Jin G., Qin Y., Chen Y., Cui K., Zhou L., et al. Colorectal Cancer-Derived Small Extracellular Vesicles Promote Tumor Immune Evasion by Upregulating PD-L1 Expression in Tumor-Associated Macrophages. Adv. Sci. 2022;9:2102620. doi: 10.1002/advs.202102620. PubMed DOI PMC

Lin X., Wang S., Sun M., Zhang C., Wei C., Yang C., Dou R., Liu Q., Xiong B. miR-195-5p/NOTCH2-mediated EMT modulates IL-4 secretion in colorectal cancer to affect M2-like TAM polarization. J. Hematol. Oncol. 2019;12:1–14. doi: 10.1186/s13045-019-0708-7. PubMed DOI PMC

Zheng G.-L., Liu Y.-L., Yan Z.-X., Xie X.-Y., Xiang Z., Yin L., Wang Q.-Q., Chong D.-C., Xue G.-L., Xu L.-L., et al. Ele-vated LOXL2 Expression by LINC01347/MiR-328-5p Axis Contributes to 5-FU Chemotherapy Resistance of Colorectal Can-cer. Am. J. Cancer Res. 2021;11:1572–1585. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

miRNA and lncRNA as potential tissue biomarkers in hepatocellular carcinoma

. 2024 Mar ; 9 (1) : 24-32. [epub] 20231024

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...