Associations between Per- and Polyfluoroalkyl Substances (PFAS) and Cardiometabolic Biomarkers in Adults of Czechia: The Kardiovize Study

. 2022 Oct 26 ; 19 (21) : . [epub] 20221026

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36360776

Even though there is evidence of decreasing trends of per- and polyfluoroalkyl substances (PFAS) in Czechia, there are still major sources of PFAS pollution. Regarding the still-inconsistent results of the relationship between cardiometabolic health and PFAS, the present study sought to determine the association between PFAS levels and the presence of cardiometabolic biomarkers, including blood pressure and dysglycemia drivers in the Czech population. A cross-sectional study with 479 subjects (56.4% women, median: 53 years, range: 25-89) was conducted. Four PFAS were measured in serum: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorooctane sulfonate (PFOS). The associations between natural log (ln)-transformed PFAS and cardiometabolic biomarkers were assessed through generalized additive models using linear regression and smoothing thin plate splines, adjusted for potential confounders. There were positive and significant (p < 0.05) associations between the ln-transformed PFOA and glucose (β = 0.01), systolic (β = 0.76) and diastolic blood pressure (β = 0.65); total cholesterol (β = 0.07) and LDL-c (β = 0.04); and PFOS with glucose (β = 0.03), BMI (β = 2.26), waist circumference (β = 7.89), systolic blood pressure (β = 1.18), total cholesterol (β = 0.13), and HDL-c (β = 0.04). When significant, the correlations of PFNA and PFDA were negative. Of the four PFAS, only PFOA and PFOS showed a positive association, even in serum levels not as high as the values from the literature.

Zobrazit více v PubMed

EFSA Panel on Contaminants in the Food Chain (CONTAM) Knutsen H.K., Alexander J., Barregard L., Bignami M., Bruschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Edler L., et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 2018;16:e05194. PubMed PMC

Goldenman G., Fernandes M., Holland M., Tugran T., Nordin A., Schoumacher C., McNeill A. The Cost of Inaction: A Socioeconomic Analysis of Environmental and Health Impacts Linked to Exposure to PFAS. Nordic Council of Ministers; Copenhagen, Denmark: 2019.

Fromme H., Tittlemier S.A., Volkel W., Wilhelm M., Twardella D. Perfluorinated compounds–exposure assessment for the general population in Western countries. Int. J. Hyg. Environ. Health. 2009;212:239–270. doi: 10.1016/j.ijheh.2008.04.007. PubMed DOI

Straková J., Schneider J., Cingotti N. Throwaway Packaging, Forever Chemicals. European-Wide Survey of PFAS in Disposable Food Packaging and Tableware. Prague, Czech Republic. 2021. [(accessed on 10 August 2022)]. Available online: https://arnika.org/en/publications/download/1359_6642beee5ca9f251192b6c3fb969f8d6.

Wang Z., DeWitt J.C., Higgins C.P., Cousins I.T. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ. Sci. Technol. 2017;51:2508–2518. doi: 10.1021/acs.est.6b04806. PubMed DOI

Christensen K.Y., Raymond M., Meiman J. Perfluoroalkyl substances and metabolic syndrome. Int. J. Hyg. Environ. Health. 2019;222:147–153. doi: 10.1016/j.ijheh.2018.08.014. PubMed DOI

Cousins I.T., Goldenman G., Herzke D., Lohmann R., Miller M., Ng C.A., Patton S., Scheringer M., Trier X., Vierke L. The concept of essential use for determining when uses of PFASs can be phased out. Environ. Sci. Processes Impacts. 2019;21:1803–1815. doi: 10.1039/C9EM00163H. PubMed DOI PMC

Černá M., Grafnetterová A.P., Dvořáková D., Pulkrabová J., Malý M., Janoš T., Vodrážková N., Tupá Z., Puklová V. Biomonitoring of PFOA, PFOS and PFNA in human milk from Czech Republic, time trends and estimation of infant’s daily intake. Environ. Res. 2020;188:109763. doi: 10.1016/j.envres.2020.109763. PubMed DOI

Semerád J., Hatasová N., Grasserová A., Černá T., Filipová A., Hanč A., Innemanová P., Pivokonský M., Cajthaml T. Screening for 32 per- and polyfluoroalkyl substances (PFAS) including GenX in sludges from 43 WWTPs located in the Czech Republic—Evaluation of potential accumulation in vegetables after application of biosolids. Chemosphere. 2020;261:128018. doi: 10.1016/j.chemosphere.2020.128018. PubMed DOI

Panieri E., Baralic K., Djukic-Cosic D., Buha Djordjevic A., Saso L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics. 2022;10:44. doi: 10.3390/toxics10020044. PubMed DOI PMC

Naidu R., Nadebaum P., Fang C., Cousins I., Pennell K., Conder J., Newell C.J., Longpré D., Warner S., Crosbie N.D., et al. Per- and poly-fluoroalkyl substances (PFAS): Current status and research needs. Environ. Technol. Innov. 2020;19:100915. doi: 10.1016/j.eti.2020.100915. DOI

He X., Liu Y., Xu B., Gu L., Tang W. PFOA is associated with diabetes and metabolic alteration in US men: National Health and Nutrition Examination Survey 2003–2012. Sci. Total Environ. 2018;625:566–574. doi: 10.1016/j.scitotenv.2017.12.186. PubMed DOI

Steenland K., Fletcher T., Stein C.R., Bartell S.M., Darrow L., Lopez-Espinosa M.-J., Barry Ryan P., Savitz D.A. Review: Evolution of evidence on PFOA and health following the assessments of the C8 Science Panel. Environ. Int. 2020;145:106125. doi: 10.1016/j.envint.2020.106125. PubMed DOI

Nelson J.W., Hatch E.E., Webster T.F. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general US population. Environ. Health Perspect. 2010;118:197–202. doi: 10.1289/ehp.0901165. PubMed DOI PMC

Pitter G., Zare Jeddi M., Barbieri G., Gion M., Fabricio A.S.C., Dapra F., Russo F., Fletcher T., Canova C. Perfluoroalkyl substances are associated with elevated blood pressure and hypertension in highly exposed young adults. Environ. Health. 2020;19:102. doi: 10.1186/s12940-020-00656-0. PubMed DOI PMC

Kirk M., Smurthwaite K., Bräunig J., Trevenar S., D’Este C., Lucas R., Lal A., Korda R., Clements A., Mueller J., et al. The PFAS Health Study: Systematic Literature Review. Canberra: The Australian National University. 2018. [(accessed on 1 March 2020)]. Available online: https://rsph.anu.edu.au/files/PFAS%20Health%20Study%20Systematic%20Review_1.pdf.

Movsisyan N.K., Vinciguerra M., Lopez-Jimenez F., Kunzova S., Homolka M., Jaresova J., Cifkova R., Sochor O. Kardiovize Brno 2030, a prospective cardiovascular health study in Central Europe: Methods, baseline findings and future directions. Eur. J. Prev. Cardiol. 2018;25:54–64. doi: 10.1177/2047487317726623. PubMed DOI

Harris P.A., Taylor R., Thielke R., Payne J., Gonzalez N., Conde J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010. PubMed DOI PMC

Hagströmer M., Oja P., Sjöström M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006;9:755–762. doi: 10.1079/PHN2005898. PubMed DOI

Massey F.J. The Kolmogorov-Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951;46:68–78. doi: 10.1080/01621459.1951.10500769. DOI

Johnston J.D., Dunn C.J., Vernon M.J. Tree traits influence response to fire severity in the western Oregon Cascades, USA. For. Ecol. Manag. 2019;433:690–698. doi: 10.1016/j.foreco.2018.11.047. DOI

Wood S.N. Generalized additive models: An introduction with R. Chapman and hall/CRC; New York, NY, USA: 2006.

Bashir T., Obeng-Gyasi E. The Association between Multiple Per- and Polyfluoroalkyl Substances’ Serum Levels and Allostatic Load. Int. J. Environ. Res. Public Health. 2022;19:5455. doi: 10.3390/ijerph19095455. PubMed DOI PMC

National Institute of Public Health . Environmental Health Monitoring System in the Czech Republic—Summary Report 2020. 1st ed. National Institute of Public Health; Prague, Czech Republic: 2021.

Qi W., Clark J.M., Timme-Laragy A.R., Park Y. Per- and Polyfluoroalkyl Substances and Obesity, Type 2 Diabetes and Non-alcoholic Fatty Liver Disease: A Review of Epidemiologic Findings. Toxicol. Environ. Chem. 2020;102:1–36. doi: 10.1080/02772248.2020.1763997. PubMed DOI PMC

Su T.C., Kuo C.C., Hwang J.J., Lien G.W., Chen M.F., Chen P.C. Serum perfluorinated chemicals, glucose homeostasis and the risk of diabetes in working-aged Taiwanese adults. Environ. Int. 2016;88:15–22. doi: 10.1016/j.envint.2015.11.016. PubMed DOI

Liu H.S., Wen L.L., Chu P.L., Lin C.Y. Association among total serum isomers of perfluorinated chemicals, glucose homeostasis, lipid profiles, serum protein and metabolic syndrome in adults: NHANES, 2013–2014. Environ. Pollut. 2018;232:73–79. doi: 10.1016/j.envpol.2017.09.019. PubMed DOI

Tian Y.-P., Zeng X.-W., Bloom M.S., Lin S., Wang S.-Q., Yim S.H.L., Yang M., Chu C., Gurram N., Hu L.-W., et al. Isomers of perfluoroalkyl substances and overweight status among Chinese by sex status: Isomers of C8 Health Project in China. Environ. Int. 2019;124:130–138. doi: 10.1016/j.envint.2019.01.006. PubMed DOI

Lin C.Y., Chen P.C., Lin Y.C., Lin L.Y. Association among serum perfluoroalkyl chemicals, glucose homeostasis, and metabolic syndrome in adolescents and adults. Diabetes Care. 2009;32:702–707. doi: 10.2337/dc08-1816. PubMed DOI PMC

Zare Jeddi M., Dalla Zuanna T., Barbieri G., Fabricio A.S.C., Daprà F., Fletcher T., Russo F., Pitter G., Canova C. Associations of Perfluoroalkyl Substances with Prevalence of Metabolic Syndrome in Highly Exposed Young Adult Community Residents-A Cross-Sectional Study in Veneto Region, Italy. Int. J. Environ. Res. Public Health. 2021;18:1194. doi: 10.3390/ijerph18031194. PubMed DOI PMC

Jain R.B., Ducatman A. Roles of gender and obesity in defining correlations between perfluoroalkyl substances and lipid/lipoproteins. Sci. Total Environ. 2019;653:74–81. doi: 10.1016/j.scitotenv.2018.10.362. PubMed DOI

Fisher M., Arbuckle T.E., Wade M., Haines D.A. Do perfluoroalkyl substances affect metabolic function and plasma lipids?—Analysis of the 2007-2009, Canadian Health Measures Survey (CHMS) Cycle 1. Environ. Res. 2013;121:95–103. doi: 10.1016/j.envres.2012.11.006. PubMed DOI

Honda-Kohmo K., Hutcheson R., Innes K.E., Conway B.N. Perfluoroalkyl substances are inversely associated with coronary heart disease in adults with diabetes. J. Diabetes Complicat. 2019;33:407–412. doi: 10.1016/j.jdiacomp.2019.02.004. PubMed DOI PMC

Guruge K.S., Yeung L.W., Yamanaka N., Miyazaki S., Lam P.K., Giesy J.P., Jones P.D., Yamashita N. Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA) Toxicol. Sci. 2006;89:93–107. doi: 10.1093/toxsci/kfj011. PubMed DOI

Fleisch A.F., Rifas-Shiman S.L., Mora A.M., Calafat A.M., Ye X., Luttmann-Gibson H., Gillman M.W., Oken E., Sagiv S.K. Early-Life Exposure to Perfluoroalkyl Substances and Childhood Metabolic Function. Environ. Health Perspect. 2017;125:481–487. doi: 10.1289/EHP303. PubMed DOI PMC

Janani C., Ranjitha Kumari B.D. PPAR gamma gene—A review. Diabetes Metab. Syndr. 2015;9:46–50. doi: 10.1016/j.dsx.2014.09.015. PubMed DOI

Inoue K., Goto A., Sugiyama T., Ramlau-Hansen C.H., Liew Z. The Confounder-Mediator Dilemma: Should We Control for Obesity to Estimate the Effect of Perfluoroalkyl Substances on Health Outcomes? Toxics. 2020;8:125. doi: 10.3390/toxics8040125. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...