The Influence of Adiposity Levels on the Relation between Perfluoroalkyl Substances and High Depressive Symptom Scores in Czech Adults

. 2023 Nov 20 ; 11 (11) : . [epub] 20231120

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37999598

Grantová podpora
733032 HBM4EU Horizon 2020
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund

The extensive use and bioaccumulation of Perfluoroalkyl Substances (PFAS) over time raise concerns about their impact on health, including mental issues such as depression. This study aims to evaluate the association between PFAS and depression. In addition, considering the importance of PFAS as an endocrine disruptor and in adipogenesis, the analyses will also be stratified by body fat status. A cross-sectional study with 479 subjects (56.4% women, 25-89 years) was conducted. Four PFAS were measured: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorooctane sulfonate (PFOS). The Poisson regression model was applied using robust error variances. The fully adjusted model included age, sex, educational level, income, smoking, physical activity, body fat percentage, and the questionnaire to assess depression. The prevalence of depression and high body fat was 7.9% and 41.1%, respectively. Only PFOA was significantly associated with depression in the entire sample (prevalence rate (PR): 1.91; confidence interval (CI95%): 1.01-3.65). However, in the group with normal adiposity, PFOA (3.20, CI95%: 1.46-7.01), PFNA (2.54, CI95%: 1.29-5.00), and PFDA (2.09, CI95%: 1.09-4.00) were also significant. Future research should investigate the role of obesity as well as the biological plausibility and possible mechanisms increasing the limited number of evidences between PFAS and depression.

Zobrazit více v PubMed

EFSA Panel on Contaminants in the Food Chain (CONTAM) Knutsen H.K., Alexander J., Barregard L., Bignami M., Bruschweiler B., Ceccatelli S., Cottrill B., Dinovi M., Edler L., et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 2018;16:e05194. PubMed PMC

Diaz L.M., Stewart M.R. “Forever Chemicals”: Forever Altering the Legal Landscape. Belmont Law Rev. 2019;7:308.

Fromme H., Tittlemier S.A., Völkel W., Wilhelm M., Twardella D. Perfluorinated compounds—Exposure assessment for the general population in Western countries. Int. J. Hyg. Environ. Health. 2009;212:239–270. doi: 10.1016/j.ijheh.2008.04.007. PubMed DOI

Xie X., Weng X., Liu S., Chen J., Guo X., Gao X., Fei Q., Hao G., Jing C., Feng L. Perfluoroalkyl and polyfluoroalkyl substance exposure and association with sex hormone concentrations: Results from the NHANES 2015–2016. Environ. Sci. Eur. 2021;33:69. doi: 10.1186/s12302-021-00508-9. PubMed DOI PMC

Di Law H., Armstrong B., D’Este C., Randall D., Hosking R., Lazarevic N., Trevenar S., Smurthwaite K., Lal A., Lucas R. PFAS Health Study. Australian National University; Canberra, Australia: 2021.

Ross I., Hurst J. Contaminated Land: Applications in Real Environments. CL:AIRE; London, UK: 2019. Managing risks and liabilities associated with per-and polyfluoroalkyl substances (PFASs)

Buoso E., Masi M., Racchi M., Corsini E. Endocrine-Disrupting Chemicals’ (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int. J. Mol. Sci. 2020;21:9229. doi: 10.3390/ijms21239229. PubMed DOI PMC

Cakmak S., Lukina A., Karthikeyan S., Atlas E., Dales R. The association between blood PFAS concentrations and clinical biochemical measures of organ function and metabolism in participants of the Canadian Health Measures Survey (CHMS) Sci. Total Environ. 2022;827:153900. doi: 10.1016/j.scitotenv.2022.153900. PubMed DOI

Calloway E.E., Chiappone A.L., Schmitt H.J., Sullivan D., Gerhardstein B., Tucker P.G., Rayman J., Yaroch A.L. Exploring Community Psychosocial Stress Related to Per- and Poly-Fluoroalkyl Substances (PFAS) Contamination: Lessons Learned from a Qualitative Study. Int. J. Environ. Res. Public Health. 2020;17:8706. doi: 10.3390/ijerph17238706. PubMed DOI PMC

Starnes H.M., Rock K.D., Jackson T.W., Belcher S.M. A Critical Review and Meta-Analysis of Impacts of Per- and Polyfluorinated Substances on the Brain and Behavior. Front. Toxicol. 2022;4:881584. doi: 10.3389/ftox.2022.881584. PubMed DOI PMC

Pereiro N., Moyano R., Blanco A., Lafuente A. Regulation of corticosterone secretion is modified by PFOS exposure at different levels of the hypothalamic-pituitary-adrenal axis in adult male rats. Toxicol. Lett. 2014;230:252–262. doi: 10.1016/j.toxlet.2014.01.003. PubMed DOI

Salgado-Freiría R., López-Doval S., Lafuente A. Perfluorooctane sulfonate (PFOS) can alter the hypothalamic-pituitary-adrenal (HPA) axis activity by modifying CRF1 and glucocorticoid receptors. Toxicol. Lett. 2018;295:1–9. doi: 10.1016/j.toxlet.2018.05.025. PubMed DOI

Piekarski D., Diaz K., McNerney M. Perfluoroalkyl chemicals in neurological health and disease: Human concerns and animal models. Neurotoxicology. 2020;77:155–168. doi: 10.1016/j.neuro.2020.01.001. PubMed DOI

Foguth R.M., Sepúlveda M.S., Cannon J.R. Per- and Polyfluoroalkyl Substances (PFAS) Neurotoxicity in Sentinel and Non-Traditional Laboratory Model Systems: Potential Utility in Predicting Adverse Outcomes in Human Health. Toxics. 2020;8:42. doi: 10.3390/toxics8020042. PubMed DOI PMC

Cao Y., Ng C. Absorption, distribution, and toxicity of per-and polyfluoroalkyl substances (PFAS) in the brain: A review. Environ. Sci. Process. Impacts. 2021;23:1623–1640. doi: 10.1039/D1EM00228G. PubMed DOI

Merrill A.K., Conrad K., Marvin E., Sobolewski M. Effects of gestational low dose perfluorooctanoic acid on maternal and “anxiety-like” behavior in dams. Front. Toxicol. 2022;4:971970. doi: 10.3389/ftox.2022.971970. PubMed DOI PMC

Aung M.T., Eick S.M., Padula A.M., Smith S., Park J.S., DeMicco E., Woodruff T.J., Morello-Frosch R. Maternal per- and poly-fluoroalkyl substances exposures associated with higher depressive symptom scores among immigrant women in the Chemicals in Our Bodies cohort in San Francisco. Environ. Int. 2023;172:107758. doi: 10.1016/j.envint.2023.107758. PubMed DOI PMC

Wang J., Pan Y., Cui Q., Yao B., Wang J., Dai J. Penetration of PFASs Across the Blood Cerebrospinal Fluid Barrier and Its Determinants in Humans. Environ. Sci. Technol. 2018;52:13553–13561. doi: 10.1021/acs.est.8b04550. PubMed DOI

Formánek T., Kagström A., Cermakova P., Csémy L., Mladá K., Winkler P. Prevalence of mental disorders and associated disability: Results from the cross-sectional CZEch mental health Study (CZEMS) Eur. Psychiatry. 2019;60:1–6. doi: 10.1016/j.eurpsy.2019.05.001. PubMed DOI

World Health Organization . Depression and Other Common Mental Disorders: Global Health Estimates. World Health Organization; Geneva, Switzerland: 2017.

Eurostat . Mental Health and Related Issues Statistics. Eurostat; Luxembourg: 2020.

Lind P.M., Lind L., Salihovic S., Ahlström H., Michaelsson K., Kullberg J., Strand R. Serum levels of perfluoroalkyl substances (PFAS) and body composition—A cross-sectional study in a middle-aged population. Environ. Res. 2022;209:112677. doi: 10.1016/j.envres.2022.112677. PubMed DOI

Speed M.S., Jefsen O.H., Børglum A.D., Speed D., Østergaard S.D. Investigating the association between body fat and depression via Mendelian randomization. Transl. Psychiatry. 2019;9:184. doi: 10.1038/s41398-019-0516-4. PubMed DOI PMC

Milaneschi Y., Simmons W.K., van Rossum E.F.C., Penninx B.W. Depression and obesity: Evidence of shared biological mechanisms. Mol. Psychiatry. 2019;24:18–33. doi: 10.1038/s41380-018-0017-5. PubMed DOI

Wester V.L., Staufenbiel S.M., Veldhorst M.A., Visser J.A., Manenschijn L., Koper J.W., Klessens-Godfroy F.J., van den Akker E.L., van Rossum E.F. Long-term cortisol levels measured in scalp hair of obese patients. Obesity. 2014;22:1956–1958. doi: 10.1002/oby.20795. PubMed DOI

Fulton S., Décarie-Spain L., Fioramonti X., Guiard B., Nakajima S. The menace of obesity to depression and anxiety prevalence. Trends Endocrinol. Metab. 2022;33:18–35. doi: 10.1016/j.tem.2021.10.005. PubMed DOI

Visseren F.L., Mach F., Smulders Y.M., Carballo D., Koskinas K.C., Bäck M., Benetos A., Biffi A., Boavida J.-M., Capodanno D. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC) Eur. J. Prev. Cardiol. 2022;29:5–115. PubMed

Craig C.L., Marshall A.L., Sjöström M., Bauman A.E., Booth M.L., Ainsworth B.E., Pratt M., Ekelund U., Yngve A., Sallis J.F., et al. International physical activity questionnaire: 12-Country reliability and validity. Med. Sci. Sports Exerc. 2003;35:1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB. PubMed DOI

Kroenke K., Spitzer R.L., Williams J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001;16:606–613. doi: 10.1046/j.1525-1497.2001.016009606.x. PubMed DOI PMC

Andresen E.M., Malmgren J.A., Carter W.B., Patrick D.L. Screening for depression in well older adults: Evaluation of a short form of the CES-D (Center for Epidemiologic Studies Depression Scale) Am. J. Prev. Med. 1994;10:77–84. doi: 10.1016/S0749-3797(18)30622-6. PubMed DOI

Ling C.H., de Craen A.J., Slagboom P.E., Gunn D.A., Stokkel M.P., Westendorp R.G., Maier A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011;30:610–615. doi: 10.1016/j.clnu.2011.04.001. PubMed DOI

Hui D., Dev R., Pimental L., Park M., Cerana M.A., Liu D., Bruera E. Association between Multi-frequency Phase Angle and Survival in Patients with Advanced Cancer. J. Pain Symptom Manag. 2017;53:571–577. doi: 10.1016/j.jpainsymman.2016.09.016. PubMed DOI PMC

McLester C.N., Nickerson B.S., Kliszczewicz B.M., McLester J.R. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020;23:443–450. doi: 10.1016/j.jocd.2018.10.008. PubMed DOI

World Health Organization . Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee. World Health Organization; Geneva, Switzerland: 1995. PubMed

Maranhao Neto G.A., Polcrova A.B., Pospisilova A., Blaha L., Klanova J., Bobak M., Gonzalez-Rivas J.P. Associations between Per- and Polyfluoroalkyl Substances (PFAS) and Cardiometabolic Biomarkers in Adults of Czechia: The Kardiovize Study. Int. J. Environ. Res. Public Health. 2022;19:13898. doi: 10.3390/ijerph192113898. PubMed DOI PMC

National Institute of Public Health . Environmental Health Monitoring System in the Czech Republic—Summary Report 2020. 1st ed. National Institute of Public Health; Saitama, Japan: 2021.

National Academies of Sciences, Engineering, and Medicine . Guidance on PFAS Exposure, Testing, and Clinical Follow-Up. National Academies of Sciences, Engineering, and Medicine; Washington, DC, USA: 2022. PubMed

Berk M., Williams L.J., Andreazza A.C., Pasco J.A., Dodd S., Jacka F.N., Moylan S., Reiner E.J., Magalhaes P.V. Pop, heavy metal and the blues: Secondary analysis of persistent organic pollutants (POP), heavy metals and depressive symptoms in the NHANES National Epidemiological Survey. BMJ Open. 2014;4:e005142. doi: 10.1136/bmjopen-2014-005142. PubMed DOI PMC

Eick S.M., Goin D.E., Cushing L., DeMicco E., Smith S., Park J.S., Padula A.M., Woodruff T.J., Morello-Frosch R. Joint effects of prenatal exposure to per- and poly-fluoroalkyl substances and psychosocial stressors on corticotropin-releasing hormone during pregnancy. J. Expo. Sci. Environ. Epidemiol. 2022;32:27–36. doi: 10.1038/s41370-021-00322-8. PubMed DOI PMC

Shrestha S., Bloom M.S., Yucel R., Seegal R.F., Rej R., McCaffrey R.J., Wu Q., Kannan K., Fitzgerald E.F. Perfluoroalkyl substances, thyroid hormones, and neuropsychological status in older adults. Int. J. Hyg. Environ. Health. 2017;220:679–685. doi: 10.1016/j.ijheh.2016.12.013. PubMed DOI

Fei C., McLaughlin J.K., Lipworth L., Olsen J. Prenatal exposure to perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) and maternally reported developmental milestones in infancy. Environ. Health Perspect. 2008;116:1391–1395. doi: 10.1289/ehp.11277. PubMed DOI PMC

Hoffman K., Webster T.F., Weisskopf M.G., Weinberg J., Vieira V.M. Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12–15 years of age. Environ. Health Perspect. 2010;118:1762–1767. doi: 10.1289/ehp.1001898. PubMed DOI PMC

Salgado R., López-Doval S., Pereiro N., Lafuente A. Perfluorooctane sulfonate (PFOS) exposure could modify the dopaminergic system in several limbic brain regions. Toxicol. Lett. 2016;240:226–235. doi: 10.1016/j.toxlet.2015.10.023. PubMed DOI

Jantzen C.E., Annunziato K.M., Cooper K.R. Behavioral, morphometric, and gene expression effects in adult zebrafish (Danio rerio) embryonically exposed to PFOA, PFOS, and PFNA. Aquat. Toxicol. 2016;180:123–130. doi: 10.1016/j.aquatox.2016.09.011. PubMed DOI PMC

Masi M., Maddalon A., Iulini M., Linciano P., Galbiati V., Marinovich M., Racchi M., Corsini E., Buoso E. Effects of endocrine disrupting chemicals on the expression of RACK1 and LPS-induced THP-1 cell activation. Toxicology. 2022;480:153321. doi: 10.1016/j.tox.2022.153321. PubMed DOI

Brivio P., Buoso E., Masi M., Gallo M.T., Gruca P., Lason M., Litwa E., Papp M., Fumagalli F., Racchi M., et al. The coupling of RACK1 with the beta isoform of the glucocorticoid receptor promotes resilience to chronic stress exposure. Neurobiol. Stress. 2021;15:100372. doi: 10.1016/j.ynstr.2021.100372. PubMed DOI PMC

Abbott B.D., Wood C.R., Watkins A.M., Tatum-Gibbs K., Das K.P., Lau C. Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues. Reprod. Toxicol. 2012;33:491–505. doi: 10.1016/j.reprotox.2011.11.005. PubMed DOI

Wang Y., Zhang Y., Shi Z., Di T., Yu W., Chen L. Exposure of male mice to perfluorooctanoic acid induces anxiety-like behaviors by increasing corticotropin-releasing factor in the basolateral amygdala complex. Chemosphere. 2022;287:132170. doi: 10.1016/j.chemosphere.2021.132170. PubMed DOI

Asakawa A., Toyoshima M., Fujimiya M., Harada K., Ataka K., Inoue K., Koizumi A. Perfluorooctane sulfonate influences feeding behavior and gut motility via the hypothalamus. Int. J. Mol. Med. 2007;19:733–739. doi: 10.3892/ijmm.19.5.733. PubMed DOI

Ouakinin S.R.S., Barreira D.P., Gois C.J. Depression and Obesity: Integrating the Role of Stress, Neuroendocrine Dysfunction and Inflammatory Pathways. Front. Endocrinol. 2018;9:431. doi: 10.3389/fendo.2018.00431. PubMed DOI PMC

Afari N., Noonan C., Goldberg J., Roy-Byrne P., Schur E., Golnari G., Buchwald D. Depression and obesity: Do shared genes explain the relationship? Depress. Anxiety. 2010;27:799–806. doi: 10.1002/da.20704. PubMed DOI PMC

Bjerregaard-Olesen C., Bach C.C., Long M., Ghisari M., Bossi R., Bech B.H., Nohr E.A., Henriksen T.B., Olsen J., Bonefeld-Jørgensen E.C. Time trends of perfluorinated alkyl acids in serum from Danish pregnant women 2008–2013. Environ. Int. 2016;91:14–21. doi: 10.1016/j.envint.2016.02.010. PubMed DOI

Ballesteros V., Costa O., Iñiguez C., Fletcher T., Ballester F., Lopez-Espinosa M.-J. Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: A systematic review of epidemiologic studies. Environ. Int. 2017;99:15–28. doi: 10.1016/j.envint.2016.10.015. PubMed DOI

Inoue K., Goto A., Sugiyama T., Ramlau-Hansen C.H., Liew Z. The Confounder-Mediator Dilemma: Should We Control for Obesity to Estimate the Effect of Perfluoroalkyl Substances on Health Outcomes? Toxics. 2020;8:125. doi: 10.3390/toxics8040125. PubMed DOI PMC

Boronow K.E., Brody J.G., Schaider L.A., Peaslee G.F., Havas L., Cohn B.A. Serum concentrations of PFASs and exposure-related behaviors in African American and non-Hispanic white women. J. Expo. Sci. Environ. Epidemiol. 2019;29:206–217. doi: 10.1038/s41370-018-0109-y. PubMed DOI PMC

Pavlovska I., Polcrova A., Mechanick J.I., Brož J., Infante-Garcia M.M., Nieto-Martínez R., Maranhao Neto G.A., Kunzova S., Skladana M., Novotny J.S., et al. Dysglycemia and Abnormal Adiposity Drivers of Cardiometabolic-Based Chronic Disease in the Czech Population: Biological, Behavioral, and Cultural/Social Determinants of Health. Nutrients. 2021;13:2338. doi: 10.3390/nu13072338. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...