L-Aspartate and L-Glutamine Inhibit Beta-Aminobutyric Acid-Induced Resistance in Tomatoes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36365361
PubMed Central
PMC9655027
DOI
10.3390/plants11212908
PII: plants11212908
Knihovny.cz E-zdroje
- Klíčová slova
- BABA-induced resistance, Pseudomonas syringae, amino acids, jasmonic acid, β-aminobutyric acid,
- Publikační typ
- časopisecké články MeSH
Plant diseases caused by pathogens lead to economic and agricultural losses, while plant resistance is defined by robustness and timing of defence response. Exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with more robust defence responses. β-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance, thereby protecting various plants' diverse stresses by induction of non-canonical activity after binding into aspartyl-tRNA synthetase (AspRS). In this study, by integrating BABA-induced changes in selected metabolites and transcript data, we describe the molecular processes involved in BABA-induced resistance (BABA-IR) in tomatoes. BABA significantly restricted the growth of the pathogens P. syringae pv. tomato DC3000 and was related to the accumulation of transcripts for pathogenesis-related proteins and jasmonic acid signalling but not salicylic acid signalling in Arabidopsis. The resistance was considerably reduced by applying amino acids L-Asp and L-Gln when L-Gln prevents general amino acid inhibition in plants. Analysis of amino acid changes suggests that BABA-IR inhibition by L-Asp is due to its rapid metabolisation to L-Gln and not its competition with BABA for the aspartyl-tRNA synthetase (AspRS) binding site. Our results showed differences between the effect of BABA on tomatoes and other model plants. They highlighted the importance of comparative studies between plants of agronomic interest subjected to treatment with BABA.
Zobrazit více v PubMed
Vijayakumari K., Jisha K.C., Puthur J.T. GABA/BABA Priming: A Means for Enhancing Abiotic Stress Tolerance Potential of Plants with Less Energy Investments on Defence Cache. Acta Physiol. Plant. 2016;38:230. doi: 10.1007/s11738-016-2254-z. DOI
Baccelli I., Mauch-Mani B. Beta-Aminobutyric Acid Priming of Plant Defense: The Role of ABA and Other Hormones. Plant Mol. Biol. 2016;91:703–711. doi: 10.1007/s11103-015-0406-y. PubMed DOI
Cohen Y., Vaknin M., Mauch-Mani B. BABA-Induced Resistance: Milestones along a 55-Year Journey. Phytoparasitica. 2016;44:513–538. doi: 10.1007/s12600-016-0546-x. DOI
Thevenet D., Pastor V., Baccelli I., Balmer A., Vallat A., Neier R., Glauser G., Mauch-Mani B. The Priming Molecule β-Aminobutyric Acid Is Naturally Present in Plants and Is Induced by Stress. New Phytol. 2017;213:552–559. doi: 10.1111/nph.14298. PubMed DOI
Baccelli I., Glauser G., Mauch-Mani B. The Accumulation of β-Aminobutyric Acid Is Controlled by the Plant’s Immune System. Planta. 2017;246:791–796. doi: 10.1007/s00425-017-2751-3. PubMed DOI
Schwarzenbacher R.E., Wardell G., Stassen J., Guest E., Zhang P., Luna E., Ton J. The IBI1 Receptor of β-Aminobutyric Acid Interacts with VOZ Transcription Factors to Regulate Abscisic Acid Signaling and Callose-Associated Defense. Mol. Plant. 2020;13:1455–1469. doi: 10.1016/j.molp.2020.07.010. PubMed DOI PMC
Wu C.-C., Singh P., Chen M.-C., Zimmerli L. L-Glutamine Inhibits Beta-Aminobutyric Acid-Induced Stress Resistance and Priming in Arabidopsis. J. Exp. Bot. 2010;61:995–1002. doi: 10.1093/jxb/erp363. PubMed DOI PMC
FAOSTAT. [(accessed on 14 September 2022)]. Available online: https://www.fao.org/faostat/en/#data/QCL.
Kimura S., Sinha N. Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop. Cold Spring Harb. Protoc. 2008;2008:pdb.emo105. doi: 10.1101/pdb.emo105. PubMed DOI
Bengtsson T., Weighill D., Proux-Wéra E., Levander F., Resjö S., Burra D.D., Moushib L.I., Hedley P.E., Liljeroth E., Jacobson D., et al. Proteomics and Transcriptomics of the BABA-Induced Resistance Response in Potato Using a Novel Functional Annotation Approach. BMC Genom. 2014;15:315. doi: 10.1186/1471-2164-15-315. PubMed DOI PMC
Satková P., Starý T., Plešková V., Zapletalová M., Kašparovský T., Činčalová-Kubienová L., Luhová L., Mieslerová B., Mikulík J., Lochman J., et al. Diverse Responses of Wild and Cultivated Tomato to BABA, Oligandrin and Oidium Neolycopersici Infection. Ann. Bot. 2017;119:829–840. doi: 10.1093/aob/mcw188. PubMed DOI PMC
Zimmerli L., Jakab G., Metraux J.P., Mauch-Mani B. Potentiation of Pathogen-Specific Defense Mechanisms in Arabidopsis by Beta -Aminobutyric Acid. Proc. Natl. Acad. Sci. USA. 2000;97:12920–12925. doi: 10.1073/pnas.230416897. PubMed DOI PMC
Slaughter A., Daniel X., Flors V., Luna E., Hohn B., Mauch-Mani B. Descendants of Primed Arabidopsis Plants Exhibit Resistance to Biotic Stress. Plant Physiol. 2012;158:835–843. doi: 10.1104/pp.111.191593. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Luna E., van Hulten M., Zhang Y., Berkowitz O., López A., Pétriacq P., Sellwood M.A., Chen B., Burrell M., van de Meene A., et al. Plant Perception of β-Aminobutyric Acid Is Mediated by an Aspartyl-TRNA Synthetase. Nat. Chem. Biol. 2014;10:450–456. doi: 10.1038/nchembio.1520. PubMed DOI PMC
Vega-Mas I., Rossi M.T., Gupta K.J., González-Murua C., Ratcliffe R.G., Estavillo J.M., González-Moro M.B. Tomato Roots Exhibit in Vivo Glutamate Dehydrogenase Aminating Capacity in Response to Excess Ammonium Supply. J. Plant Physiol. 2019;239:83–91. doi: 10.1016/j.jplph.2019.03.009. PubMed DOI
Vega-Mas I., Cukier C., Coleto I., González-Murua C., Limami A.M., González-Moro M.B., Marino D. Isotopic Labelling Reveals the Efficient Adaptation of Wheat Root TCA Cycle Flux Modes to Match Carbon Demand under Ammonium Nutrition. Sci. Rep. 2019;9:8925. doi: 10.1038/s41598-019-45393-8. PubMed DOI PMC
Ton J., Mauch-Mani B. β-Amino-Butyric Acid-Induced Resistance against Necrotrophic Pathogens Is Based on ABA-Dependent Priming for Callose. Plant J. 2004;38:119–130. doi: 10.1111/j.1365-313X.2004.02028.x. PubMed DOI
Zimmerli L., Métraux J.-P., Mauch-Mani B. β-Aminobutyric Acid-Induced Protection of Arabidopsis against the Necrotrophic Fungus Botrytis Cinerea. Plant Physiol. 2001;126:517–523. doi: 10.1104/pp.126.2.517. PubMed DOI PMC
Hamiduzzaman M.M., Jakab G., Barnavon L., Neuhaus J.-M., Mauch-Mani B. Beta-Aminobutyric Acid-Induced Resistance against Downy Mildew in Grapevine Acts through the Potentiation of Callose Formation and Jasmonic Acid Signaling. Mol. Plant-Microbe Interact. 2005;18:819–829. doi: 10.1094/MPMI-18-0819. PubMed DOI
Ton J., Jakab G., Toquin V., Flors V., Iavicoli A., Maeder M.N., Métraux J.-P., Mauch-Mani B. Dissecting the Beta-Aminobutyric Acid-Induced Priming Phenomenon in Arabidopsis. Plant Cell. 2005;17:987–999. doi: 10.1105/tpc.104.029728. PubMed DOI PMC
Skottke K.R., Yoon G.M., Kieber J.J., DeLong A. Protein Phosphatase 2A Controls Ethylene Biosynthesis by Differentially Regulating the Turnover of ACC Synthase Isoforms. PLoS Genet. 2011;7:e1001370. doi: 10.1371/annotation/b4fc15d6-b3ae-4fbb-8d88-b7d674a79697. PubMed DOI PMC
Mauch-Mani B., Baccelli I., Luna E., Flors V. Defense Priming: An Adaptive Part of Induced Resistance. Annu. Rev. Plant Biol. 2017;68:485–512. doi: 10.1146/annurev-arplant-042916-041132. PubMed DOI
Piękna-Grochala J., Kępczyńska E. Induction of Resistance against Pathogens by β-Aminobutyric Acid. Acta Physiol. Plant. 2013;35:1735–1748. doi: 10.1007/s11738-013-1215-z. DOI
Scott J.W., Harbaugh B.K. Micro-Tom: A Miniature Dwarf Tomato. Agricultural Experiment Station, Institute of Food and Agricultural Sciences, University of Florida; Gainesville, FL, USA: 1989. Circular (University of Florida, Agricultural Expriment Station)
Xin X.-F., He S.Y. Pseudomonas Syringae Pv. Tomato DC3000: A Model Pathogen for Probing Disease Susceptibility and Hormone Signaling in Plants. Annu. Rev. Phytopathol. 2013;51:473–498. doi: 10.1146/annurev-phyto-082712-102321. PubMed DOI
Martí E., Gisbert C., Bishop G.J., Dixon M.S., García-Martínez J.L. Genetic and Physiological Characterization of Tomato cv. Micro-Tom. J. Exp. Bot. 2006;57:2037–2047. doi: 10.1093/jxb/erj154. PubMed DOI
Takahashi H., Shimizu A., Arie T., Rosmalawati S., Fukushima S., Kikuchi M., Hikichi Y., Kanda A., Takahashi A., Kiba A., et al. Catalog of Micro-Tom Tomato Responses to Common Fungal, Bacterial, and Viral Pathogens. J. Gen. Plant Pathol. 2005;71:8–22. doi: 10.1007/s10327-004-0168-x. DOI
Bigeard J., Colcombet J., Hirt H. Signaling Mechanisms in Pattern-Triggered Immunity (PTI) Mol. Plant. 2015;8:521–539. doi: 10.1016/j.molp.2014.12.022. PubMed DOI
Conrath U., Beckers G.J.M., Flors V., García-Agustín P., Jakab G., Mauch F., Newman M.-A., Pieterse C.M.J., Poinssot B., Pozo M.J., et al. Priming: Getting Ready for Battle. MPMI. 2006;19:1062–1071. doi: 10.1094/MPMI-19-1062. PubMed DOI
Dutton C., Hõrak H., Hepworth C., Mitchell A., Ton J., Hunt L., Gray J.E. Bacterial Infection Systemically Suppresses Stomatal Density. Plant Cell Environ. 2019;42:2411–2421. doi: 10.1111/pce.13570. PubMed DOI PMC
Kadotani N., Akagi A., Takatsuji H., Miwa T., Igarashi D. Exogenous Proteinogenic Amino Acids Induce Systemic Resistance in Rice. BMC Plant Biol. 2016;16:60. doi: 10.1186/s12870-016-0748-x. PubMed DOI PMC
Winter G., Todd C.D., Trovato M., Forlani G., Funck D. Physiological Implications of Arginine Metabolism in Plants. Front. Plant Sci. 2015;6:534. doi: 10.3389/fpls.2015.00534. PubMed DOI PMC
Singh D.K., Maximova S.N., Jensen P.J., Lehman B.L., Ngugi H.K., McNellis T.W. FIBRILLIN4 Is Required for Plastoglobule Development and Stress Resistance in Apple and Arabidopsis. Plant Physiol. 2010;154:1281–1293. doi: 10.1104/pp.110.164095. PubMed DOI PMC
Heldt H.-W., Piechulla B. Plant Biochemistry. 4th ed. Elsevier; Amsterdam, The Netherlands: 2011.
Hartmann M., Zeier J. L-Lysine Metabolism to N-Hydroxypipecolic Acid: An Integral Immune-Activating Pathway in Plants. Plant J. 2018;96:5–21. doi: 10.1111/tpj.14037. PubMed DOI
Jakab G., Cottier V., Toquin V., Rigoli G., Zimmerli L., Métraux J.-P., Mauch-Mani B. β-Aminobutyric Acid-Induced Resistance in Plants. Eur. J. Plant Pathol. 2001;107:29–37. doi: 10.1023/A:1008730721037. DOI
Wang H., Liu G., Li C., Powell A.L.T., Reid M.S., Zhang Z., Jiang C.-Z. Defence Responses Regulated by Jasmonate and Delayed Senescence Caused by Ethylene Receptor Mutation Contribute to the Tolerance of Petunia to Botrytis Cinerea. Mol. Plant Pathol. 2013;14:453–469. doi: 10.1111/mpp.12017. PubMed DOI PMC
Boller T. The Plant Hormone Ethylene. CRC Press; Boca Raton, FL, USA: 1991. Ethylene in Pathogenesis and Disease Resistance.
Conrath U., Beckers G.J.M., Langenbach C.J.G., Jaskiewicz M.R. Priming for Enhanced Defense. Annu. Rev. Phytopathol. 2015;53:97–119. doi: 10.1146/annurev-phyto-080614-120132. PubMed DOI
Worrall D., Holroyd G.H., Moore J.P., Glowacz M., Croft P., Taylor J.E., Paul N.D., Roberts M.R. Treating Seeds with Activators of Plant Defence Generates Long-Lasting Priming of Resistance to Pests and Pathogens. New Phytol. 2012;193:770–778. doi: 10.1111/j.1469-8137.2011.03987.x. PubMed DOI
Zimmerli L., Hou B.-H., Tsai C.-H., Jakab G., Mauch-Mani B., Somerville S. The Xenobiotic Beta-Aminobutyric Acid Enhances Arabidopsis Thermotolerance. Plant J. 2008;53:144–156. doi: 10.1111/j.1365-313X.2007.03343.x. PubMed DOI
Yan Z., Reddy M.S., Ryu C.-M., McInroy J.A., Wilson M., Kloepper J.W. Induced Systemic Protection against Tomato Late Blight Elicited by Plant Growth-Promoting Rhizobacteria. Phytopathology. 2002;92:1329–1333. doi: 10.1094/PHYTO.2002.92.12.1329. PubMed DOI
Li X., Sun Z., Shao S., Zhang S., Ahammed G.J., Zhang G., Jiang Y., Zhou J., Xia X., Zhou Y., et al. Tomato–Pseudomonas Syringae Interactions under Elevated CO2 Concentration: The Role of Stomata. J. Exp. Bot. 2015;66:307–316. doi: 10.1093/jxb/eru420. PubMed DOI PMC
Porebski S., Bailey L.G., Baum B.R. Modification of a CTAB DNA Extraction Protocol for Plants Containing High Polysaccharide and Polyphenol Components. Plant Mol. Biol. Rep. 1997;15:8–15. doi: 10.1007/BF02772108. DOI
Gómez-Alonso S., Hermosín-Gutiérrez I., García-Romero E. Simultaneous HPLC Analysis of Biogenic Amines, Amino Acids, and Ammonium Ion as Aminoenone Derivatives in Wine and Beer Samples. J. Agric. Food Chem. 2007;55:608–613. doi: 10.1021/jf062820m. PubMed DOI