• This record comes from PubMed

Microalgae, a current option for the bioremediation of pharmaceuticals: a review

. 2023 Apr ; 68 (2) : 167-179. [epub] 20221111

Language English Country United States Media print-electronic

Document type Journal Article, Review

Links

PubMed 36367638
DOI 10.1007/s12223-022-01013-z
PII: 10.1007/s12223-022-01013-z
Knihovny.cz E-resources

In this review, research on the use of microalgae as an option for bioremediation purposes of pharmaceutical compounds is reported and discussed thoroughly. Pharmaceuticals have been detected in water bodies around the world, attracting attention towards the increasing potential risks to humans and aquatic biota. Unfortunately, pharmaceuticals have no regulatory standards for safe disposal in many countries. Despite the advances in new analytical techniques, the current wastewater treatment facilities in many countries are ineffective to remove the whole presence of pharmaceutical compounds and their metabolites. Though new methods are substantially effective, removal rates of drugs from wastewater make the cost-effectiveness ratio a not viable option. Therefore, the necessity for investigating and developing more adequate removal treatments with a higher efficiency rate and at a lower cost is mandatory. The present review highlights the algae-based removal strategies for bioremediation purposes, considering their pathway as well as the removal rate and efficiency of the microalgae species used in assays. We have critically reviewed both application of living and non-living microalgae biomass for bioremediation purposes considering the most commonly used microalgae species. In addition, the use of modified and immobilized microalgae biomass for the removal of pharmaceutical compounds from water was discussed. Furthermore, research considering various microalgal species and their potential use to detoxify organic and inorganic toxic compounds were well evaluated in the review. Further research is required to exploit the potential use of microalgae species as an option for the bioremediation of pharmaceuticals in water.

See more in PubMed

Abdulrazaq Y, Abdulsalam A, Rotimi AL, Abdulbasit AA, Clifford O, Abdulsalam OA, Racheal ON, Joy AA, Victor FO, Johannes ZM, Bilal M, Umar MS (2020) Classification, potential routes and risk of emerging pollutants/contaminant. In: Nuro A (ed) Emerging contaminants. IntechOpen, London, pp 1–12

Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y, Han Z, Salawu OA, Zhu Y (2022) Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J Hazard Mater 424:127284. https://doi.org/10.1016/j.jhazmat.2021.127284 PubMed DOI

Ahmad A, Banat F, Alsafar H, Hasan SW (2022) Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Sci Total Environ 806:150585. https://doi.org/10.1016/j.scitotenv.2021.150585 PubMed DOI

Ali ME, Abd El-Aty AM, Badawy M, Ali RK (2018) Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus. Ecotoxicol Environ Saf 151:144–152. https://doi.org/10.1016/j.ecoenv.2018.01.012 PubMed DOI

Angulo E, Bula L, Mercado I, Montano A, Cubillan N (2018) Bioremediation of cephalexin with non-living Chlorella sp., biomass after lipid extraction. Bioresour Technol 257:17–22. https://doi.org/10.1016/j.biortech.2018.02.079 PubMed DOI

Aus der Beek T, Weber FA, Bergmann A, Hickmann S, Ebert I, Küster A, Hein A (2016) Pharmaceuticals in the environment Global occurrences and perspectives. Environ Toxicol Chem 35:823–835. https://doi.org/10.1002/etc.3339 PubMed DOI

Bai X, Acharya K (2016) Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp. J Hazard Mater 315:70–75. https://doi.org/10.1016/j.jhazmat.2016.04.067 PubMed DOI

Boxall AB, Rudd MA, Brooks BW et al (2012) Pharmaceuticals and personal care products in the environment: what are the big questions? Environ Health Perspect 120:1221–1229. https://doi.org/10.1289/ehp.1104477 PubMed DOI PMC

Bredhult C, Bäcklin B, Olovsson M (2007) Effects of some endocrine disruptors on the proliferation and viability of human endometrial endothelial cells in vitro. Reprod Toxicol 23:550–559. https://doi.org/10.1016/j.reprotox.2007.03.006 PubMed DOI

Bunke D, Moritz S, Brack W, López-Herráez D, Posthuma L, Nuss M (2019) Developments in society and implications for emerging pollutants in the aquatic environment. Environ Sci Eur 31:32. https://doi.org/10.1186/s12302-019-0213-1 DOI

Calicioglu O, Demirer GN (2022) Chapter 1 - Role of microalgae in circular economy. In: Demirer GN, Uludag-Demirer S (eds) Integrated Wastewater Management and Valorization Using Algal Cultures, Elsevier, pp 1–12. https://doi.org/10.1016/B978-0-323-85859-5.00003-8

Carvalho IT, Santos L (2016) Antibiotics in the aquatic environments: a review of the European scenario. Environ Int 94:736–757. https://doi.org/10.1016/j.envint.2016.06.025 PubMed DOI

Chen H, Wang Q (2020) Microalgae-Based Nitrogen Bioremediation Algal Research 46:101775. https://doi.org/10.1016/j.algal.2019.101775 DOI

Chen J, Zheng F, Guo R (2015) Algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to treat the antibiotic cefradine. PloS one 10(7). https://doi.org/10.1371/journal.pone.0133273

Choubert JM, Ribeiro L, Euse M, Coquery M, Mie C (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants – conception of a database and first results. Environ Pollut 157:1721–1726. https://doi.org/10.1016/j.envpol.2008.11.045 PubMed DOI

Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H (2005) Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res 39:4797–4807. https://doi.org/10.1016/j.watres.2005.09.015 PubMed DOI

Coimbra RN, Escapa C, Vázquez NC, Noriega-Hevia G, Otero M (2018) Utilization of non-living microalgae biomass from two different strains for the adsorptive removal of diclofenac from water. Water 10(10):1401. https://doi.org/10.3390/w10101401 DOI

Combarros RG, Rosas I, Lavin AG, Rendueles M, Diaz M (2014) Influence of biofilm on activated carbon on the adsorption and biodegradation of salicylic acid in wastewater. Water Air Soil Pollut 225:1858. https://doi.org/10.1007/s11270-013-1858-9 DOI

Costa F, Lago A, Rocha V, Barros O, Costa L, Vipotnik Z, Silva B, Tavares T (2019) A review on biological processes for pharmaceuticals wastes abatement-a growing threat to modern society. Environ Sci Technol 53:7185–7202. https://doi.org/10.1021/acs.est.8b06977 PubMed DOI

Cunha DL, Muylaert S, Nascimento MT et al (2020) Occurrence of emerging contaminants and analysis of oestrogenic activity in the water and sediments from two coastal lagoons in south-eastern Brazil. Mar Freshw Res 72:213–227. https://doi.org/10.1071/MF19391 DOI

da Silva Rodrigues DA, da Cunha CCRF, Freitas MG, de Barros ALC, e Castro PBN, Pereira AR, de Queiroz Silva S, da Fonseca Santiago A, de Cássia Franco Afonso RJ, (2020) Biodegradation of sulfamethoxazole by microalgae-bacteria consortium in wastewater treatment plant effluents. Sci Total Environ 749:141441. https://doi.org/10.1016/j.scitotenv.2020.141441 PubMed DOI

Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–942. https://doi.org/10.1289/ehp.99107s6907 PubMed DOI PMC

Deegan AM, Shaik B, Nolan K et al (2011) Treatment options for wastewater effluents from pharmaceutical companies. Int J Environ Sci Technol 8:649–666. https://doi.org/10.1007/BF03326250 DOI

De Godos I, Muñoz R, Guieysse B (2012) Tetracycline removal during wastewater treatment in high-rate algal ponds. J Hazard Mater 229:446–449. https://doi.org/10.1016/j.jhazmat.2012.05.106 PubMed DOI

De Wilt A, Butkovskyi A, Tuantet K et al (2016) Micropollutant removal in an algal treatment system fed with source separated wastewater streams. J Hazard Mater 304:84–92. https://doi.org/10.1016/j.jhazmat.2015.10.033 PubMed DOI

Díaz-Torres E, Gibson R, González-Farías F, Zarco-Arista AE, Mazari-Hiriar M (2013) Endocrine disruptors in the Xochimilco Wetland, Mexico City. Water Air Soil Pollut 224:1–11. https://doi.org/10.1007/s11270-013-1586-1 DOI

Ding T, Lin K, Yang B, Yang M, Li J, Li W, Gan J (2017) Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Bioresour Technol 238:164–173. https://doi.org/10.1016/j.biortech.2017.04.018 PubMed DOI

Do CVT, Pham MHT, Pham TYT, Dinh CT, Bui TUT, Tran TD, Nguyen VT (2022) Microalgae and bioremediation of domestic wastewater. Current Opinion in Green and Sustainable Chemistry 34:100595. https://doi.org/10.1016/j.cogsc.2022.100595 DOI

Ebele AJ, Abdallah MAE, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3(1):1–16. https://doi.org/10.1016/j.emcon.2016.12.004 DOI

Escapa C, Coimbra RN, Paniagua S, García AI, Otero M (2017) Paracetamol and salicylic acid removal from contaminated water by microalgae. J Environ Manage 203:799–806. https://doi.org/10.1016/j.jenvman.2016.06.051 PubMed DOI

Escudero-Oñate C, Ferrando-Climent L (2019) Microalgae for biodiesel production and pharmaceutical removal from water. In Nanoscience and biotechnology for environmental applications. Springer, Cham, pp 1–28

Faleye AC, Adegoke AA, Ramluckan K, Fick J, Bux F, Stenström TA (2019) Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa. Sci Tot Environ 678:10–20. https://doi.org/10.1016/j.scitotenv.2019.04.410 DOI

Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB (2018) Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res 31:347–362. https://doi.org/10.1016/j.algal.2017.11.038 DOI

Fonseca VF, Reis-Santos P (2019) Ecotoxicology of pharmaceuticals in coastal and marine organisms. In: Duarte and Caçador (eds) Ecotoxicology of marine organisms, 1st edn. CRC Press, Boca Raton, pp 158–195

Franka A, Seitz W, Prasse C, Lucke T, Schulz W, Ternes T (2016) Occurrence and fate of amisulpride, sulpiride, and lamotrigine in municipal wastewater treatment plants with biological treatment and ozonation. J Hazard Mater 320:204–215. https://doi.org/10.1016/j.jhazmat.2016.08.022 DOI

Geremia E, Ripa M, Catone CM, Ulgiati S (2021) A review about microalgae wastewater treatment for bioremediation and biomass production—a new challenge for Europe. Environments 8(12):136. https://doi.org/10.3390/environments8120136 DOI

Giri P, Pal C (2014) Ecotoxicological aspects of pharmaceuticals on aquatic environment. Am J Drug Discov Dev 1(1):10–24. https://doi.org/10.1016/j.jhazmat.2009.10.100 DOI

González Peña OI, López Zavala MÁ, Cabral Ruelas H (2021) Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater. Int J Environ Res Public Health 18(5):2532 PubMed DOI PMC

González-Pérez BK, Sarma SS, Castellanos-Páez ME, Nandini S (2018) Multigenerational effects of triclosan on the demography of Plationus patulus and Brachionus havanaensis (ROTIFERA). Ecotoxicol Environ Saf 147:275–282. https://doi.org/10.1016/j.ecoenv.2017.08.049 PubMed DOI

Gupta SK, Shriwastav A, Kumari S, Ansari FA, Malik A, Bux F (2015) Phycoremediation of emerging contaminants. In: Singh B, Bauddh K, Bux F (eds) Algae and Environmental Sustainability Springer India, New Delhi, pp 129–146. https://doi.org/10.1007/978-81-322-2641-3_11

Habibzadeh M, Chaibakhsh N, Naeemi AS (2018) Optimized treatment of wastewater containing cytotoxic drugs by living and dead biomass of the freshwater microalga, Chlorella vulgaris. Ecol Eng 111:85–93. https://doi.org/10.1016/j.ecoleng.2017.12.001 DOI

Hasan SA, Ferreira MIM, Koetsier MJ, Arif MI, Janssen DB (2011) Complete biodegradation of 4-fluorocinnamic acid by a consortium comprising Arthrobacter sp. strain G1 and Ralstonia sp. strain H1. Appl Environ Microbiol 77:572–579. https://doi.org/10.1128/AEM.00393-10

Heberer T, Verstraeten IM, Meyer MT, Mechlinski A, Reddersen K (2001) Occurrece and fate of pharmaceuticals during bank filtration-preliminary results from investigations in Germany and the United States. J Contemp Water Res Educ 120:4–17. http://opensiuc.lib.siu.edu/jcwre/vol120/iss1/2

Hom-Diaz A, Jaén-Gil A, Bello-Laserna I, Rodríguez-Mozaz S, Vicent T, Barceló D, Blánquez P (2017a) Performance of a microalgal photobioreactor treating toilet wastewater: pharmaceutically active compound removal and biomass harvesting. Sci Total Environ 592:1–11 PubMed DOI

Hom-Diaz A, Llorca M, Rodríguez-Mozaz S, Vicent T, Barceló D, Blánquez P (2015) Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. J Environ Manage 155:106–113. https://doi.org/10.1016/j.jenvman.2015.03.003 PubMed DOI

Hom-Diaz A, Norvill ZN, Blánquez P, Vicent T, Guieysse B (2017b) Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds. Chemosphere 180:33–41. https://doi.org/10.1016/j.chemosphere.2017.03.125 PubMed DOI

Javid A, Mesdaghinia A, Nasseri S, Mahvi AH, Alimohammadi M, Gharibi H (2016) Assessment of tetracycline contamination in surface and groundwater resources proximal to animal farming houses in Tehran. Iran J Environ Health Sci Eng 14:4. https://doi.org/10.1186/s40201-016-0245-z PubMed DOI

Jureczko M, Kalka J (2020) Cytostatic pharmaceuticals as water contaminants. Eur J Pharmacol 866:172816. https://doi.org/10.1016/j.ejphar.2019.172816 PubMed DOI

Kalyva M (2017) Fate of pharmaceuticals in the environment. Umea University. http://www.diva-portal.org/smash/get/diva2:1085088/FULLTEXT01.pdf . Accessed 06 Apr 2022

Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J (2020) Ecotoxicological assessment of pharmaceuticals and personal care products using predictive toxicology approaches. Green Chem 22:1458–1516. https://doi.org/10.1039/C9GC03265G DOI

Kermia AEB, Fouial-Djebbar D, Trari M (2016) Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants (WWTPs) discharging in the coastal environment of Algiers. C R Chim 19:963–970. https://doi.org/10.1016/j.crci.2016.05.005 DOI

Khan S, Naushad M, Govarthanan M, Iqbal J, Alfadul SM (2022) Emerging contaminants of high concern for the environment: current trends and future research. Environ Res 207:112609. https://doi.org/10.1016/j.envres.2021.112609 PubMed DOI

Kiki C, Rashid A, Wang Y, Li Y, Zeng Q, Yu CP, Sun Q (2020) Dissipation of antibiotics by microalgae: kinetics, identification of transformation products and pathways. J Hazard Mater 387:121985. https://doi.org/10.1016/j.jhazmat.2019.121985 PubMed DOI

Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013–1021. https://doi.org/10.1016/j.watres.2006.06.034 PubMed DOI

Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417. https://doi.org/10.1016/j.envint.2008.07.009 PubMed DOI

Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211. https://doi.org/10.1021/es011055j PubMed DOI

Koagouw W, Arifin Z, Olivier GWJ, Ciocan C (2021) High concentrations of paracetamol in effluent dominated waters of Jakarta Bay. Indonesia Mar Pollut Bull 169:112558. https://doi.org/10.1016/j.marpolbul.2021.1125 PubMed DOI

Kurade BM, Rae KJ, Govindwar SP, Jeon BH (2016) Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res 20:126–134. https://doi.org/10.1016/j.algal.2016.10.003 DOI

Lai KM, Scrimshaw MD, Lester JN (2002) Biotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris. Appl Environ Microbiol 68(2):859–864. https://doi.org/10.1128/AEM.68.2.859-864.2002 PubMed DOI PMC

Lam MK, Lee KT (2012) Immobilization as a feasible method to simplify the separation of microalgae from water for biodiesel production. Chem Eng J 191:263–268. https://doi.org/10.1016/j.cej.2012.03.013 DOI

Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Biores Technol 303:122886. https://doi.org/10.1016/j.biortech.2020.122886 DOI

Li S, Loke SP, Hao NH, Ho SH (2022) Algae-mediated antibiotic wastewater treatment: a critical review. Environ Sci Technol 9:100145. https://doi.org/10.1016/j.ese.2022.100145 DOI

Lindim C, de Zwart D, Cousins IT, Kutsarova S, Kühne R, Schüürmann G (2019) Exposure and ecotoxicological risk assessment of mixtures of top prescribed pharmaceuticals in Swedish freshwaters. Chemosphere 220:344–352. https://doi.org/10.1016/j.chemosphere.2018.12.118 PubMed DOI

Liu N, Jin X, Feng C, Wang Z et al (2020) Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: a proposed multiple-level system. Environ Int 136:105454. https://doi.org/10.1016/j.envint.2019.105454 PubMed DOI

López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C et al (2019) Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Sci Total Environ 690:1068–1088. https://doi.org/10.1016/j.scitotenv.2019.07.052 PubMed DOI

Lubliner B, Redding M, Ragsdale D (2010) Pharmaceuticals and personal care products in municipal wastewater and their removal by nutrient treatment technologies. Washington State Department of Ecology, Olympia, WA (Publication number 10–03–004)

Maes HM, Maletz SX, Ratte HT, Hollender J, Schaeffer A (2014) Uptake, elimination, and biotransformation of 17α-ethinylestradiol by the freshwater alga Desmodesmus subspicatus. Environ Sci Technol 48:12354–12361. https://doi.org/10.1021/es503574z PubMed DOI

Manamsa, K, Crane, E, Stuart, M, Talbot, J, Lapworth, D, Hart, A (2016) A national scale assessment of micro-organic contaminants in groundwater of England and Wales. Sci Total Environ 568:712e726. https://doi.org/10.1016/j.scitotenv.2016.03.017

Martin JM, Bertram MG, Blanchfield PJ et al (2021) Evidence of the impacts of pharmaceuticals on aquatic animal behaviour: a systematic map protocol. Environ Evid 10:26. https://doi.org/10.1186/s13750-021-00241-z DOI

Maryjoseph S, Ketheesan B (2020) Microalgae based wastewater treatment for the removal of emerging contaminants: a review of challenges and opportunities. Case Studies in Chemical and Environmental Engineering 2:100046. https://doi.org/10.1016/j.cscee.2020.100046 DOI

Matamoros V, Uggetti E, García J, Bayona JM (2016) Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. J Hazard Mater 301:197–205. https://doi.org/10.1016/j.jhazmat.2015.08.050 PubMed DOI

Martín-Pozo L, de Alarcón-Gómez B, Rodríguez-Gómez R, García-Córcoles MT, Çipa M, Zafra-Gómez A (2019) Analytical methods for the determination of emerging contaminants in sewage sludge samples. A Review Talanta 192:508–533. https://doi.org/10.1016/j.talanta.2018.09.056 PubMed DOI

Mnguni SB, Schoeman C, Marais SS, Cukrowska E, Chimuka L (2018) Determination of oestrogen hormones in raw and treated water samples by reverse phase ultra-fast liquid chromatography mass spectrometry – a case study in Johannesburg South, South Africa. Water 44:111–117. https://doi.org/10.4314/wsa.v44i1.13 DOI

Mojiri A, Baharlooeian M, Zahed MA (2021) The potential of Chaetoceros muelleri in bioremediation of antibiotics: performance and optimization. IJERPH 18(3):977. https://doi.org/10.3390/ijerph18030977 PubMed DOI PMC

Moreira JB, Santos TD, Duarte JH, Bezerra PQ, de Morais MG, Costa JA (2021) Role of microalgae in circular bioeconomy: from waste treatment to biofuel production. Clean Technol Environ Policy 1–11.  https://doi.org/10.1007/s10098-021-02149-1

Ngqwala NP, Muchesa P (2020) Occurrence of pharmaceuticals in aquatic environments: a review and potential impacts in South Africa. S Afr J Sci 116:5730.  https://doi.org/10.17159/sajs.2020/5730

Nigam S, Sinha S, Manglik M, Singh R (2016) Treatment of textile dye effluent by algae: an eco-friendly and sustainable approach to the 51 environmental pollution. Int J Pharma Bio Sci 7:366–375

Obimakinde S, Fatoki O, Opeolu B, Olatunji O (2017) Veterinary pharmaceuticals in aqueous systems and associated effects: an update. Environ Sci Pollut Res 24:3274–3297. https://doi.org/10.1007/s11356-016-7757-z DOI

Pacheco D, Rocha AC, Pereira L, Verdelhos T (2020) Microalgae water bioremediation: trends and hot topics. Appl Sci 10(5):1886.  https://doi.org/10.3390/app10051886

Pal A, He Y, Jekel M, Reinhard M, Gin KYH (2014) Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ Int 71:46–62. https://doi.org/10.1016/j.envint.2014.05.025 PubMed DOI

Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU Jr, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:35–103673. https://doi.org/10.1021/acs.chemrev.8b00299 DOI

Peña-Álvarez A, Castillo-Alanís A (2015) Identificación y cuantificación de contaminantes emergentes en aguas residuales por microextracción en fase sólida cromatografía de gases espectrometría de masas (MEFS-CG-EM). Tip Rev Espec Cienc Quím-Biol 18:29–42. https://doi.org/10.1016/j.recqb.2015.05.003 DOI

Peng FQ, Ying GG, Yang B, Liu S, Lai HJ, Liu YS, Chen ZF, Zhou GJ (2014) Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation kinetics and products identification. Chemosphere 95:581–588. https://doi.org/10.1016/j.chemosphere.2013.10.013 PubMed DOI

Premaratne M, Nishshanka GKSH, Liyanaarachchi VC, Nimarshana PHV, Ariyadasa TU (2021) Bioremediation of textile dye wastewater using microalgae: current trends and future perspectives. J Chem Technol Biotechnol 96:3249–3258. https://doi.org/10.1002/jctb.6845 DOI

Ratnasari A, Syafiuddin A, Zaidi NS, Kueh ABH, Hadibarata T, Prastyo D, Sathishkumar P (2022) Bioremediation of micropollutants using living and non-living algae-current perspectives and challenges. Environ Pollut 292:118474. https://doi.org/10.1016/j.envpol.2021.118474 PubMed DOI

Rempel A, Gutkoski JP, Torres NM, Nadal BG, Farina CVA, Treichel H, Colla LM (2021) Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. Sci Total Environ 772:144918. https://doi.org/10.1016/j.scitotenv.2020.144918 PubMed DOI

Renuka N, Sood A, Prasanna R, Ahluwalia AS (2015) Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. Int J Environ Sci Technol (tehran) 12:1443–1460. https://doi.org/10.1007/s13762-014-0700-2 DOI

Rivera-Jaimes JA, Postigo C, Melgoza-Alemán RM, Aceña J, Barceló D, de Alda ML (2018) Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: occurrence and environmental risk assessment. Sci Total Environ 613:1263–1274. https://doi.org/10.1016/j.scitotenv.2017.09.134 PubMed DOI

Rumin J, Gonçalves de Oliveira JR, Bérard JB, Picot L (2021) Improving microalgae research and marketing in the European Atlantic area: analysis of major gaps and barriers limiting sector development. Mar Drugs 19:319. https://doi.org/10.3390/md19060319 PubMed DOI PMC

Santaeufemia S, Torres E, Mera R, Abalde J (2016) Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. J Hazard Mater 320:315–325. https://doi.org/10.1016/j.jhazmat.2016.08.042 PubMed DOI

Santaeufemia S, Torres E, Abalde J (2018) Biosorption of ibuprofen from aqueous solution using living and dead biomass of the microalga Phaeodactylum tricornutum. J Appl Phycol 30:471–482. https://doi.org/10.1007/s10811-017-1273-5 DOI

Scaria J, Anupama KV, Nidheesh PV (2021) Tetracyclines in the environment: an overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Sci Total Environ 771:145291. https://doi.org/10.1016/j.scitotenv.2021.145291 PubMed DOI

Shingal M, Jadhav S, Sonone SS, Sankhal MS, Kumar R (2022) Microalgae based suistainable bioremediation water contaminated by pesticides. Biointerface Res Appl Chem 12:149–169 https://doi.org/10.33263/BRIAC121.149169 .

Siemens J, Huschek G, Siebe C, Kaupenjohann M (2008) Concentrations and mobility of human pharmaceuticals in the world’s largest wastewater irrigation system. Mexico City-Mezquital Valley Water Res 42(8–9):2124–2134. https://doi.org/10.1016/j.watres.2007.11.019 PubMed DOI

Silva A, Coimbra RN, Escapa C, Figueiredo SA, Freitas OM, Otero M (2020) Green microalgae Scenedesmus obliquus utilization for the adsorptive removal of nonsteroidal anti-inflammatory drugs (NSAIDs) from water samples. IJERPH 17(10):3707. https://doi.org/10.3390/ijerph17103707

Sinha S, Singh R, Chaurasia AK, Nigam S (2016) Self-sustainable Chlorella pyrenoidosa strain NCIM 2738 based photobioreactor for removal of direct Red-31 dye along with other industrial pollutants to improve the water-quality. J Hazard Mater 306:386–394.  https://doi.org/10.1016/j.jhazmat.2015.12.011 .

Sourmelis S, Horton R (2020) A regulatory review on the use of digestate to cultivate algal biomass for animal feed. In: Hopwood L (ed) The bioeconomy consultants NNFCC 2020, York, United Kingdom, pp 1–28

Srain HS, Beazley KF, Walker TR (2020) Pharmaceuticals and personal care products and their sublethal and lethal effects in aquatic organisms. Environ Rev 29:142–181. https://doi.org/10.1139/er-2020-0054 DOI

Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72. https://doi.org/10.1016/j.envint.2012.10.007 PubMed DOI

Sutherland DL, Ralph PJ (2019) Microalgal bioremediation of emerging contaminants-opportunities and challenges. Water Res 164:114921. https://doi.org/10.1016/j.watres.2019.114921 PubMed DOI

Ternes TA, Meisenheimer M, McDowell D et al (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863. https://doi.org/10.1021/es015757k PubMed DOI

Teodosiu C, Gilca AF, Barjoveanu G, Fiore S (2018) Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment. J Clean Prod 197:1210–1221. https://doi.org/10.1016/j.jclepro.2018.06.247 DOI

Tran NH, Reinhard M, Gin KYH (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res 133:182–207. https://doi.org/10.1016/j.watres.2017.12.029 PubMed DOI

Topp E, Chapman R, Devers-Lamrani M, Hartmann A, Marti R, Martin-Laurent F, Sumarah M et al (2013) Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading sp. J Environ Qual 42:173. https://doi.org/10.2134/jeq2012.0162 PubMed DOI

Verasoundarapandian G, Lim ZS, Radziff SBM, Taufik SH, Puasa NA, Shaharuddin NA, Merican F, Wong CY, Lalung J, Ahmad SA (2022) Remediation of pesticides by microalgae as feasible approach in agriculture: bibliometric strategies. Agronomy 12(1):117. https://doi.org/10.3390/agronomy12010117 DOI

Veseli A, Mullallari F, Balidemaj F, Berisha L, Švorc Ľ, Arbneshi T (2019) Electrochemical determination of erythromycin in drinking water resources by surface modified screen-printed carbon electrodes. Microchem J 148:412–418. https://doi.org/10.1016/j.microc.2019.04.086 DOI

Viegas C, Nobre C, Mota A, Vilarinho C, Gouveia L, Gonçalves M (2021) A circular approach for landfill leachate treatment: chemical precipitation with biomass ash followed by bioremediation through microalgae. J Environ Chem Eng 9(3):105187 DOI

Wang X, Song W, Li N et al (2020) Ultraviolet-B radiation of Haematococcus pluvialis for enhanced biological contact oxidation pretreatment of black odorous water in the symbiotic system of algae and bacteria. Biochem Eng J 157:107553. https://doi.org/10.1016/j.bej.2020.107553 DOI

Wilkinson JL, Boxalla ABA, Kolpin DW (2022) Pharmaceutical pollution of the world’s rivers. Proc Natl Acad Sci USA 119:e2113947119. https://doi.org/10.1073/pnas.2113947119 PubMed DOI PMC

Wu S, Zhang L, Chen J (2012) Paracetamol in the environment and its degradation by microorganisms. Appl Microbiol Biotechnol 96:875–884. https://doi.org/10.1007/s00253-012-4414-4 PubMed DOI

Wu JY, Lay CH, Chiong MC, Chew KW, Chen CC, Wu SY et al (2020) Immobilized chlorella species mixotrophic cultivation at various textile 45 wastewater concentrations. J Water Process Eng 38:101609. https://doi.org/10.1016/j.jwpe.2020.101609 DOI

Xie P, Chen C, Zhang C, Su G, Ren N, Ho SH (2020) Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae. Water Res 172:115475. https://doi.org/10.1016/j.watres.2020.115475 PubMed DOI

Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36:30–44. https://doi.org/10.1016/j.tibtech.2017.09.003 PubMed DOI

Xiong JQ, Kurade MB, Kim JR, Roh HS, Jeon BH (2017a) Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana. J Hazard Mater 323:212–219. https://doi.org/10.1016/j.jhazmat.2016.04.073

Xiong JQ, Kurade MB, Patil DV, Jang M, Paeng KJ, Jeon BH (2017b) Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater. Algal Res 25:54–61. https://doi.org/10.1016/j.algal.2017.04.012 DOI

Xiong Q, Hu LX, Liu YS, Zhao JL, He LY, Ying GG (2021) Microalgae-based technology for antibiotics removal: from mechanisms to application of innovational hybrid systems. Environ Int 155:106594. https://doi.org/10.1016/j.envint.2021.106594 PubMed DOI

Yu Y, Zhou Y, Wang Z, Torres OL, Guo R, Chen J (2017) Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment. Sci Rep 7:4168. https://doi.org/10.1038/s41598-017-04128-3 PubMed DOI PMC

Zhang L, Hu J, Zhu R, Zhou Q, Chen J (2013) Degradation of paracetamol by pure bacterial cultures and their microbial consortium. Appl Microbiol Biotechnol 97:3687–3698. https://doi.org/10.1007/s00253-012-4170-5 PubMed DOI

Zhou GJ, Ying GG, Liu S, Zhou LJ, Chen ZF, Peng FQ (2014) Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environ Sci Process Impacts 16:2018–2027. https://doi.org/10.1039/C4EM00094C PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...