Identification of Protein Interaction Partners in Bacteria Using Affinity Purification and SILAC Quantitative Proteomics

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36370268

Affinity purification, combined with mass spectrometry (AP-MS) is considered a pivotal technique in protein-protein interaction studies enabling systematic detection at near physiological conditions. The addition of a quantitative proteomic method, like SILAC metabolic labeling, allows the elimination of non-specifically bound contaminants which greatly increases the confidence of the identified interaction partners. Compared to eukaryotic cells, the SILAC labeling of bacteria has specificities that must be considered. The protocol presented here describes the labeling of bacterial cultures with stable isotope-labeled amino acids, purification of an affinity-tagged protein, and sample preparation for MS measurement. Finally, we discuss the analysis and interpretation of MS data to identify and select the specific partners interacting with the protein of interest. As an example, this workflow is applied to the discovery of potential interaction partners of glyceraldehyde-3-phosphate dehydrogenase in the gram-negative bacterium Francisella tularensis.

Zobrazit více v PubMed

Guan H, Kiss-Toth E (2008) Advanced technologies for studies on protein interactomes. In: Werther M, Seitz H (eds) Protein—protein interaction. Springer, Berlin/Heidelberg, pp 1–24

Hayes S, Malacrida B, Kiely M et al (2016) Studying protein-protein interactions: progress, pitfalls and solutions. Biochem Soc Trans 44:994–1004 PubMed DOI

Sundell GN, Ivarsson Y (2014) Interaction analysis through proteomic phage display. Biomed Res Int 2014:176172 PubMed DOI PMC

Meyerkord CLFH (2015) Protein-protein interactions. Methods and applications, 2nd edn. Springer

Vermeulen M, Hubner NC, Mann M (2008) High confidence determination of specific protein-protein interactions using quantitative mass spectrometry. Curr Opin Biotechnol 19:331–337 PubMed DOI

Marcilla M, Albar JP (2013) Quantitative proteomics: a strategic ally to map protein interaction networks. IUBMB Life 65:9–16 PubMed DOI

Meyer K, Selbach M (2015) Quantitative affinity purification mass spectrometry: a versatile technology to study protein-protein interactions. Front Genet 6:237 PubMed DOI PMC

Kaake RM, Wang X, Huang L (2010) Profiling of protein interaction networks of protein complexes using affinity purification and quantitative mass spectrometry. Mol Cell Proteom MCP 9:1650–1665 DOI

Zhang H, Tang X, Munske GR et al (2009) Identification of protein-protein interactions and topologies in living cells with chemical cross-linking and mass spectrometry. Mol Cell Proteom MCP 8:409–420 DOI

Fritzsche R, Ihling CH, Götze M et al (2012) Optimizing the enrichment of cross-linked products for mass spectrometric protein analysis. Rapid Commun Mass Spectrom RCM 26:653–658 PubMed DOI

Miura K (2018) An overview of current methods to confirm protein-protein interactions. Protein Pept Lett 25:728–733 PubMed DOI PMC

Fröhlich F, Christiano R, Walther TC (2013) Native SILAC: metabolic labeling of proteins in prototroph microorganisms based on lysine synthesis regulation. Mol Cell Proteom MCP 12:1995–2005 DOI

Soufi B, Macek B (2014) Stable isotope labeling by amino acids applied to bacterial cell culture. Method Mol Biol Clifton NJ 1188:9–22 DOI

Johansson A, Berglund L, Eriksson U et al (2000) Comparative analysis of PCR versus culture for diagnosis of ulceroglandular tularemia. J Clin Microbiol 38:22–26 PubMed DOI PMC

Kopeckova M, Pavkova I, Link M et al (2020) Identification of bacterial protein interaction partners points to new intracellular functions of Francisella tularensis glyceraldehyde-3-phosphate dehydrogenase. Front Microbiol 11:576618 PubMed DOI PMC

Chamberlain RE (1965) Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol 13:232–235 PubMed DOI PMC

Klammer M, Dybowski JN, Hoffmann D et al (2014) Identification of significant features by the Global Mean Rank test. PLoS One 9:e104504 PubMed DOI PMC

Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...