Identification of Protein Interaction Partners in Bacteria Using Affinity Purification and SILAC Quantitative Proteomics
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- Klíčová slova
- Affinity purification, Bacteria, LC-MS/MS, Protein-protein interactions, SILAC,
- MeSH
- Bacteria metabolismus MeSH
- chromatografie afinitní MeSH
- hmotnostní spektrometrie metody MeSH
- izotopové značení metody MeSH
- proteiny * chemie MeSH
- proteomika * metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny * MeSH
Affinity purification, combined with mass spectrometry (AP-MS) is considered a pivotal technique in protein-protein interaction studies enabling systematic detection at near physiological conditions. The addition of a quantitative proteomic method, like SILAC metabolic labeling, allows the elimination of non-specifically bound contaminants which greatly increases the confidence of the identified interaction partners. Compared to eukaryotic cells, the SILAC labeling of bacteria has specificities that must be considered. The protocol presented here describes the labeling of bacterial cultures with stable isotope-labeled amino acids, purification of an affinity-tagged protein, and sample preparation for MS measurement. Finally, we discuss the analysis and interpretation of MS data to identify and select the specific partners interacting with the protein of interest. As an example, this workflow is applied to the discovery of potential interaction partners of glyceraldehyde-3-phosphate dehydrogenase in the gram-negative bacterium Francisella tularensis.
Zobrazit více v PubMed
Guan H, Kiss-Toth E (2008) Advanced technologies for studies on protein interactomes. In: Werther M, Seitz H (eds) Protein—protein interaction. Springer, Berlin/Heidelberg, pp 1–24
Hayes S, Malacrida B, Kiely M et al (2016) Studying protein-protein interactions: progress, pitfalls and solutions. Biochem Soc Trans 44:994–1004 PubMed DOI
Sundell GN, Ivarsson Y (2014) Interaction analysis through proteomic phage display. Biomed Res Int 2014:176172 PubMed DOI PMC
Meyerkord CLFH (2015) Protein-protein interactions. Methods and applications, 2nd edn. Springer
Vermeulen M, Hubner NC, Mann M (2008) High confidence determination of specific protein-protein interactions using quantitative mass spectrometry. Curr Opin Biotechnol 19:331–337 PubMed DOI
Marcilla M, Albar JP (2013) Quantitative proteomics: a strategic ally to map protein interaction networks. IUBMB Life 65:9–16 PubMed DOI
Meyer K, Selbach M (2015) Quantitative affinity purification mass spectrometry: a versatile technology to study protein-protein interactions. Front Genet 6:237 PubMed DOI PMC
Kaake RM, Wang X, Huang L (2010) Profiling of protein interaction networks of protein complexes using affinity purification and quantitative mass spectrometry. Mol Cell Proteom MCP 9:1650–1665 DOI
Zhang H, Tang X, Munske GR et al (2009) Identification of protein-protein interactions and topologies in living cells with chemical cross-linking and mass spectrometry. Mol Cell Proteom MCP 8:409–420 DOI
Fritzsche R, Ihling CH, Götze M et al (2012) Optimizing the enrichment of cross-linked products for mass spectrometric protein analysis. Rapid Commun Mass Spectrom RCM 26:653–658 PubMed DOI
Miura K (2018) An overview of current methods to confirm protein-protein interactions. Protein Pept Lett 25:728–733 PubMed DOI PMC
Fröhlich F, Christiano R, Walther TC (2013) Native SILAC: metabolic labeling of proteins in prototroph microorganisms based on lysine synthesis regulation. Mol Cell Proteom MCP 12:1995–2005 DOI
Soufi B, Macek B (2014) Stable isotope labeling by amino acids applied to bacterial cell culture. Method Mol Biol Clifton NJ 1188:9–22 DOI
Johansson A, Berglund L, Eriksson U et al (2000) Comparative analysis of PCR versus culture for diagnosis of ulceroglandular tularemia. J Clin Microbiol 38:22–26 PubMed DOI PMC
Kopeckova M, Pavkova I, Link M et al (2020) Identification of bacterial protein interaction partners points to new intracellular functions of Francisella tularensis glyceraldehyde-3-phosphate dehydrogenase. Front Microbiol 11:576618 PubMed DOI PMC
Chamberlain RE (1965) Evaluation of live tularemia vaccine prepared in a chemically defined medium. Appl Microbiol 13:232–235 PubMed DOI PMC
Klammer M, Dybowski JN, Hoffmann D et al (2014) Identification of significant features by the Global Mean Rank test. PLoS One 9:e104504 PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740 PubMed DOI