Sub-lethal doses of imidacloprid alter food selection in the invasive garden ant Lasius neglectus

. 2023 Feb ; 30 (10) : 27501-27509. [epub] 20221116

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36385335
Odkazy

PubMed 36385335
PubMed Central PMC9995417
DOI 10.1007/s11356-022-24100-7
PII: 10.1007/s11356-022-24100-7
Knihovny.cz E-zdroje

Despite several restrictions to their use, neonicotinoid insecticides are still widely employed worldwide. Residual sub-lethal amounts of these chemicals can have detrimental effects on the behavior of non-target insects. Toxic effects on economically important species such as bees have been widely documented, but less is known about their toxic action on other social insects, such as ants. In this study, we assessed the effect of different sub-lethal doses of the neonicotinoid imidacloprid on the ability of colonies of the invasive ant Lasius neglectus to select the most profitable resource. We used Y-shaped mazes having an imidacloprid-polluted or an unpolluted sucrose solution on the two branches. Two sucrose (0.1 M, 0.5 M) and two imidacloprid (1 μg/ml, 10 μg/ml) concentrations were used. In parallel, we evaluated the marking activity of foragers who fed on the same solutions. We found that the 0.1 M sugar solution polluted with 1 μg/ml imidacloprid was significantly more frequently selected in binary choices experiments than the unpolluted resource. Moreover, the ingestion of the same combination of sugar and imidacloprid significantly increased the marking rate of foragers. The higher concentration of the pollutant had lower effects, probably because of the hormesis phenomenon. Results suggest that the lower sub-lethal dose of imidacloprid can lead ants to select again the polluted resource. This "active" selection of the pollutant may magnify the negative effects on the colonies. Due to their ecological role, any impairment of ant survival or behavior may have detrimental cascade effects on the whole ecosystem.

Zobrazit více v PubMed

Balzani P, Venturi S, Muzzicato D, et al. Application of CO2 carbon stable isotope analysis to ant trophic ecology. Entomol Exp Appl. 2020;168:940–947. doi: 10.1111/eea.12983. DOI

Banks AN, Srygley RB. Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae): Magnetic orientation in Atta. Ethology. 2003;109:835–846. doi: 10.1046/j.0179-1613.2003.00927.x. DOI

Beckers R, Deneubourg JL, Goss S, Pasteels JM. Collective decision making through food recruitment. Ins Soc. 1990;37:258–267. doi: 10.1007/BF02224053. DOI

Beckers R, Deneubourg JL, Goss S. Modulation of trail laying in the ant Lasius niger (Hymenoptera: Formicidae) and its role in the collective selection of a food source. J Insect Behav. 1993;6:751–759. doi: 10.1007/BF01201674. DOI

Blight O, Orgeas J, Renucci M, et al. Imidacloprid gel bait effective in Argentine ant control at nest scale. Sociobiology. 2011;58:23–30.

Bonmatin J-M, Giorio C, Girolami V, et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res. 2015;22:35–67. doi: 10.1007/s11356-014-3332-7. PubMed DOI PMC

Bortolotti L, Montanari R, Marcelino J, et al. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull Insectology. 2003;56:63–68.

Buczkowski G. Trap-treat-release: horizontal transfer of fipronil in field colonies of black carpenter ants, Camponotus pennsylvanicus: horizontal transfer of fipronil in Camponotus pennsylvanicus. Pest Manag Sci. 2019;75:2195–2201. doi: 10.1002/ps.5345. PubMed DOI

Buczkowski G, Wossler TC. Controlling invasive Argentine ants, Linepithema humile, in conservation areas using horizontal insecticide transfer. Sci Rep. 2019;9:19495. doi: 10.1038/s41598-019-56189-1. PubMed DOI PMC

Calabrese EJ. The future of hormesis: where do we go from here? Crit Rev Toxicol. 2001;31:637–648. doi: 10.1080/20014091111901. PubMed DOI

Calabrese EJ. Hormetic mechanisms. Crit Rev Toxicol. 2013;43:580–606. doi: 10.3109/10408444.2013.808172. PubMed DOI

Camargo R, Puccini C, Forti L, de Matos C. Allogrooming, self-grooming, and touching behavior: contamination routes of leaf-cutting ant workers using a fat-soluble tracer dye. Insects. 2017;8:59. doi: 10.3390/insects8020059. PubMed DOI PMC

Cox L, Koskinen WC, Yen PY. Sorption−desorption of imidacloprid and its metabolites in soils. J Agric Food Chem. 1997;45:1468–1472. doi: 10.1021/jf960514a. PubMed DOI

Craddock HA, Huang D, Turner PC, et al. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ Health. 2019;18:7. doi: 10.1186/s12940-018-0441-7. PubMed DOI PMC

Cremer S, Ugelvig LV, Drijfhout FP, et al. The evolution of invasiveness in garden ants. PLoS ONE. 2008;3:e3838. doi: 10.1371/journal.pone.0003838. PubMed DOI PMC

Cutler GC. Insects, insecticides and hormesis: evidence and considerations for study. Dose-Response. 2013;11:154–177. doi: 10.2203/dose-response.12-008.Cutler. PubMed DOI PMC

Cutler GC, Amichot M, Benelli G, et al. Hormesis and insects: effects and interactions in agroecosystems. Sci Total Environ. 2022;825:153899. doi: 10.1016/j.scitotenv.2022.153899. PubMed DOI

Czaczkes TJ, Grüter C, Ellis L, et al. Ant foraging on complex trails: route learning and the role of trail pheromones in Lasius niger. J Exp Biol. 2013;216:188–197. doi: 10.1242/jeb.076570. PubMed DOI

Czaczkes TJ, Grüter C, Ratnieks FLW. Rapid up- and down-regulation of pheromone signalling due to trail crowding in the ant Lasius niger. Behav. 2014;151:669–682. doi: 10.1163/1568539X-00003157. DOI

Daane KM, Cooper ML, Sime KR, et al. Testing baits to control argentine ants (Hymenoptera: Formicidae) in vineyards. J Econ Entomol. 2008;101:699–709. doi: 10.1093/jee/101.3.699. PubMed DOI

David Morgan E. Trail pheromones of ants. Physiol Entomol. 2009;34:1–17. doi: 10.1111/j.1365-3032.2008.00658.x. DOI

Donnarumma L, Pulcini P, Pochi D, et al. Preliminary study on persistence in soil and residues in maize of imidacloprid. J Environ Sci Health - B. 2011;46:469–472. PubMed

Frizzi F, Talone F, Santini G. Modulation of trail laying in the ant Lasius neglectus (Hymenoptera: Formicidae) and its role in the collective selection of a food source. Ethology. 2018;124:870–880. doi: 10.1111/eth.12821. DOI

Frizzi F, Masoni A, Balzani P, Frasconi Wendt C, Palchetti V, Santini G. Palatability of glyphosate in ants: a field experiment reveals broad acceptance of highly polluted solutions in a Mediterranean ant. Environ Sci Pollut Res. 2020;27:29666–29671. doi: 10.1007/s11356-020-09420-w. PubMed DOI

Guedes RNC, Cutler GC. Insecticide-induced hormesis and arthropod pest management: Insecticide-induced hormesis. Pest Manag Sci. 2014;70:690–697. doi: 10.1002/ps.3669. PubMed DOI

Harris RA, Graham P, Collett TS. Visual cues for the retrieval of landmark memories by navigating wood ants. Curr Biol. 2007;17:93–102. doi: 10.1016/j.cub.2006.10.068. PubMed DOI PMC

Hölldobler B, Wilson EO. The ants. Berlin: Springer; 1990.

Humann-Guilleminot S, Binkowski ŁJ, Jenni L, et al. A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes. J Appl Ecol. 2019;56:1502–1514. doi: 10.1111/1365-2664.13392. DOI

Jackson DE, Châline N. Modulation of pheromone trail strength with food quality in Pharaoh’s ant, Monomorium pharaonis. Anim Behav. 2007;74:463–470. doi: 10.1016/j.anbehav.2006.11.027. DOI

Li Z, Yu T, Chen Y, et al. Brain transcriptome of honey bees (Apis mellifera) exhibiting impaired olfactory learning induced by a sublethal dose of imidacloprid. Pestic Biochem Phys. 2019;156:36–43. doi: 10.1016/j.pestbp.2019.02.001. PubMed DOI

Maini S, Medrzycki P, Porrini C, et al. The puzzle of honey bee losses: a brief review. Bull Insectology. 2010;63:153–160.

Müller M, Wehner R. Path integration provides a scaffold for landmark learning in desert ants. Curr Biol. 2010;20:1368–1371. doi: 10.1016/j.cub.2010.06.035. PubMed DOI

Pisa L, Goulson D, Yang E-C, et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environ Sci Pollut Res. 2021;28:11749–11797. doi: 10.1007/s11356-017-0341-3. PubMed DOI PMC

Price RI, Grüter C, Hughes WOH, Evison SEF. Symmetry breaking in mass-recruiting ants: extent of foraging biases depends on resource quality. Behav Ecol Sociobiol. 2016;70:1813–1820. doi: 10.1007/s00265-016-2187-y. PubMed DOI PMC

R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

Rix RR, Cutler GC. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects. Sci Total Environ. 2022;827:154085. doi: 10.1016/j.scitotenv.2022.154085. PubMed DOI

Rondeau G, Sánchez-Bayo F, Tennekes HA, et al. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Sci Rep. 2015;4:5566. doi: 10.1038/srep05566. PubMed DOI PMC

Santarlasci A, Martelloni G, Frizzi F, et al. Modeling warfare in social animals: a “chemical” approach. PLoS ONE. 2014;9:e111310. doi: 10.1371/journal.pone.0111310. PubMed DOI PMC

Sappington JD. Imidacloprid alters ant sociobehavioral traits at environmentally relevant concentrations. Ecotoxicology. 2018;27:1179–1187. doi: 10.1007/s10646-018-1976-7. PubMed DOI

Schläppi D, Kettler N, Straub L, et al. Long-term effects of neonicotinoid insecticides on ants. Commun Biol. 2020;3:335. doi: 10.1038/s42003-020-1066-2. PubMed DOI PMC

Schläppi D, Stroeymeyt N, Neumann P. Unintentional effects of neonicotinoids in ants (Hymenoptera: Formicidae) Myrmecological News. 2021;31:181–184.

Sheets LP (2010) Imidacloprid. In: Hayes’ Handbook of pesticide toxicology. Elsevier, pp 2055–2064

Simon-Delso N, Amaral-Rogers V, Belzunces LP, et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res. 2015;22:5–34. doi: 10.1007/s11356-014-3470-y. PubMed DOI PMC

Soeprono AM, Rust MK. Effect of horizontal transfer of barrier insecticides to control argentine ants (Hymenoptera: Formicidae) J Econ Entomol. 2004;97:1675–1681. doi: 10.1603/0022-0493-97.5.1675. PubMed DOI

Stackpoole SM, Shoda ME, Medalie L, Stone WW. Pesticides in US rivers: regional differences in use, occurrence, and environmental toxicity, 2013 to 2017. Sci Total Environ. 2021;787:147147. doi: 10.1016/j.scitotenv.2021.147147. PubMed DOI

Sumpter DJT, Beekman M. From nonlinearity to optimality: pheromone trail foraging by ants. Anim Behav. 2003;66:273–280. doi: 10.1006/anbe.2003.2224. DOI

Thiel S, Köhler H-R. A sublethal imidacloprid concentration alters foraging and competition behaviour of ants. Ecotoxicology. 2016;25:814–823. doi: 10.1007/s10646-016-1638-6. PubMed DOI

Wang L, Zeng L, Chen J. Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae) Sci Rep. 2015;5:17938. doi: 10.1038/srep17938. PubMed DOI PMC

Williamson SM, Wright GA. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J Exp Biol. 2013;216:1799–1807. doi: 10.1242/jeb.083931. PubMed DOI PMC

Wolf H, Wehner R. Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J Exp Biol. 2000;203:857–868. doi: 10.1242/jeb.203.5.857. PubMed DOI

Yang EC, Chuang YC, Chen YL, Chang LH. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae) J Econ Entomol. 2008;101:1743–1748. doi: 10.1603/0022-0493-101.6.1743. PubMed DOI

Yang E-C, Chang H-C, Wu W-Y, Chen Y-W. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS ONE. 2012;7:e49472. doi: 10.1371/journal.pone.0049472. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...