Potent antibacterial activity of MXene-functionalized graphene nanocomposites

. 2022 Nov 15 ; 12 (51) : 33142-33155. [epub] 20221118

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36425203

Two dimensional (2D) nanomaterials display properties with significant biological utility (e.g., antimicrobial activity). In this study, MXene-functionalized graphene (FG) nanocomposites with Ti3C2T x in varying ratios (FG : Ti3C2T x , 25 : 75%, 50 : 50%, and 75 : 25%) were prepared and characterized via scanning electron microscopy, scanning electron microscopy-energy dispersive X-ray (SEM-EDX), high-resolution transmission electron microscopy (HRTEM), and zeta potential analysis. Their cytotoxicity was assessed using immortalized human keratinocytes (HaCaT) cells at three different timepoints, and antibacterial activity was assessed using Gram-positive Methicillin resistant Staphylococcus aureus, MRSA, and Gram-negative neuro-pathogenic Escherichia coli K1 (E. coli K1) in vitro. The nanomaterials and composites displayed potent antibacterial effects against both types of bacteria and low cytotoxicity against HaCaT cells at 200 μg mL-1, which is promising for their utilization for biomedical applications.

Zobrazit více v PubMed

Percival S. L. Bowler P. G. Russell D. J. Hosp. Infect. 2005;60:1–7. doi: 10.1016/j.jhin.2004.11.014. PubMed DOI

Silver S. Phung L. T. Silver G. J. Ind. Microbiol. Biotechnol. 2006;33:627–634. doi: 10.1007/s10295-006-0139-7. PubMed DOI

Liu Y. Yu J. Guo D. Li Z. Su Y. J. Alloys Compd. 2019;815:152403. doi: 10.1016/j.jallcom.2019.152403. DOI

Alswat A. A. Ahmad M. B. Hussein M. Z. Ibrahim N. A. Saleh T. A. J. Mater. Sci. Technol. 2017;33:889–896. doi: 10.1016/j.jmst.2017.03.015. DOI

Kotb E. Ahmed A. A. Saleh T. A. Ajeebi A. M. Al-Gharsan M. S. Aldahmash N. F. Biotechnol. Prog. 2020;36:e2907. doi: 10.1002/btpr.2907. PubMed DOI

Rasool K. Helal M. Ali A. Ren C. E. Gogotsi Y. Mahmoud K. A. ACS Nano. 2016;10:3674–3684. doi: 10.1021/acsnano.6b00181. PubMed DOI

Arabi Shamsabadi A. Sharifian Gh. M. Anasori B. Soroush M. Chem. Eng. 2018;6:16586–16596.

Saleh T. A. Environ. Technol. Innovation. 2021;24:101821. doi: 10.1016/j.eti.2021.101821. DOI

Mangadlao J. D. Santos C. M. Felipe M. J. L. De Leon A. C. C. Rodigues D. F. Advincula R. C. Chem. Commun. 2012;51:2886–2889. doi: 10.1039/C4CC07836E. PubMed DOI

Liu Y. Zhao Y. Sun B. Chen C. Acc. Chem. Res. 2012;46:702–713. doi: 10.1021/ar300028m. PubMed DOI

Xu W. J. Yao K. Xu K. Z. Nanoscale. 2019;11:8680–8691. doi: 10.1039/C9NR01833F. PubMed DOI

Wang W. Li G. Xia D. An T. Zhao H. Wong P. K. Environ. Sci.: Nano. 2013;4:782–799.

Mao C. Xiang Y. Liu X. Cui X. Yang X. Li Z. Zhu S. Zheng Y. Yeung K. W. Wu S. ACS Nano. 2018;12:1747–1759. doi: 10.1021/acsnano.7b08500. PubMed DOI

Yang X. Yang J. Wang L. Ran B. Jia Y. Zhang L. Yang G. Shao H. Jiang X. ACS Nano. 2017;11:5737–5745. doi: 10.1021/acsnano.7b01240. PubMed DOI

Zhang W. Mou Z. Wang Y. Chen Y. Yang E. Guo F. Sun D. Wang W. Mater. Sci. Eng. 2019;97:486–497. doi: 10.1016/j.msec.2018.12.052. PubMed DOI

Wang L. S. Gupta A. Rotello M. V. ACS Infect. Dis. 2016;2:3–4. doi: 10.1021/acsinfecdis.5b00116. PubMed DOI PMC

Beyth N. Houri-Haddad Y. Domb A. Khan W. Hazan R. Evid.-Based Complementary Altern. Med. 2015;2015:246012. PubMed PMC

Hemeg H. A. Int. J. Nanomed. 2017;12:8211–8225. doi: 10.2147/IJN.S132163. PubMed DOI PMC

Lin H. Chen Y. Shi J. Adv. Sci. 2018;5:1800518. doi: 10.1002/advs.201800518. PubMed DOI PMC

Zhou R. Gao H. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnology. 2014;6:452–474. PubMed

Yang K. Li Y. Tan X. Peng R. Liu Z. Small. 2012;9:1492–1503. doi: 10.1002/smll.201201417. PubMed DOI

Szunerits S. Boukherroub R. J. Mater. Chem. B. 2016;4:6892–6912. doi: 10.1039/C6TB01647B. PubMed DOI

Kumar P. Huo P. Zhang R. Liu B. Nanomaterials. 2019;9:737. doi: 10.3390/nano9050737. PubMed DOI PMC

Kuila T. Biosens. Bioelectron. 2011;26:4637–4648. doi: 10.1016/j.bios.2011.05.039. PubMed DOI

Xu M. Liang T. Shi M. Chen H. Chem. Rev. 2013;113:3766–3798. doi: 10.1021/cr300263a. PubMed DOI

Sun X. Liu Z. Welsher K. Robinson J. T. Goodwin A. Zaric S. Dai H. Nano Res. 2008;1:203–212. doi: 10.1007/s12274-008-8021-8. PubMed DOI PMC

Liu Z. J. Am. Chem. Soc. 2008;130:10876–10877. doi: 10.1021/ja803688x. PubMed DOI PMC

Georgakalis V. Chem. Rev. 2012;112:6156–6214. doi: 10.1021/cr3000412. PubMed DOI

Rasool K. Mahmoud K. A. Johnson D. J. Helal M. Berdiyorov G. R. Gogotsi Y. Sci. Rep. 2017;7:1598. doi: 10.1038/s41598-017-01714-3. PubMed DOI PMC

Tan K. Nanoscale. 2018;10:9525–9537. doi: 10.1039/C8NR01347K. PubMed DOI

Rago I., Antimicrobial Activity of Graphene Nanoplatelets Against Streptococcus Mutans. 15th IEEE-NANO, 2015, pp. 9–12

Abdelrazik A. S. Sol. Energy. 2020;204:32–47. doi: 10.1016/j.solener.2020.04.063. DOI

Anwar A. Siddiqui R. Shah M. R. Khan N. A. Antimicrob. Agents Chemother. 2018;62:e00630-18. doi: 10.1128/AAC.00630-18. PubMed DOI PMC

Kumar P. Nagarajan A. Uchil D. P. Cold Spring Harb. Protoc. 2018;6:095497. PubMed

Hoh A. and Maier K., Comparative cytotoxicity test with human keratinocytes, HaCaT cells, and skin fibroblasts to investigate skin-irritating substances, in Cells and Tissue Culture Models in Dermatological Res, ed. A. Bernd, J. Bereiter-Hahn, F. Hevert and H. Holzmann, Springer, Berlin, Heidelberg, 1993, pp. 341–347

Aslfattahi N. J. Energy Storage. 2020;27:101115. doi: 10.1016/j.est.2019.101115. DOI

Das L. Habib K. Saidur R. Aslfattahi N. Yahya S. M. Rubbi F. Nanomaterials. 2020;10:1372. doi: 10.3390/nano10071372. PubMed DOI PMC

Li Y. Zhou X. Wang J. Deng Q. Li M. Du S. Han Y. H. Lee J. Huang Q. RSC Adv. 2017;7:24698–24708. doi: 10.1039/C7RA03402D. DOI

Joseph E. and Singhvi G., in Nanomaterials for Drug Delivery and Therapy, 2019, pp. 91–116

Lu G. W. and Gao P., Emulsions and Microemulsions for Topical and Transdermal Drug Delivery, in Handbook of Non-Invasive Drug Delivery Systems, William Andrew Publishing, 2010, pp. 59–94

Kumar R., Lipid-based nanoparticles for drug-delivery systems, in Nanocarriers Drug Deliv, ed. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra and S. Thomas, Elsevier, 2019, pp. 249–284

Lipatov A. Adv. Electron. Mater. 2016;2(12):1600255. doi: 10.1002/aelm.201600255. DOI

Ahmed B. Nanoscale. 2014;8:7580–7587. doi: 10.1039/C6NR00002A. PubMed DOI

Ding L. Nat. Commun. 2018;9:155. doi: 10.1038/s41467-017-02529-6. PubMed DOI PMC

Sarsam W. Amiri A. Zubir M. N. Yarmand H. Kazi S. N. Badarudin A. Colloids Surf., A. 2016;500:17–31. doi: 10.1016/j.colsurfa.2016.04.016. DOI

Yarmand H. Gharehkhani S. Shirazi S. F. Goodarzi M. Sarsam A. Amiri A. Sarsam W. S. Alehashem M. S. Dahari M. Kazi S. N. Int. Commun. Heat Mass Transfer. 2016;77:15–21. doi: 10.1016/j.icheatmasstransfer.2016.07.010. DOI

Ayyaru S. Ahn Y. H. J. Membr. Sci. 2016;525:210–219. doi: 10.1016/j.memsci.2016.10.048. DOI

Alimohammadi F. Sharifian G. H. M. Attanayake N. W. Thenuwara A. C. Gogotsi Y. Anasori B. Strongin D. R. Langmuir. 2018;34:7192–7200. doi: 10.1021/acs.langmuir.8b00262. PubMed DOI

Mei L. Theranostics. 2019;10:757–781. doi: 10.7150/thno.39701. PubMed DOI PMC

Derakhshi M. Daemi S. Shahini P. Habibzadeh A. Mostafavi E. Ashkarran A. A. J. Funct. Biomater. 2022;13:22. doi: 10.3390/jfb13010022. PubMed DOI PMC

Naguib M. Kurtoglu M. Presser V. Lu J. Niu J. Heon M. Hultman L. Gogotsi Y. Barsoum M. W. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI

Vivanco-Benavides L. E. Martínez-González C. L. Mercado-Zúñiga C. Torres-Torres C. Comput. Mater. Sci. 2022;201:110939. doi: 10.1016/j.commatsci.2021.110939. DOI

Jukic M. Bren U. Front. Pharmacol. 2022;13:864412. doi: 10.3389/fphar.2022.864412. PubMed DOI PMC

Daukiya L. Seibel J. De Feyter S. Adv. Phys.: X. 2019;4:1625723.

Murugan C. Sharma V. Murugan R. K. Malaimegu G. Sundaramurthy A. J. Controlled Release. 2019;299:1–20. doi: 10.1016/j.jconrel.2019.02.015. PubMed DOI

Jastrzebska A. M. J. Mater. Eng. Perform. 2017;28:1272–1277. doi: 10.1007/s11665-018-3223-z. DOI

Gholami M. F. Lauster D. Ludwig K. Storm J. Ziem B. Severin N. Böttcher C. Rabe J. P. Herrmann A. Adeli M. Haag R. Adv. Funct. Mater. 2017;27:1606477. doi: 10.1002/adfm.201606477. DOI

Zhenhui Q. Bharate P. Lai C. H. Ziem B. Bottehers C. Schulz A. Beckert F. Hatting B. Mulhaupt R. Seerberger P. H. Haag R. Nano Lett. 2015;15:6051–6057. doi: 10.1021/acs.nanolett.5b02256. PubMed DOI

Xie X. Mao C. Liu X. Zhang Y. Cui Z. Yang X. Yeung K. W. K. Pan H. Chu P. K. Wu S. ACS Appl. Mater. Interfaces. 2017;9:26417–26428. doi: 10.1021/acsami.7b06702. PubMed DOI

Zhao L. Xu Y. H. Akasaka T. Abe S. Komatsu N. Watari F. Chen X. Biomaterials. 2014;35:5393–5406. doi: 10.1016/j.biomaterials.2014.03.041. PubMed DOI

Park J. Yan M. Acc. Chem. Res. 2013;46:181–189. doi: 10.1021/ar300172h. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

MXene-based composites against antibiotic-resistant bacteria: current trends and future perspectives

. 2023 Mar 20 ; 13 (14) : 9665-9677. [epub] 20230324

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace