Potent antibacterial activity of MXene-functionalized graphene nanocomposites
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36425203
PubMed Central
PMC9673471
DOI
10.1039/d2ra04944a
PII: d2ra04944a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Two dimensional (2D) nanomaterials display properties with significant biological utility (e.g., antimicrobial activity). In this study, MXene-functionalized graphene (FG) nanocomposites with Ti3C2T x in varying ratios (FG : Ti3C2T x , 25 : 75%, 50 : 50%, and 75 : 25%) were prepared and characterized via scanning electron microscopy, scanning electron microscopy-energy dispersive X-ray (SEM-EDX), high-resolution transmission electron microscopy (HRTEM), and zeta potential analysis. Their cytotoxicity was assessed using immortalized human keratinocytes (HaCaT) cells at three different timepoints, and antibacterial activity was assessed using Gram-positive Methicillin resistant Staphylococcus aureus, MRSA, and Gram-negative neuro-pathogenic Escherichia coli K1 (E. coli K1) in vitro. The nanomaterials and composites displayed potent antibacterial effects against both types of bacteria and low cytotoxicity against HaCaT cells at 200 μg mL-1, which is promising for their utilization for biomedical applications.
Department of Chemistry Faraday Building Lancaster University Lancaster Lancashire LA1 4YB UK
Materials Science Institute Faraday Building Lancaster University Lancaster Lancashire LA1 4YB UK
Zobrazit více v PubMed
Percival S. L. Bowler P. G. Russell D. J. Hosp. Infect. 2005;60:1–7. doi: 10.1016/j.jhin.2004.11.014. PubMed DOI
Silver S. Phung L. T. Silver G. J. Ind. Microbiol. Biotechnol. 2006;33:627–634. doi: 10.1007/s10295-006-0139-7. PubMed DOI
Liu Y. Yu J. Guo D. Li Z. Su Y. J. Alloys Compd. 2019;815:152403. doi: 10.1016/j.jallcom.2019.152403. DOI
Alswat A. A. Ahmad M. B. Hussein M. Z. Ibrahim N. A. Saleh T. A. J. Mater. Sci. Technol. 2017;33:889–896. doi: 10.1016/j.jmst.2017.03.015. DOI
Kotb E. Ahmed A. A. Saleh T. A. Ajeebi A. M. Al-Gharsan M. S. Aldahmash N. F. Biotechnol. Prog. 2020;36:e2907. doi: 10.1002/btpr.2907. PubMed DOI
Rasool K. Helal M. Ali A. Ren C. E. Gogotsi Y. Mahmoud K. A. ACS Nano. 2016;10:3674–3684. doi: 10.1021/acsnano.6b00181. PubMed DOI
Arabi Shamsabadi A. Sharifian Gh. M. Anasori B. Soroush M. Chem. Eng. 2018;6:16586–16596.
Saleh T. A. Environ. Technol. Innovation. 2021;24:101821. doi: 10.1016/j.eti.2021.101821. DOI
Mangadlao J. D. Santos C. M. Felipe M. J. L. De Leon A. C. C. Rodigues D. F. Advincula R. C. Chem. Commun. 2012;51:2886–2889. doi: 10.1039/C4CC07836E. PubMed DOI
Liu Y. Zhao Y. Sun B. Chen C. Acc. Chem. Res. 2012;46:702–713. doi: 10.1021/ar300028m. PubMed DOI
Xu W. J. Yao K. Xu K. Z. Nanoscale. 2019;11:8680–8691. doi: 10.1039/C9NR01833F. PubMed DOI
Wang W. Li G. Xia D. An T. Zhao H. Wong P. K. Environ. Sci.: Nano. 2013;4:782–799.
Mao C. Xiang Y. Liu X. Cui X. Yang X. Li Z. Zhu S. Zheng Y. Yeung K. W. Wu S. ACS Nano. 2018;12:1747–1759. doi: 10.1021/acsnano.7b08500. PubMed DOI
Yang X. Yang J. Wang L. Ran B. Jia Y. Zhang L. Yang G. Shao H. Jiang X. ACS Nano. 2017;11:5737–5745. doi: 10.1021/acsnano.7b01240. PubMed DOI
Zhang W. Mou Z. Wang Y. Chen Y. Yang E. Guo F. Sun D. Wang W. Mater. Sci. Eng. 2019;97:486–497. doi: 10.1016/j.msec.2018.12.052. PubMed DOI
Wang L. S. Gupta A. Rotello M. V. ACS Infect. Dis. 2016;2:3–4. doi: 10.1021/acsinfecdis.5b00116. PubMed DOI PMC
Beyth N. Houri-Haddad Y. Domb A. Khan W. Hazan R. Evid.-Based Complementary Altern. Med. 2015;2015:246012. PubMed PMC
Hemeg H. A. Int. J. Nanomed. 2017;12:8211–8225. doi: 10.2147/IJN.S132163. PubMed DOI PMC
Lin H. Chen Y. Shi J. Adv. Sci. 2018;5:1800518. doi: 10.1002/advs.201800518. PubMed DOI PMC
Zhou R. Gao H. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnology. 2014;6:452–474. PubMed
Yang K. Li Y. Tan X. Peng R. Liu Z. Small. 2012;9:1492–1503. doi: 10.1002/smll.201201417. PubMed DOI
Szunerits S. Boukherroub R. J. Mater. Chem. B. 2016;4:6892–6912. doi: 10.1039/C6TB01647B. PubMed DOI
Kumar P. Huo P. Zhang R. Liu B. Nanomaterials. 2019;9:737. doi: 10.3390/nano9050737. PubMed DOI PMC
Kuila T. Biosens. Bioelectron. 2011;26:4637–4648. doi: 10.1016/j.bios.2011.05.039. PubMed DOI
Xu M. Liang T. Shi M. Chen H. Chem. Rev. 2013;113:3766–3798. doi: 10.1021/cr300263a. PubMed DOI
Sun X. Liu Z. Welsher K. Robinson J. T. Goodwin A. Zaric S. Dai H. Nano Res. 2008;1:203–212. doi: 10.1007/s12274-008-8021-8. PubMed DOI PMC
Liu Z. J. Am. Chem. Soc. 2008;130:10876–10877. doi: 10.1021/ja803688x. PubMed DOI PMC
Georgakalis V. Chem. Rev. 2012;112:6156–6214. doi: 10.1021/cr3000412. PubMed DOI
Rasool K. Mahmoud K. A. Johnson D. J. Helal M. Berdiyorov G. R. Gogotsi Y. Sci. Rep. 2017;7:1598. doi: 10.1038/s41598-017-01714-3. PubMed DOI PMC
Tan K. Nanoscale. 2018;10:9525–9537. doi: 10.1039/C8NR01347K. PubMed DOI
Rago I., Antimicrobial Activity of Graphene Nanoplatelets Against Streptococcus Mutans. 15th IEEE-NANO, 2015, pp. 9–12
Abdelrazik A. S. Sol. Energy. 2020;204:32–47. doi: 10.1016/j.solener.2020.04.063. DOI
Anwar A. Siddiqui R. Shah M. R. Khan N. A. Antimicrob. Agents Chemother. 2018;62:e00630-18. doi: 10.1128/AAC.00630-18. PubMed DOI PMC
Kumar P. Nagarajan A. Uchil D. P. Cold Spring Harb. Protoc. 2018;6:095497. PubMed
Hoh A. and Maier K., Comparative cytotoxicity test with human keratinocytes, HaCaT cells, and skin fibroblasts to investigate skin-irritating substances, in Cells and Tissue Culture Models in Dermatological Res, ed. A. Bernd, J. Bereiter-Hahn, F. Hevert and H. Holzmann, Springer, Berlin, Heidelberg, 1993, pp. 341–347
Aslfattahi N. J. Energy Storage. 2020;27:101115. doi: 10.1016/j.est.2019.101115. DOI
Das L. Habib K. Saidur R. Aslfattahi N. Yahya S. M. Rubbi F. Nanomaterials. 2020;10:1372. doi: 10.3390/nano10071372. PubMed DOI PMC
Li Y. Zhou X. Wang J. Deng Q. Li M. Du S. Han Y. H. Lee J. Huang Q. RSC Adv. 2017;7:24698–24708. doi: 10.1039/C7RA03402D. DOI
Joseph E. and Singhvi G., in Nanomaterials for Drug Delivery and Therapy, 2019, pp. 91–116
Lu G. W. and Gao P., Emulsions and Microemulsions for Topical and Transdermal Drug Delivery, in Handbook of Non-Invasive Drug Delivery Systems, William Andrew Publishing, 2010, pp. 59–94
Kumar R., Lipid-based nanoparticles for drug-delivery systems, in Nanocarriers Drug Deliv, ed. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra and S. Thomas, Elsevier, 2019, pp. 249–284
Lipatov A. Adv. Electron. Mater. 2016;2(12):1600255. doi: 10.1002/aelm.201600255. DOI
Ahmed B. Nanoscale. 2014;8:7580–7587. doi: 10.1039/C6NR00002A. PubMed DOI
Ding L. Nat. Commun. 2018;9:155. doi: 10.1038/s41467-017-02529-6. PubMed DOI PMC
Sarsam W. Amiri A. Zubir M. N. Yarmand H. Kazi S. N. Badarudin A. Colloids Surf., A. 2016;500:17–31. doi: 10.1016/j.colsurfa.2016.04.016. DOI
Yarmand H. Gharehkhani S. Shirazi S. F. Goodarzi M. Sarsam A. Amiri A. Sarsam W. S. Alehashem M. S. Dahari M. Kazi S. N. Int. Commun. Heat Mass Transfer. 2016;77:15–21. doi: 10.1016/j.icheatmasstransfer.2016.07.010. DOI
Ayyaru S. Ahn Y. H. J. Membr. Sci. 2016;525:210–219. doi: 10.1016/j.memsci.2016.10.048. DOI
Alimohammadi F. Sharifian G. H. M. Attanayake N. W. Thenuwara A. C. Gogotsi Y. Anasori B. Strongin D. R. Langmuir. 2018;34:7192–7200. doi: 10.1021/acs.langmuir.8b00262. PubMed DOI
Mei L. Theranostics. 2019;10:757–781. doi: 10.7150/thno.39701. PubMed DOI PMC
Derakhshi M. Daemi S. Shahini P. Habibzadeh A. Mostafavi E. Ashkarran A. A. J. Funct. Biomater. 2022;13:22. doi: 10.3390/jfb13010022. PubMed DOI PMC
Naguib M. Kurtoglu M. Presser V. Lu J. Niu J. Heon M. Hultman L. Gogotsi Y. Barsoum M. W. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI
Vivanco-Benavides L. E. Martínez-González C. L. Mercado-Zúñiga C. Torres-Torres C. Comput. Mater. Sci. 2022;201:110939. doi: 10.1016/j.commatsci.2021.110939. DOI
Jukic M. Bren U. Front. Pharmacol. 2022;13:864412. doi: 10.3389/fphar.2022.864412. PubMed DOI PMC
Daukiya L. Seibel J. De Feyter S. Adv. Phys.: X. 2019;4:1625723.
Murugan C. Sharma V. Murugan R. K. Malaimegu G. Sundaramurthy A. J. Controlled Release. 2019;299:1–20. doi: 10.1016/j.jconrel.2019.02.015. PubMed DOI
Jastrzebska A. M. J. Mater. Eng. Perform. 2017;28:1272–1277. doi: 10.1007/s11665-018-3223-z. DOI
Gholami M. F. Lauster D. Ludwig K. Storm J. Ziem B. Severin N. Böttcher C. Rabe J. P. Herrmann A. Adeli M. Haag R. Adv. Funct. Mater. 2017;27:1606477. doi: 10.1002/adfm.201606477. DOI
Zhenhui Q. Bharate P. Lai C. H. Ziem B. Bottehers C. Schulz A. Beckert F. Hatting B. Mulhaupt R. Seerberger P. H. Haag R. Nano Lett. 2015;15:6051–6057. doi: 10.1021/acs.nanolett.5b02256. PubMed DOI
Xie X. Mao C. Liu X. Zhang Y. Cui Z. Yang X. Yeung K. W. K. Pan H. Chu P. K. Wu S. ACS Appl. Mater. Interfaces. 2017;9:26417–26428. doi: 10.1021/acsami.7b06702. PubMed DOI
Zhao L. Xu Y. H. Akasaka T. Abe S. Komatsu N. Watari F. Chen X. Biomaterials. 2014;35:5393–5406. doi: 10.1016/j.biomaterials.2014.03.041. PubMed DOI
Park J. Yan M. Acc. Chem. Res. 2013;46:181–189. doi: 10.1021/ar300172h. PubMed DOI