Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
7741955
Science Fund of the Republic of Serbia
451-03-68/2022-14/200017 and 451-03-68/2022-14/200042
Ministry of Education, Science and Technological Development of the Republic of Serbia
PubMed
36432356
PubMed Central
PMC9699046
DOI
10.3390/nano12224070
PII: nano12224070
Knihovny.cz E-resources
- Keywords
- antibacterial surfaces, carbon polymerized dots, polymer composites, riboflavin,
- Publication type
- Journal Article MeSH
Development of new types of antimicrobial coatings is of utmost importance due to increasing problems with pathogen transmission from various infectious surfaces to human beings. In this study, new types of highly potent antimicrobial polyurethane composite films encapsulated by hydrophobic riboflavin-based carbon polymer dots are presented. Detailed structural, optical, antimicrobial, and cytotoxic investigations of these composites were conducted. Low-power blue light triggered the composites to eradicate Escherichia coli in 30 min, whereas the same effect toward Staphylococcus aureus was reached after 60 min. These composites also show low toxicity against MRC-5 cells. In this way, RF-CPD composites can be used for sterilization of highly touched objects in the healthcare industry.
Faculty of Biology University of Belgrade Studentski trg 16 11000 Belgrade Serbia
Polymer Institute Slovak Academy of Sciences Dúbravská Cestá 9 84541 Bratislava Slovakia
Serbian Academy of Sciences and Arts Knez Mihailova 35 11000 Belgrade Serbia
See more in PubMed
Curtis A., Moore Z., Patton D., O’Connor T., Nugent L. Does using a cellular mobile phone increase the risk of nosocomial infections in the neonatal intensive care unit: A systematic review. J. Neonatal Nurs. 2018;24:247–252. doi: 10.1016/j.jnn.2018.05.008. DOI
Pal S., Juyal D., Adekhandi S., Sharma M., Prakash R., Sharma N., Rana A., Parihar A. Mobile phones: Reservoirs for the transmission of nosocomial pathogens. Adv. Biomed. Res. 2015;4:144. doi: 10.4103/2277-9175.161553. PubMed DOI PMC
Al Momani W., Khatetbeh M., Altaany Z. Antibiotic susceptibility of bacterial pathogens recovered from the hand and mobile phones of university students. Germs. 2019;9:9–16. doi: 10.18683/germs.2019.1152. PubMed DOI PMC
Brady R.R., Hunt A.C., Visvanathan A., Rodrigues M.A., Graham C., Rae C., Kalima P., Peterson H.M., Gibb A.P. Mobile phone technology and hospitalized patients: A cross-sectional surveillance study of bacterial colonization, and patient opinions and behaviours. Clin. Microbiol. Infect. 2011;17:830–835. doi: 10.1111/j.1469-0691.2011.03493.x. PubMed DOI
Shah P.D., Shaikh N.M., Dholaria K.V. Microorganisms isolated from mobile phones and hands of health-care workers in a tertiary care hospital of Ahmedabad, Gujarat, India. Indian J. Public Health. 2019;63:147–150. doi: 10.4103/ijph.IJPH_179_18. PubMed DOI
[(accessed on 29 October 2022)]. Available online: https://www.publichealthontario.ca/-/media/documents/a/2018/at-a-glance-ipac-pss-disinfectant-tables.pdf?la=en.
Abreu A.C., Tavares R.R., Borges A., Mergulhao F., Simoes M. Current and emergent strategies for disinfection of hospital enviroments. J. Antimicrob. Chemother. 2013;68:2718–2732. doi: 10.1093/jac/dkt281. PubMed DOI PMC
Marković Z.M., Kováčová M., Humpolíček P., Budimir M.D., Vajďákc J., Kubát P., Mičušík M., Švajdlenková H., Danko M., Capáková Z., et al. Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumonia. Photodiagn. Photodyn. Ther. 2019;26:342–349. doi: 10.1016/j.pdpdt.2019.04.019. PubMed DOI
Marković Z., Kováčová M., Mičušík M., Danko M., Švajdlenková H., Kleinová A., Humpolíček P., Lehocký M., Todorović Marković B., Špitalský Z. Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites. J. Appl. Polym. Sci. 2019;136:47283. doi: 10.1002/app.47283. DOI
Kováčová M., Marković Z.M., Humpolíček P., Mičušík M., Švajdlenková H., Kleinová A., Danko M., Kubát P., Vajďák J., Capáková Z., et al. Carbon quantum dots modified polyurethane nanocomposites as effective photocatalytic and antibacterial agents. ACS Biomater. Sci. Eng. 2018;4:3983–3993. doi: 10.1021/acsbiomaterials.8b00582. PubMed DOI
Kováčová M., Špitalská E., Markovic Z., Špitálský Z. Carbon quantum dots as antibacterial photosensitizers and their polymer nanocomposite applications. Part. Part. Syst. Char. 2020;37:1900348. doi: 10.1002/ppsc.201900348. DOI
Budimir M., Marković Z., Vajdak J., Jovanović S., Kubat P., Humpoliček P., Mičušik M., Danko M., Barras A., Milivojević D., et al. Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment. Radiat. Phys. Chem. 2021;185:109499. doi: 10.1016/j.radphyschem.2021.109499. DOI
Zmejkoski D.Z., Marković Z.M., Budimir M.D., Zdravković N.M., Trišić D.D., Bugárová N., Danko M., Kozyrovska N.O., Špitalský Z., Kleinová A., et al. Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. Mater. Sci. Eng. C. 2021;122:111925. doi: 10.1016/j.msec.2021.111925. PubMed DOI
Stanković N.K., Bodik M., Šiffalovic P., Kotlar M., Micusik M., Spitalsky Z., Danko M., Milivojević D.D., Kleinova A., Kubat P., et al. Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots Langmuir−Blodgett thin films. ACS Sustain. Chem. Eng. 2018;6:4154–4163. doi: 10.1021/acssuschemeng.7b04566. DOI
[(accessed on 29 October 2022)]. Available online: https://www.fao.org/fileadmin/user_upload/jecfa_additives/docs/Monograph1/Additive-377.pdf.
Shimizu R., Yagi M., Kikuch A. Suppression of riboflavin-sensitized singlet oxygen generation by l-ascorbic acid, 3-o-ethyl-l-ascorbic acid and trolox. J. Photochem. PhotoBiol. B. 2019;191:116–122. doi: 10.1016/j.jphotobiol.2018.12.012. PubMed DOI
Knak A., Regensburger J., Maisch T., Bäumler W. Exposure of vitamins to UVB and UVA radiation generates singlet oxygen. Photochem. Photobiol. Sci. 2014;13:820–829. doi: 10.1039/c3pp50413a. PubMed DOI
Farah N., Chin V.K., Chong P.P., Lim W.F., Lim C.W., Basir R., Chang S.K., Lee T.Y. Riboflavin as a promising antimicrobial agent? A multi-perspective review. Curr. Res. Microb. Sci. 2022;3:100111. doi: 10.1016/j.crmicr.2022.100111. PubMed DOI PMC
Makdoumi K., Bäckman A., Mortensen J., Crafoord S. Evaluation of antibacterial efficacy of photo-activated riboflavin using ultraviolet light (UVA) Graefes Arch. Clin. Exp. Ophthalmol. 2010;248:207–212. doi: 10.1007/s00417-009-1231-2. PubMed DOI
Li H., Tan L., Chen B., Huang J., Zeng Q., Liu H., Zhao Y., Wang J.J. Antibacterial potency of riboflavin-mediated photodynamic inactivation against Salmonella and its influences on tuna quality. LWT. 2021;146:111462. doi: 10.1016/j.lwt.2021.111462. DOI
Khan S., Rayis M.P., Rizvi A., Alam M.M., Rizvi M., Naseem I. ROS mediated antibacterial activity of photoilluminated riboflavin: A photodynamic mechanism against nosocomial infections. Toxicol. Rep. 2019;6:136–142. doi: 10.1016/j.toxrep.2019.01.003. PubMed DOI PMC
Martins S.A.R., Combs J.C., Noguera G., Camacho W., Wittmann P., Walther R., Cano M., Dick J., Behrens A. Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: A potential new treatment for infectious keratitis. Investig. Ophthalmol. Vis. Sci. 2008;49:3402–3408. doi: 10.1167/iovs.07-1592. PubMed DOI
Tunçcan Ö.G., Kalkancı A., Unal E.A., Abdulmajed O., Erdoğan M., Dizbay M., Çağlar K. The in vitro effect of antimicrobial photodynamic therapy on Candida and Staphylococcus Biofilms. Turk. J. Med. Sci. 2018;48:873–879. doi: 10.3906/sag-1803-44. PubMed DOI
Banerjee S., Ghosh D., Vishakha K., Das S., Mondal S., Ganguli A. Photodynamic antimicrobial chemotherapy (PACT) using riboflavin inhibits the mono and dual species biofilm produced by antibiotic resistant Staphylococcus aureus and Escherichia coli. Photodiag. Photodyn. Therap. 2020;32:102002. doi: 10.1016/j.pdpdt.2020.102002. PubMed DOI
Sun J., Peng W., Fan B., Gan D., Li L., Liu P., Shen J. Tertiary amines convert 1O2 to H2O2 with enhanced photodynamic antibacterial efficiency. J. Hazard. Mater. 2022;435:128948. doi: 10.1016/j.jhazmat.2022.128948. PubMed DOI
Romanova Y., Khaydukov E.V., Tolordava E.R., Nikolaeva M., Solov’ev A.I., Panchenko V.Y., Borodina T. Antimicrobial photodynamic activity of hydrophilic riboflavin derivatives. Mol. Genet. Microbiol. Virol. 2021;36:176–180. doi: 10.3103/s0891416821040042. DOI
Mirshafiee H., Sharifi Z., Hosseini S.M., Yari F., Nikbakht H., Latifi H. The effects of ultraviolet light and riboflavin on inactivation of viruses and the quality of platelet concentrates at laboratory scale. Avicenna J. Med. Biotech. 2015;7:57–63. PubMed PMC
Keil S.D., Bowen R., Marschner S. Inactivation of middle east respiratory syndrome coronavirus (Mers-Cov) in plasma products using a riboflavin-based and ultraviolet light-based photochemical treatment. Transfusion. 2016;56:2948–2952. doi: 10.1111/trf.13860. PubMed DOI PMC
Ragan I., Hartson L., Pidcoke H., Bowen R., Goodrich R. Pathogen reduction of SARS-Cov-2 virus in plasma and whole blood using riboflavin and UV light. PLoS ONE. 2020;15:e0233947. doi: 10.1371/journal.pone.0233947. PubMed DOI PMC
Sheraz M.A., Kazi S.H., Ahmed S., Anwar Z., Ahmad I. Photo, thermal and chemical degradation of riboflavin. Beilstein J. Org. Chem. 2014;10:1999–2012. doi: 10.3762/bjoc.10.208. PubMed DOI PMC
Moore W.W., Ireton R.C. The photochemistry of riboflavin—V. The photodegradation of isoalloxazines in alcoholic solvents. Photochem. Photobiol. 1977;25:347–356. doi: 10.1111/j.1751-1097.1977.tb07354.x. PubMed DOI
Yue J., Li L., Jiang C., Mei Q., Dong W., Yan R. Riboflavin-based carbon dots with high singlet oxygen generation for photodynamic therapy. J. Mater. Chem. B. 2021;9:7972–7978. doi: 10.1039/D1TB01291F. PubMed DOI
Pei J., Zhu S., Liu Y., Song Y., Xue F., Xiong X., Li C. Photodynamic effect of riboflavin on chitosan coatings and the application in pork preservation. Molecules. 2022;27:1355. doi: 10.3390/molecules27041355. PubMed DOI PMC
Su L., Huang J., Li H., Pan Y., Zhu B., Zhao Y., Liu H. Chitosan-riboflavin composite film based on photodynamic inactivation technology for antibacterial food packaging. Int. J. Biol. Macromol. 2021;172:231–240. doi: 10.1016/j.ijbiomac.2021.01.056. PubMed DOI
Orsuwan A., Kwon S., Bumbudsanpharoke N., Ko S. Novel LDPE-riboflavin composite film with dual function of broad-spectrum light barrier and antimicrobial activity. Food Control. 2019;100:176–182. doi: 10.1016/j.foodcont.2019.01.012. DOI
Zhang Z., Pan B., Wang L., Sun G. Photoactivities of two vitamin B derivatives and their applications in the perpetration of photoinduced antibacterial nanofibrous membranes. ACS Appl. Bio Mater. 2021;4:8584–8596. doi: 10.1021/acsabm.1c01042. PubMed DOI
Xia C., Zhu S., Feng T., Yang M., Yang B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019;6:1901316. doi: 10.1002/advs.201901316. PubMed DOI PMC
Tao S., Zhu S., Feng T., Xia C., Song Y., Yang B. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review. Mater. Today Chem. 2017;6:13–25. doi: 10.1016/j.mtchem.2017.09.001. DOI
Song Y., Zhu S., Zhang S., Fu Y., Wang L., Zhao X., Yang B. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C. 2015;3:5976–5984. doi: 10.1039/C5TC00813A. DOI
Song Y., Zhu S., Shao J., Yang B. Polymer carbon dots-a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism. J. Polym. Sci. Part A Polym. Chem. 2017;55:610–615. doi: 10.1002/pola.28416. DOI
Ai L., Yang Y., Wang B., Chang J., Tang Z., Yang B., Lu S. Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives. Sci. Bull. 2021;66:839–856. doi: 10.1016/j.scib.2020.12.015. PubMed DOI
Nečas D., Klapetek P. Gwyddion: Open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI
[(accessed on 29 October 2022)]. Available online: http://www.casaxps.com/berlin/software.
Martí C., Jürgens O., Cuenca O., Casals M., Nonell S. Aromatic ketones as standards for singlet molecular oxygen O2 (1Δg) photosensitization. Time-resolved photoacoustic and near-IR emission studies. J. Photochem. Photobiol. A. 1996;97:11–18. doi: 10.1016/1010-6030(96)04321-3. DOI
Plastics—Measurement of Antibacterial Activity on Plastics Surfaces. ISO Central Secretariat; Vernier, Geneva: 2007. [(accessed on 29 October 2022)]. Available online: https://www.iso.org/standard/40759.html.
Israelachvili J.N. Intermolecular and Surface Forces. Academic Press; New York, NY, USA: 2011. DOI
Tepliakov N.V., Kundelev E.V., Khavlyuk P.D., Xiong Y., Leonov M.Y., Zhu W., Baranov A.V., Fedorov A.V., Rogach A.L., Rukhlenko I.D. sp2−sp3-hybridized atomic domains determine optical features of carbon dots. ACS Nano. 2019;13:10737–10744. doi: 10.1021/acsnano.9b05444. PubMed DOI
Lin L., Rong M., Li S., Song X., Zhong Y., Yan J., Wang Y., Chen X. A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale. 2015;7:1872–1878. doi: 10.1039/C4NR06365A. PubMed DOI
Marković Z.M., Jovanović S.P., Mašković P.Z., Danko M., Mičušik M., Pavlović V.B., Milivojević D.D., Kleinova A., Špitalsky Z., Todorović Marković B.M. Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. RSC Adv. 2018;8:31337. doi: 10.1039/C8RA04664F. PubMed DOI PMC
Guo Y., Li J., Yuan Y., Li L., Zhang M., Zhou C., Lin Z. A rapid microwave-assisted thermolysis route to highly crystalline carbon nitrides for efficient hydrogen generation. Angew. Chem. 2016;128:14913–14917. doi: 10.1002/ange.201608453. PubMed DOI
IR Spectrum Table & Chart. [(accessed on 29 October 2022)]. Available online: https://www.sigmaaldrich.com/RS/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table.
Table of Characteristic IR Absorptions. [(accessed on 29 October 2022)]. Available online: https://ih.pmf.ukim.edu.mk.
Wang X., Qu K., Xu B., Ren J., Qu X. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots with-out surface passivation reagents. J. Mater. Chem. 2011;21:2445–2450. doi: 10.1039/c0jm02963g. DOI
Ionita G., Matei I. Hydrogels, Microgels and Nanogels. IntechOpen; Rijeka, Croatia: 2019. Application of Riboflavin Photochemical Properties in Hydrogel Synthesis; pp. 1–14. DOI
Gao Y., Jiao Y., Lu W. Carbon dots with red emission as a fluorescent and colorimetric dual-readout probe for the detection of chromium (VI) and cysteine and its logic gate operation. J. Mater. Chem. B. 2018;6:6099–6107. doi: 10.1039/C8TB01580E. PubMed DOI
Langer M., Paloncýová M., Medved M., Pykal M., Nachtigallová D., Shid B., Aquino A.J.A., Lischka H., Otyepka M. Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. Appl. Mater. Today. 2021;22:100924. doi: 10.1016/j.apmt.2020.100924. DOI
Zhu S., Wang L., Zhou N., Zhao X., Song Y., Maharjan S., Zhang J., Lu L., Wang H., Yang B. The crosslink enhanced emission (CEE) in non-conjugated polymer dots: From the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem. Commun. 2014;50:13845–13848. doi: 10.1039/C4CC05806B. PubMed DOI
Grodowski M.S., Veyret B., Weiss K. Photochemistry of flavins-II. Photophysical properties of alloxazines and isoalloxazines. Photochem. Photobiol. 1977;26:341–352. doi: 10.1111/j.1751-1097.1977.tb07495.x. DOI
Weber G. Fluorescence of riboflavin and flavin adenine dinucleotide. Biochem. J. 1950;47:114–121. doi: 10.1042/bj0470114. PubMed DOI PMC
Naman S.A., Tegnér L. Decay kinetics of the triplet excited state of lumiflavin. Photochem. Photobiol. 1986;43:331–333. doi: 10.1111/j.1751-1097.1986.tb05612.x. DOI
Wen X., Yu P., Toh Y.R., Hao X., Tang J. Intrinsic and extrinsic fluorescence in carbon nanodots: Ultrafast time-resolved fluorescence and carrier dynamics. Adv. Opt. Mater. 2013;1:173–178. doi: 10.1002/adom.201200046. DOI
Ge J., Lan M., Zhou B., Liu W., Guo L., Wang H., Jia Q., Niu G., Huang X., Zhou H., et al. A Graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014;5:4596. doi: 10.1038/ncomms5596. PubMed DOI PMC
Wilkinson F., Helman W.P., Ross A.B. Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data. 1993;22:113–262. doi: 10.1063/1.555934. DOI
Chong Y., Ge C., Fang G., Tian X., Ma X., Wen T., Wamer W.G., Chen C., Chai Z., Yin J.J. Crossover between anti- and pro-oxidant activities of graphene quantum dots in the absence or presence of light. ACS Nano. 2016;10:8690–8699. doi: 10.1021/acsnano.6b04061. PubMed DOI
Pirzada T., Kanhar F.H., Munsif M., Talpur A., Chandio W.A., Jumani Z., Chandio I.A. An effective photocatalytic degradation of Rose Bengal and Eosin Y by using ZnO nanoparticles as a photocatalysts. Ann. Rom. Soc. Cell Biol. 2021;25:1473–1488.
Varghese M., Balachandran M. Antibacterial efficiency of carbon dots against gram-positive and gram-negative bacteria: A review. J. Environ. Chem. Eng. 2021;9:106821. doi: 10.1016/j.jece.2021.106821. DOI
Bianco G.V., Sacchetti A., Grande M., D’Orazio A., Milella A., Bruno G. Effective hole conductivity in nitrogen-doped CVD-graphene by singlet oxygen treatment under photoactivation conditions. Sci. Rep. 2022;12:8703. doi: 10.1038/s41598-022-12696-2. PubMed DOI PMC
Jost V. Packaging related properties of commercially available biopolymers—An overview of the status quo. eXPRESS Polym. Lett. 2018;12:429–435. doi: 10.3144/expresspolymlett.2018.36. DOI
Park H.Y., Sin D.D. Stress-induced premature senescence: Another mechanism involved in the process of accelerated aging in chronic obstructive pulmonary disease in inflammation. In: Rahman I., Bagchi D., editors. Advancing Age and Nutrition. 1st ed. Elsevier; London, UK: 2013. pp. 193–194. Chapter 16. DOI
Rieske P., Krynska B., Azizi A.S. Human fibroblast-derived cell lines have characteristics of embryonic stem cells and cells of neuro-ectodermal origin. Differentiation. 2005;73:474–483. doi: 10.1111/j.1432-0436.2005.00050.x. PubMed DOI