Activated Hepatic Stellate Cells in Hepatocellular Carcinoma: Their Role as a Potential Target for Future Therapies

. 2022 Dec 04 ; 23 (23) : . [epub] 20221204

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36499616

Grantová podpora
N°856620 the European Union's Horizon 2020 research and innovation programme
No. LX22NPO5102 grants of Ministry of Health of the Czech Republic AZV NU21-03-00506 and AZV NU21-03-00145, Cooperatio Program, research area SURG, and by the project National Institute for Cancer Research - NICR (Programme EXCELES, ID Project No. LX22NPO5102) - Funded b

Hepatocellular carcinoma (HCC) is a global healthcare challenge, which affects more than 815,000 new cases every year. Activated hepatic stellate cells (aHSCs) remain the principal cells that drive HCC onset and growth. aHSCs suppress the anti-tumor immune response through interaction with different immune cells. They also increase the deposition of the extracellular matrix proteins, challenging the reversion of fibrosis and increasing HCC growth and metastasis. Therapy for HCC was reported to activate HSCs, which could explain the low efficacy of current treatments. Conversely, recent studies aimed at the deactivation of HSCs show that they have been able to inhibit HCC growth. In this review article, we discuss the role of aHSCs in HCC pathophysiology and therapy. Finally, we provide suggestions for the experimental implementation of HSCs in HCC therapies.

Zobrazit více v PubMed

Ramani A., Tapper E.B., Griffin C., Shankar N., Parikh N.D., Asrani S.K. Hepatocellular Carcinoma-Related Mortality in the USA, 1999–2018. Am. J. Dig. Dis. 2022;67:4100–4111. doi: 10.1007/s10620-022-07433-8. PubMed DOI

Chidambaranathan-Reghupaty S., Fisher P.B., Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. 2021, 149, 1–61. Adv. Cancer Res. doi: 10.1016/bs.acr.2020.10.001. PubMed DOI PMC

Affo S., Yu L.-X., Schwabe R.F. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annu. Rev. Pathol. Mech. Dis. 2017;12:153–186. doi: 10.1146/annurev-pathol-052016-100322. PubMed DOI PMC

Zhang C.-Y., Yuan W.-G., He P., Lei J.-H., Wang C.-X. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J. Gastroenterol. 2016;22:10512–10522. doi: 10.3748/wjg.v22.i48.10512. PubMed DOI PMC

Kanel G.C., Korula J. General Aspects of the Liver and Liver Diseases. Atlas Liver Pathol. 2011:3–15. doi: 10.1016/b978-1-4377-0765-6.10001-1. DOI

Barry A., Baldeosingh R., Lamm R., Patel K., Zhang K., Dominguez D.A., Kirton K.J., Shah A.P., Dang H. Hepatic Stellate Cells and Hepatocarcinogenesis. Front. Cell Dev. Biol. 2020;8:709. doi: 10.3389/fcell.2020.00709. PubMed DOI PMC

Weiskirchen R., Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg. Nutr. 2014;3:344–363. doi: 10.3978/j.issn.2304-3881.2014.11.03. PubMed DOI PMC

Yin C., Evason K.J., Asahina K., Stainier D.Y. Hepatic stellate cells in liver development, regeneration, and cancer Find the latest version: Review series Hepatic stellate cells in liver development, regeneration, and cancer. J. Clin. Invest. 2013;123:1902–1910. doi: 10.1172/JCI66369. PubMed DOI PMC

Krizhanovsky V., Yon M., Dickins R.A., Hearn S., Simon J., Miething C., Yee H., Zender L., Lowe S.W. Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell. 2008;134:657–667. doi: 10.1016/j.cell.2008.06.049. PubMed DOI PMC

Carloni V., Luong T.V., Rombouts K. Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: More complicated than ever. Liver Int. 2014;34:834–843. doi: 10.1111/liv.12465. PubMed DOI

Mossenta M., Busato D., Dal Bo M., Macor M., Toffoli G. Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies. Int. J. Mol. Sci. 2022;23:10038. doi: 10.3390/ijms231710038. PubMed DOI PMC

Sarveazad A., Agah S., Babahajian A., Amini N., Bahardoust M. Predictors of 5 year survival rate in hepatocellular carcinoma patients. J. Res. Med Sci. Off. J. Isfahan Univ. Med. Sci. 2019;24:86. doi: 10.4103/jrms.JRMS_1017_18. PubMed DOI PMC

Hemminki K., Försti A., Hemminki O., Liska V., Hemminki A. Long-term survival trends for primary liver and pancreatic cancers in the Nordic countries. JHEP Reports. 2022;4:100602. doi: 10.1016/j.jhepr.2022.100602. PubMed DOI PMC

Ruan Q., Wang H., Burke L.J., Bridle K.R., Li X., Zhao C.-X., Crawford D.H.G., Roberts M., Liang X. Therapeutic modulators of hepatic stellate cells for hepatocellular carcinoma. Int. J. Cancer. 2020;147:1519–1527. doi: 10.1002/ijc.32899. PubMed DOI

Wu M., Miao H., Fu R., Zhang J., Zheng W. Hepatic Stellate Cell: A Potential Target for Hepatocellular Carcinoma. Curr. Mol. Pharmacol. 2020;13:261–272. doi: 10.2174/1874467213666200224102820. PubMed DOI

Zhao W., Zhang L., Yin Z., Su W., Ren G., Zhou C., You J., Fan J., Wang X. Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int. J. Cancer. 2011;129:2651–2661. doi: 10.1002/ijc.25920. PubMed DOI

Waldman A.D., Fritz J.M., Lenardo M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020;20:651–668. doi: 10.1038/s41577-020-0306-5. PubMed DOI PMC

Zheng X., Jin W., Wang S., Ding H. Progression on the Roles and Mechanisms of Tumor-Infiltrating T Lymphocytes in Patients With Hepatocellular Carcinoma. Front. Immunol. 2021;12:1480. doi: 10.3389/fimmu.2021.729705. PubMed DOI PMC

Xu Y., Huang Y., Xu W., Zheng X., Yi X., Huang L., Wang Y., Wu K. Activated Hepatic Stellate Cells (HSCs) Exert Immunosuppressive Effects in Hepatocellular Carcinoma by Producing Complement C3. OncoTargets Ther. 2020;ume 13:1497–1505. doi: 10.2147/OTT.S234920. PubMed DOI PMC

Charles R., Chou H.-S., Wang L., Fung J., Lu L., Qian S. Human Hepatic Stellate Cells Inhibit T-Cell Response Through B7-H1 Pathway. Transplantation. 2013;96:17–24. doi: 10.1097/TP.0b013e318294caae. PubMed DOI PMC

Schildberg F.A., Wojtalla A., Siegmund S.V., Endl E., Diehl L., Abdullah Z., Kurts C., Knolle P.A. Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology. 2011;54:262–272. doi: 10.1002/hep.24352. PubMed DOI

Zhao W., Su W., Kuang P., Zhang L., Liu J., Yin Z., Wang X. The role of hepatic stellate cells in the regulation of T-cell function and the promotion of hepatocellular carcinoma. Int. J. Oncol. 2012;41:457–464. doi: 10.3892/ijo.2012.1497. PubMed DOI PMC

Li X., Su Y., Hua X., Xie C., Liu J., Huang Y., Zhou L., Zhang M., Li X., Gao Z. Levels of hepatic Th17 cells and regulatory T cells upregulated by hepatic stellate cells in advanced HBV-related liver fibrosis. J. Transl. Med. 2017;15:1–11. doi: 10.1186/s12967-017-1167-y. PubMed DOI PMC

Cheng J.-N., Yuan Y.-X., Zhu B., Jia Q. Myeloid-Derived Suppressor Cells: A Multifaceted Accomplice in Tumor Progression. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/fcell.2021.740827. PubMed DOI PMC

Xu Y. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget. 2016;7:8866–8878. doi: 10.18632/oncotarget.6839. PubMed DOI PMC

Lee H.L., Jang J.W., Lee S.W., Yoo S.H., Kwon J.H., Nam S.W., Bae S.H., Choi J.Y., Han N.I., Yoon S.K. Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. Sci. Rep. 2019;9:3260. doi: 10.1038/s41598-019-40078-8. PubMed DOI PMC

Li J., Lau G.K.-K., Chen P.L., Dong S.-S., Lan H.Y., Huang X.-R., Li Y., Luk J., Yuan Y., Guan X.-Y. Interleukin 17A Promotes Hepatocellular Carcinoma Metastasis via NF-kB Induced Matrix Metalloproteinases 2 and 9 Expression. PLoS ONE. 2011;6:e21816. doi: 10.1371/journal.pone.0021816. PubMed DOI PMC

Liao R., Sun J., Wu H., Yi Y., Wang J.-X., He H.-W., Cai X.-Y., Zhou J., Cheng Y.-F., Fan J., et al. High expression of IL-17 and IL-17RE associate with poor prognosis of hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2013;32:3–11. doi: 10.1186/1756-9966-32-3. PubMed DOI PMC

Ichikawa S., Mucida D., Tyznik A.J., Kronenberg M., Cheroutre H. Hepatic Stellate Cells Function as Regulatory Bystanders. J. Immunol. 2011;186:5549–5555. doi: 10.4049/jimmunol.1003917. PubMed DOI PMC

Ricketts T.D., Prieto-Dominguez N., Gowda P.S., Ubil E. Mechanisms of Macrophage Plasticity in the Tumor Environment: Manipulating Activation State to Improve Outcomes. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.642285. PubMed DOI PMC

Braga T.T., Agudelo J.S.H., Camara N.O.S. Macrophages During the Fibrotic Process: M2 as Friend and Foe. Front. Immunol. 2015;6:602. doi: 10.3389/fimmu.2015.00602. PubMed DOI PMC

Wanderley C.W., Colón D.F., Luiz J.P.M., Oliveira F.F., Viacava P.R., Leite C.A., Pereira J.A., Silva C.M., Silva C.R., Silva R.L., et al. Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1- profile in a TLR4-dependent manner. Cancer Res. 2018;78:5891–5900. doi: 10.1158/0008-5472.CAN-17-3480. PubMed DOI

Liu G., Yin L., Ouyang X., Zeng K., Xiao Y., Li Y. M2 Macrophages Promote HCC Cells Invasion and Migration via miR-149-5p/MMP9 Signaling. J. Cancer. 2020;11:1277–1287. doi: 10.7150/jca.35444. PubMed DOI PMC

Yeung O.W., Lo C.-M., Ling C.-C., Qi X., Geng W., Li C.-X., Ng K.T., Forbes S.J., Guan X.-Y., Poon R.T., et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J. Hepatol. 2015;62:607–616. doi: 10.1016/j.jhep.2014.10.029. PubMed DOI

Xi S., Zheng X., Li X., Jiang Y., Wu Y., Gong J., Jie Y., Li Z., Cao J., Sha L., et al. Activated Hepatic Stellate Cells Induce Infiltration and Formation of CD163+ Macrophages via CCL2/CCR2 Pathway. Front. Med. 2021;8:627927. doi: 10.3389/fmed.2021.627927. PubMed DOI PMC

Wang C., Ma C., Gong L., Guo Y., Fu K., Zhang Y., Zhou H., Li Y. Macrophage Polarization and Its Role in Liver Disease. Front. Immunol. 2021;12:5381. doi: 10.3389/fimmu.2021.803037. PubMed DOI PMC

Yu M., Li Z. Natural killer cells in hepatocellular carcinoma: Current status and perspectives for future immunotherapeutic approaches. Front. Med. 2017;11:509–521. doi: 10.1007/s11684-017-0546-3. PubMed DOI

Mossanen J.C., Tacke F. Role of lymphocytes in liver cancer. OncoImmunology. 2013;2:e26468. doi: 10.4161/onci.26468. PubMed DOI PMC

Glässner A., Eisenhardt M., Krämer B., Körner C., Coenen M., Sauerbruch T., Spengler U., Nattermann J. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab. Investig. 2012;92:967–977. doi: 10.1038/labinvest.2012.54. PubMed DOI

Radaeva S., Sun R., Jaruga B., Nguyen V.T., Tian Z., Gao B. Natural Killer Cells Ameliorate Liver Fibrosis by Killing Activated Stellate Cells in NKG2D-Dependent and Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Dependent Manners. Gastroenterology. 2006;130:435–452. doi: 10.1053/j.gastro.2005.10.055. PubMed DOI

Xia T.-H. Tumor-specific hepatic stellate cells (tHSCs) induces DIgR2 expression in dendritic cells to inhibit T cells. [(accessed on 15 August 2017)];Oncotarget. 2017 8:55084–55093. doi: 10.18632/oncotarget.19027. Available online: www.impactjournals.com/oncotarget/ PubMed DOI PMC

HCC Monitor New evidence supports a key role of the immune system in HCC, HCC monitor. [(accessed on 15 August 2017)];Target. Oncol. 2016 2:3. Available online: https://www.targetedonc.com.

Zois C.D., Baltayiannis G.H., Karayiannis P., Tsianos E.V. Systematic review: Hepatic fibrosis-regression with therapy. Aliment. Pharmacol. Ther. 2008;28:1175–1187. doi: 10.1111/j.1365-2036.2008.03840.x. PubMed DOI

Arriazu E., de Galarreta M.R., Cubero F.J., Varela-Rey M., de Obanos M.P.P., Leung T.M., Lopategi A., Benedicto A., Abraham-Enachescu I., Nieto N. Extracellular Matrix and Liver Disease. Antioxidants Redox Signal. 2014;21:1078–1097. doi: 10.1089/ars.2013.5697. PubMed DOI PMC

Jung Y.K., Yim H.J. Reversal of liver cirrhosis: Current evidence and expectations. Korean J. Intern. Med. 2017;32:213–228. doi: 10.3904/kjim.2016.268. PubMed DOI PMC

Sun M., Kisseleva Y. Clinics and Research in Hepatology and Gastroenterology. Elsevier Masson SAS; Amsterdam, The Netherlands: 2015. Reversibility of liver fibrosis; pp. S60–S63. PubMed DOI PMC

Kisseleva T., Brenner D. Hepatic stellate cells and the reversal of fibrosis. J. Gastroenterol. Hepatol. 2006;21:S84–S87. doi: 10.1111/j.1440-1746.2006.04584.x. PubMed DOI

Arthur M.J., Mann D.A., Iredale J.P. Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis. J. Gastroenterol. Hepatol. 1998;13:S33–S38. doi: 10.1111/jgh.1998.13.s1.33. PubMed DOI

Zhang Y., Li Y., Mu T., Tong N., Cheng P. Hepatic stellate cells specific liposomes with the Toll-like receptor 4 shRNA attenuates liver fibrosis. J. Cell. Mol. Med. 2021;25:1299–1313. doi: 10.1111/jcmm.16209. PubMed DOI PMC

Arab J.P., Cabrera D., Sehrawat T.S., Jalan-Sakrikar N., Verma V.K., Simonetto D., Cao S., Yaqoob U., Leon J., Freire M., et al. Hepatic stellate cell activation promotes alcohol-induced steatohepatitis through Igfbp3 and SerpinA12. J. Hepatol. 2020;73:149–160. doi: 10.1016/j.jhep.2020.02.005. PubMed DOI PMC

Hartland S.N., Murphy F., Aucott R.L., Abergel A., Zhou X., Waung J., Patel N., Bradshaw C., Collins J., Mann D., et al. Active matrix metalloproteinase-2 promotes apoptosis of hepatic stellate cells via the cleavage of cellular N-cadherin. Liver Int. 2009;29:966–978. doi: 10.1111/j.1478-3231.2009.02070.x. PubMed DOI

Zheng X., Liu W., Xiang J., Liu P., Ke M., Wang B., Lv Y. Collagen I promotes hepatocellular carcinoma cell proliferation by regulating integrin β1/FAK signaling pathway in nonalcoholic fatty liver. [(accessed on 10 November 2017)];Oncotarget. 2017 8:95586–95595. Available online: www.impactjournals.com/oncotarget. PubMed PMC

Zhang R., Ma M., Lin X.-H., Liu H.-H., Chen J., Chen J., Gao D.-M., Cui J.-F., Ren Z.-G., Chen R.-X. Extracellular matrix collagen I promotes the tumor progression of residual hepatocellular carcinoma after heat treatment. BMC Cancer. 2018;18:901. doi: 10.1186/s12885-018-4820-9. PubMed DOI PMC

Ma H.-P., Chang H.-L., Bamodu O.A., Yadav V.K., Huang T.-Y., Wu A.T.H., Yeh C.-T., Tsai S.-H., Lee W.-H. Collagen 1A1 (COL1A1) Is a Reliable Biomarker and Putative Therapeutic Target for Hepatocellular Carcinogenesis and Metastasis. Cancers. 2019;11:786. doi: 10.3390/cancers11060786. PubMed DOI PMC

Yu F., Lin Z., Zheng J., Gao S., Lu Z., Dong P. Suppression of collagen synthesis by Dicer gene silencing in hepatic stellate cells. Mol. Med. Rep. 2014;9:707–714. doi: 10.3892/mmr.2013.1866. PubMed DOI

Giannelli G., Azzariti A., Fransvea E., Porcelli L., Antonaci S., Paradiso A. Laminin-5 offsets the efficacy of gefitinib (‘Iressa’) in hepatocellular carcinoma cells. Br. J. Cancer. 2004;91:1964–1969. doi: 10.1038/sj.bjc.6602231. PubMed DOI PMC

Azzariti A., Mancarella S., Porcelli L., Quatrale A.E., Caligiuri A., Lupo L., Giannelli G. Hepatic Stellate Cells Induce Hepatocellular Carcinoma Cell Resistance to Sorafenib Through the Laminin-332/a3 Integrin Axis Recovery of Focal Adhesion Kinase Ubiquitination. Hepatology. 2016;64:2103–2117. doi: 10.1002/hep.28835. PubMed DOI

Santamato A., Fransvea E., Dituri F., Caligiuri A., Quaranta M., Niimi T., Pinzani M., Antonaci S., Giannelli G. Hepatic stellate cells stimulate HCC cell migration via laminin-5 production. Clin. Sci. 2011;121:159–168. doi: 10.1042/CS20110002. PubMed DOI

Wu X.Z., Chen D., Xie G.R. Extracellular matrix remodeling in hepatocellular carcinoma: Effects of soil on seed? Med. Hypotheses. 2006;66:1115–1120. doi: 10.1016/j.mehy.2005.12.043. PubMed DOI

Qu K., Yan Z., Wu Y., Chen Y., Qu P., Xu X., Yuan P., Huang X., Xing J., Zhang H., et al. Transarterial chemoembolization aggravated peritumoral fibrosis via hypoxia-inducible factor-1α dependent pathway in hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2015;30:925–932. doi: 10.1111/jgh.12873. PubMed DOI

Wang Y., Xiong B., Liang B., Zhao H., Li H., Qian J., Liang H.-M., Feng G.-S., Zheng C.-S. Hepatic Parenchymal Changes following Transcatheter Embolization and Chemoembolization in a Rabbit Tumor Model. PLoS ONE. 2013;8:e70757. doi: 10.1371/journal.pone.0070757. PubMed DOI PMC

Das D., Fayazzadeh E., Li X., Koirala N., Wadera A., Lang M., Zernic M., Panick C., Nesbitt P., McLennan G. Quiescent hepatic stellate cells induce toxicity and sensitivity to doxorubicin in cancer cells through a caspase-independent cell death pathway: Central role of apoptosis-inducing factor. J. Cell. Physiol. 2020;235:6167–6182. doi: 10.1002/jcp.29545. PubMed DOI

Sung Y.-C., Liu Y.-C., Chao P.-H., Chang C.-C., Jin P.-R., Lin T.-T., Lin J.-A., Cheng H.-T., Wang J., Lai C.P., et al. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics. 2018;8:894–905. doi: 10.7150/thno.21168. PubMed DOI PMC

Chen W., Wu J., Shi H., Wang Z., Zhang G., Cao Y., Jiang C., Ding Y. Hepatic Stellate Cell Coculture Enables Sorafenib Resistance in Huh7 Cells through HGF/c-Met/Akt and Jak2/Stat3 Pathways. BioMed Res. Int. 2014;2014:1–10. doi: 10.1155/2014/764981. PubMed DOI PMC

Barker H.E., Paget J.T.E., Khan A., Harrington K. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer. 2015;15:409–425. doi: 10.1038/nrc3958. PubMed DOI PMC

Sempoux C., Horsmans Y., Geubel A., Fraikin J., Van Beers B.E., Gigot J., Rahier J. Severe radiation-induced liver disease following localized radiation therapy for biliopancreatic carcinoma: Activation of hepatic stellate cells as an early event. Hepatology. 1997;26:128–134. doi: 10.1002/hep.510260117. PubMed DOI

Shen X., Zhao J., Wang Q., Chen P., Hong Y., He X., Chen D., Liu H., Wang Y., Cai X. The Invasive Potential of Hepatoma Cells Induced by Radiotherapy is Related to the Activation of Stellate Cells and Could be Inhibited by EGCG Through the TLR4 Signaling Pathway. Radiat. Res. 2022;197:365–375. doi: 10.1667/RADE-21-00129.1. PubMed DOI

Kang T.W., Lim H.K., Cha D.I. Aggressive tumor recurrence after radiofrequency ablation for hepatocellular carcinoma. Clin. Mol. Hepatol. 2017;23:95–101. doi: 10.3350/cmh.2017.0006. PubMed DOI PMC

Rozenblum N., Zeira E., Bulvik B., Gourevitch S., Yotvat H., Galun E., Goldberg S.N. Radiofrequency Ablation: Inflammatory Changes in the Periablative Zone Can Induce Global Organ Effects, including Liver Regeneration. Radiology. 2015;276:416–425. doi: 10.1148/radiol.15141918. PubMed DOI

Cheng R., Xu H., Hong Y. miR221 Regulates TGF-β1-induced HSC activation through Inhibiting Autophagy by directly targeting LAMP2. Mol Med Rep. 2021;24:5. doi: 10.3892/mmr.2021.12417. PubMed DOI PMC

Kelley R.K., Gane E., Assenat E., Siebler J., Galle P.R., Merle P., Hourmand I.O., Cleverly A., Zhao Y., Gueorguieva I., et al. A Phase 2 Study of Galunisertib (TGF-β1 Receptor Type I Inhibitor) and Sorafenib in Patients With Advanced Hepatocellular Carcinoma. Clin. Transl. Gastroenterol. 2019;10:e00056. doi: 10.14309/ctg.0000000000000056. PubMed DOI PMC

El-Mezayen N.S., El-Hadidy W.F., El-Refaie W.M., Shalaby T., Khattab M.M., El-Khatib A.S. Hepatic stellate cell-targeted imatinib nanomedicine versus conventional imatinib: A novel strategy with potent efficacy in experimental liver fibrosis. J. Control. Release. 2017;266:226–237. doi: 10.1016/j.jconrel.2017.09.035. PubMed DOI

Li Z., Wang F., Li Y., Wang X., Lu Q., Wang D., Qi C., Li C., Li Z., Lian B., et al. Combined anti-hepatocellular carcinoma therapy inhibit drug-resistance and metastasis via targeting “substance P-hepatic stellate cells-hepatocellular carcinoma” axis. Biomaterials. 2021;276:121003. doi: 10.1016/j.biomaterials.2021.121003. PubMed DOI

Sun L., Wang Y., Wang X., Navarro-Corcuera A., Ilyas S., Jalan-Sakrikar N., Gan C., Tu X., Shi Y., Tu K., et al. PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II. Cell Rep. 2022;38:110349. doi: 10.1016/j.celrep.2022.110349. PubMed DOI PMC

Yau T., Hsu C., Kim T.-Y., Choo S.-P., Kang Y.-K., Hou M.-M., Numata K., Yeo W., Chopra A., Ikeda M., et al. Nivolumab in advanced hepatocellular carcinoma: Sorafenib-experienced Asian cohort analysis. J. Hepatol. 2019;71:543–552. doi: 10.1016/j.jhep.2019.05.014. PubMed DOI

Zisser A., Ipsen D., Tveden-Nyborg P. Hepatic Stellate Cell Activation and Inactivation in NASH-Fibrosis—Roles as Putative Treatment Targets? Biomedicines. 2021;9:365. doi: 10.3390/biomedicines9040365. PubMed DOI PMC

Filliol A., Saito Y., Nair A., Dapito D.H., Yu L.-X., Ravichandra A., Bhattacharjee S., Affo S., Fujiwara N., Su H., et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature. 2022;610:356–365. doi: 10.1038/s41586-022-05289-6. PubMed DOI PMC

Kisseleva T., Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021;18:151–166. doi: 10.1038/s41575-020-00372-7. PubMed DOI

Chen Z., Jain A., Liu H., Zhao Z., Cheng K. Targeted Drug Delivery to Hepatic Stellate Cells for the Treatment of Liver Fibrosis. J. Pharmacol. Exp. Ther. 2019;370:695–702. doi: 10.1124/jpet.118.256156. PubMed DOI PMC

Zabielska-Koczywąs K., Lechowski R. The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules. 2017;22:2167. doi: 10.3390/molecules22122167. PubMed DOI PMC

Luo J., Zhang P., Zhao T., Jia M., Yin P., Li W., Zhang Z.-R., Fu Y., Gong T. Golgi Apparatus-Targeted Chondroitin-Modified Nanomicelles Suppress Hepatic Stellate Cell Activation for the Management of Liver Fibrosis. ACS Nano. 2019;13:3910–3923. doi: 10.1021/acsnano.8b06924. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...