Activated Hepatic Stellate Cells in Hepatocellular Carcinoma: Their Role as a Potential Target for Future Therapies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
N°856620
the European Union's Horizon 2020 research and innovation programme
No. LX22NPO5102
grants of Ministry of Health of the Czech Republic AZV NU21-03-00506 and AZV NU21-03-00145, Cooperatio Program, research area SURG, and by the project National Institute for Cancer Research - NICR (Programme EXCELES, ID Project No. LX22NPO5102) - Funded b
PubMed
36499616
PubMed Central
PMC9741299
DOI
10.3390/ijms232315292
PII: ijms232315292
Knihovny.cz E-zdroje
- Klíčová slova
- fibrosis regression, hepatic stellate cells, hepatocellular carcinoma, therapeutic studies,
- MeSH
- hepatocelulární karcinom * metabolismus MeSH
- jaterní hvězdicovité buňky metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory jater * metabolismus MeSH
- pohyb buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Hepatocellular carcinoma (HCC) is a global healthcare challenge, which affects more than 815,000 new cases every year. Activated hepatic stellate cells (aHSCs) remain the principal cells that drive HCC onset and growth. aHSCs suppress the anti-tumor immune response through interaction with different immune cells. They also increase the deposition of the extracellular matrix proteins, challenging the reversion of fibrosis and increasing HCC growth and metastasis. Therapy for HCC was reported to activate HSCs, which could explain the low efficacy of current treatments. Conversely, recent studies aimed at the deactivation of HSCs show that they have been able to inhibit HCC growth. In this review article, we discuss the role of aHSCs in HCC pathophysiology and therapy. Finally, we provide suggestions for the experimental implementation of HSCs in HCC therapies.
Zobrazit více v PubMed
Ramani A., Tapper E.B., Griffin C., Shankar N., Parikh N.D., Asrani S.K. Hepatocellular Carcinoma-Related Mortality in the USA, 1999–2018. Am. J. Dig. Dis. 2022;67:4100–4111. doi: 10.1007/s10620-022-07433-8. PubMed DOI
Chidambaranathan-Reghupaty S., Fisher P.B., Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. 2021, 149, 1–61. Adv. Cancer Res. doi: 10.1016/bs.acr.2020.10.001. PubMed DOI PMC
Affo S., Yu L.-X., Schwabe R.F. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annu. Rev. Pathol. Mech. Dis. 2017;12:153–186. doi: 10.1146/annurev-pathol-052016-100322. PubMed DOI PMC
Zhang C.-Y., Yuan W.-G., He P., Lei J.-H., Wang C.-X. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J. Gastroenterol. 2016;22:10512–10522. doi: 10.3748/wjg.v22.i48.10512. PubMed DOI PMC
Kanel G.C., Korula J. General Aspects of the Liver and Liver Diseases. Atlas Liver Pathol. 2011:3–15. doi: 10.1016/b978-1-4377-0765-6.10001-1. DOI
Barry A., Baldeosingh R., Lamm R., Patel K., Zhang K., Dominguez D.A., Kirton K.J., Shah A.P., Dang H. Hepatic Stellate Cells and Hepatocarcinogenesis. Front. Cell Dev. Biol. 2020;8:709. doi: 10.3389/fcell.2020.00709. PubMed DOI PMC
Weiskirchen R., Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg. Nutr. 2014;3:344–363. doi: 10.3978/j.issn.2304-3881.2014.11.03. PubMed DOI PMC
Yin C., Evason K.J., Asahina K., Stainier D.Y. Hepatic stellate cells in liver development, regeneration, and cancer Find the latest version: Review series Hepatic stellate cells in liver development, regeneration, and cancer. J. Clin. Invest. 2013;123:1902–1910. doi: 10.1172/JCI66369. PubMed DOI PMC
Krizhanovsky V., Yon M., Dickins R.A., Hearn S., Simon J., Miething C., Yee H., Zender L., Lowe S.W. Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell. 2008;134:657–667. doi: 10.1016/j.cell.2008.06.049. PubMed DOI PMC
Carloni V., Luong T.V., Rombouts K. Hepatic stellate cells and extracellular matrix in hepatocellular carcinoma: More complicated than ever. Liver Int. 2014;34:834–843. doi: 10.1111/liv.12465. PubMed DOI
Mossenta M., Busato D., Dal Bo M., Macor M., Toffoli G. Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies. Int. J. Mol. Sci. 2022;23:10038. doi: 10.3390/ijms231710038. PubMed DOI PMC
Sarveazad A., Agah S., Babahajian A., Amini N., Bahardoust M. Predictors of 5 year survival rate in hepatocellular carcinoma patients. J. Res. Med Sci. Off. J. Isfahan Univ. Med. Sci. 2019;24:86. doi: 10.4103/jrms.JRMS_1017_18. PubMed DOI PMC
Hemminki K., Försti A., Hemminki O., Liska V., Hemminki A. Long-term survival trends for primary liver and pancreatic cancers in the Nordic countries. JHEP Reports. 2022;4:100602. doi: 10.1016/j.jhepr.2022.100602. PubMed DOI PMC
Ruan Q., Wang H., Burke L.J., Bridle K.R., Li X., Zhao C.-X., Crawford D.H.G., Roberts M., Liang X. Therapeutic modulators of hepatic stellate cells for hepatocellular carcinoma. Int. J. Cancer. 2020;147:1519–1527. doi: 10.1002/ijc.32899. PubMed DOI
Wu M., Miao H., Fu R., Zhang J., Zheng W. Hepatic Stellate Cell: A Potential Target for Hepatocellular Carcinoma. Curr. Mol. Pharmacol. 2020;13:261–272. doi: 10.2174/1874467213666200224102820. PubMed DOI
Zhao W., Zhang L., Yin Z., Su W., Ren G., Zhou C., You J., Fan J., Wang X. Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int. J. Cancer. 2011;129:2651–2661. doi: 10.1002/ijc.25920. PubMed DOI
Waldman A.D., Fritz J.M., Lenardo M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020;20:651–668. doi: 10.1038/s41577-020-0306-5. PubMed DOI PMC
Zheng X., Jin W., Wang S., Ding H. Progression on the Roles and Mechanisms of Tumor-Infiltrating T Lymphocytes in Patients With Hepatocellular Carcinoma. Front. Immunol. 2021;12:1480. doi: 10.3389/fimmu.2021.729705. PubMed DOI PMC
Xu Y., Huang Y., Xu W., Zheng X., Yi X., Huang L., Wang Y., Wu K. Activated Hepatic Stellate Cells (HSCs) Exert Immunosuppressive Effects in Hepatocellular Carcinoma by Producing Complement C3. OncoTargets Ther. 2020;ume 13:1497–1505. doi: 10.2147/OTT.S234920. PubMed DOI PMC
Charles R., Chou H.-S., Wang L., Fung J., Lu L., Qian S. Human Hepatic Stellate Cells Inhibit T-Cell Response Through B7-H1 Pathway. Transplantation. 2013;96:17–24. doi: 10.1097/TP.0b013e318294caae. PubMed DOI PMC
Schildberg F.A., Wojtalla A., Siegmund S.V., Endl E., Diehl L., Abdullah Z., Kurts C., Knolle P.A. Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology. 2011;54:262–272. doi: 10.1002/hep.24352. PubMed DOI
Zhao W., Su W., Kuang P., Zhang L., Liu J., Yin Z., Wang X. The role of hepatic stellate cells in the regulation of T-cell function and the promotion of hepatocellular carcinoma. Int. J. Oncol. 2012;41:457–464. doi: 10.3892/ijo.2012.1497. PubMed DOI PMC
Li X., Su Y., Hua X., Xie C., Liu J., Huang Y., Zhou L., Zhang M., Li X., Gao Z. Levels of hepatic Th17 cells and regulatory T cells upregulated by hepatic stellate cells in advanced HBV-related liver fibrosis. J. Transl. Med. 2017;15:1–11. doi: 10.1186/s12967-017-1167-y. PubMed DOI PMC
Cheng J.-N., Yuan Y.-X., Zhu B., Jia Q. Myeloid-Derived Suppressor Cells: A Multifaceted Accomplice in Tumor Progression. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/fcell.2021.740827. PubMed DOI PMC
Xu Y. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget. 2016;7:8866–8878. doi: 10.18632/oncotarget.6839. PubMed DOI PMC
Lee H.L., Jang J.W., Lee S.W., Yoo S.H., Kwon J.H., Nam S.W., Bae S.H., Choi J.Y., Han N.I., Yoon S.K. Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. Sci. Rep. 2019;9:3260. doi: 10.1038/s41598-019-40078-8. PubMed DOI PMC
Li J., Lau G.K.-K., Chen P.L., Dong S.-S., Lan H.Y., Huang X.-R., Li Y., Luk J., Yuan Y., Guan X.-Y. Interleukin 17A Promotes Hepatocellular Carcinoma Metastasis via NF-kB Induced Matrix Metalloproteinases 2 and 9 Expression. PLoS ONE. 2011;6:e21816. doi: 10.1371/journal.pone.0021816. PubMed DOI PMC
Liao R., Sun J., Wu H., Yi Y., Wang J.-X., He H.-W., Cai X.-Y., Zhou J., Cheng Y.-F., Fan J., et al. High expression of IL-17 and IL-17RE associate with poor prognosis of hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2013;32:3–11. doi: 10.1186/1756-9966-32-3. PubMed DOI PMC
Ichikawa S., Mucida D., Tyznik A.J., Kronenberg M., Cheroutre H. Hepatic Stellate Cells Function as Regulatory Bystanders. J. Immunol. 2011;186:5549–5555. doi: 10.4049/jimmunol.1003917. PubMed DOI PMC
Ricketts T.D., Prieto-Dominguez N., Gowda P.S., Ubil E. Mechanisms of Macrophage Plasticity in the Tumor Environment: Manipulating Activation State to Improve Outcomes. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.642285. PubMed DOI PMC
Braga T.T., Agudelo J.S.H., Camara N.O.S. Macrophages During the Fibrotic Process: M2 as Friend and Foe. Front. Immunol. 2015;6:602. doi: 10.3389/fimmu.2015.00602. PubMed DOI PMC
Wanderley C.W., Colón D.F., Luiz J.P.M., Oliveira F.F., Viacava P.R., Leite C.A., Pereira J.A., Silva C.M., Silva C.R., Silva R.L., et al. Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1- profile in a TLR4-dependent manner. Cancer Res. 2018;78:5891–5900. doi: 10.1158/0008-5472.CAN-17-3480. PubMed DOI
Liu G., Yin L., Ouyang X., Zeng K., Xiao Y., Li Y. M2 Macrophages Promote HCC Cells Invasion and Migration via miR-149-5p/MMP9 Signaling. J. Cancer. 2020;11:1277–1287. doi: 10.7150/jca.35444. PubMed DOI PMC
Yeung O.W., Lo C.-M., Ling C.-C., Qi X., Geng W., Li C.-X., Ng K.T., Forbes S.J., Guan X.-Y., Poon R.T., et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J. Hepatol. 2015;62:607–616. doi: 10.1016/j.jhep.2014.10.029. PubMed DOI
Xi S., Zheng X., Li X., Jiang Y., Wu Y., Gong J., Jie Y., Li Z., Cao J., Sha L., et al. Activated Hepatic Stellate Cells Induce Infiltration and Formation of CD163+ Macrophages via CCL2/CCR2 Pathway. Front. Med. 2021;8:627927. doi: 10.3389/fmed.2021.627927. PubMed DOI PMC
Wang C., Ma C., Gong L., Guo Y., Fu K., Zhang Y., Zhou H., Li Y. Macrophage Polarization and Its Role in Liver Disease. Front. Immunol. 2021;12:5381. doi: 10.3389/fimmu.2021.803037. PubMed DOI PMC
Yu M., Li Z. Natural killer cells in hepatocellular carcinoma: Current status and perspectives for future immunotherapeutic approaches. Front. Med. 2017;11:509–521. doi: 10.1007/s11684-017-0546-3. PubMed DOI
Mossanen J.C., Tacke F. Role of lymphocytes in liver cancer. OncoImmunology. 2013;2:e26468. doi: 10.4161/onci.26468. PubMed DOI PMC
Glässner A., Eisenhardt M., Krämer B., Körner C., Coenen M., Sauerbruch T., Spengler U., Nattermann J. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab. Investig. 2012;92:967–977. doi: 10.1038/labinvest.2012.54. PubMed DOI
Radaeva S., Sun R., Jaruga B., Nguyen V.T., Tian Z., Gao B. Natural Killer Cells Ameliorate Liver Fibrosis by Killing Activated Stellate Cells in NKG2D-Dependent and Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand–Dependent Manners. Gastroenterology. 2006;130:435–452. doi: 10.1053/j.gastro.2005.10.055. PubMed DOI
Xia T.-H. Tumor-specific hepatic stellate cells (tHSCs) induces DIgR2 expression in dendritic cells to inhibit T cells. [(accessed on 15 August 2017)];Oncotarget. 2017 8:55084–55093. doi: 10.18632/oncotarget.19027. Available online: www.impactjournals.com/oncotarget/ PubMed DOI PMC
HCC Monitor New evidence supports a key role of the immune system in HCC, HCC monitor. [(accessed on 15 August 2017)];Target. Oncol. 2016 2:3. Available online: https://www.targetedonc.com.
Zois C.D., Baltayiannis G.H., Karayiannis P., Tsianos E.V. Systematic review: Hepatic fibrosis-regression with therapy. Aliment. Pharmacol. Ther. 2008;28:1175–1187. doi: 10.1111/j.1365-2036.2008.03840.x. PubMed DOI
Arriazu E., de Galarreta M.R., Cubero F.J., Varela-Rey M., de Obanos M.P.P., Leung T.M., Lopategi A., Benedicto A., Abraham-Enachescu I., Nieto N. Extracellular Matrix and Liver Disease. Antioxidants Redox Signal. 2014;21:1078–1097. doi: 10.1089/ars.2013.5697. PubMed DOI PMC
Jung Y.K., Yim H.J. Reversal of liver cirrhosis: Current evidence and expectations. Korean J. Intern. Med. 2017;32:213–228. doi: 10.3904/kjim.2016.268. PubMed DOI PMC
Sun M., Kisseleva Y. Clinics and Research in Hepatology and Gastroenterology. Elsevier Masson SAS; Amsterdam, The Netherlands: 2015. Reversibility of liver fibrosis; pp. S60–S63. PubMed DOI PMC
Kisseleva T., Brenner D. Hepatic stellate cells and the reversal of fibrosis. J. Gastroenterol. Hepatol. 2006;21:S84–S87. doi: 10.1111/j.1440-1746.2006.04584.x. PubMed DOI
Arthur M.J., Mann D.A., Iredale J.P. Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis. J. Gastroenterol. Hepatol. 1998;13:S33–S38. doi: 10.1111/jgh.1998.13.s1.33. PubMed DOI
Zhang Y., Li Y., Mu T., Tong N., Cheng P. Hepatic stellate cells specific liposomes with the Toll-like receptor 4 shRNA attenuates liver fibrosis. J. Cell. Mol. Med. 2021;25:1299–1313. doi: 10.1111/jcmm.16209. PubMed DOI PMC
Arab J.P., Cabrera D., Sehrawat T.S., Jalan-Sakrikar N., Verma V.K., Simonetto D., Cao S., Yaqoob U., Leon J., Freire M., et al. Hepatic stellate cell activation promotes alcohol-induced steatohepatitis through Igfbp3 and SerpinA12. J. Hepatol. 2020;73:149–160. doi: 10.1016/j.jhep.2020.02.005. PubMed DOI PMC
Hartland S.N., Murphy F., Aucott R.L., Abergel A., Zhou X., Waung J., Patel N., Bradshaw C., Collins J., Mann D., et al. Active matrix metalloproteinase-2 promotes apoptosis of hepatic stellate cells via the cleavage of cellular N-cadherin. Liver Int. 2009;29:966–978. doi: 10.1111/j.1478-3231.2009.02070.x. PubMed DOI
Zheng X., Liu W., Xiang J., Liu P., Ke M., Wang B., Lv Y. Collagen I promotes hepatocellular carcinoma cell proliferation by regulating integrin β1/FAK signaling pathway in nonalcoholic fatty liver. [(accessed on 10 November 2017)];Oncotarget. 2017 8:95586–95595. Available online: www.impactjournals.com/oncotarget. PubMed PMC
Zhang R., Ma M., Lin X.-H., Liu H.-H., Chen J., Chen J., Gao D.-M., Cui J.-F., Ren Z.-G., Chen R.-X. Extracellular matrix collagen I promotes the tumor progression of residual hepatocellular carcinoma after heat treatment. BMC Cancer. 2018;18:901. doi: 10.1186/s12885-018-4820-9. PubMed DOI PMC
Ma H.-P., Chang H.-L., Bamodu O.A., Yadav V.K., Huang T.-Y., Wu A.T.H., Yeh C.-T., Tsai S.-H., Lee W.-H. Collagen 1A1 (COL1A1) Is a Reliable Biomarker and Putative Therapeutic Target for Hepatocellular Carcinogenesis and Metastasis. Cancers. 2019;11:786. doi: 10.3390/cancers11060786. PubMed DOI PMC
Yu F., Lin Z., Zheng J., Gao S., Lu Z., Dong P. Suppression of collagen synthesis by Dicer gene silencing in hepatic stellate cells. Mol. Med. Rep. 2014;9:707–714. doi: 10.3892/mmr.2013.1866. PubMed DOI
Giannelli G., Azzariti A., Fransvea E., Porcelli L., Antonaci S., Paradiso A. Laminin-5 offsets the efficacy of gefitinib (‘Iressa’) in hepatocellular carcinoma cells. Br. J. Cancer. 2004;91:1964–1969. doi: 10.1038/sj.bjc.6602231. PubMed DOI PMC
Azzariti A., Mancarella S., Porcelli L., Quatrale A.E., Caligiuri A., Lupo L., Giannelli G. Hepatic Stellate Cells Induce Hepatocellular Carcinoma Cell Resistance to Sorafenib Through the Laminin-332/a3 Integrin Axis Recovery of Focal Adhesion Kinase Ubiquitination. Hepatology. 2016;64:2103–2117. doi: 10.1002/hep.28835. PubMed DOI
Santamato A., Fransvea E., Dituri F., Caligiuri A., Quaranta M., Niimi T., Pinzani M., Antonaci S., Giannelli G. Hepatic stellate cells stimulate HCC cell migration via laminin-5 production. Clin. Sci. 2011;121:159–168. doi: 10.1042/CS20110002. PubMed DOI
Wu X.Z., Chen D., Xie G.R. Extracellular matrix remodeling in hepatocellular carcinoma: Effects of soil on seed? Med. Hypotheses. 2006;66:1115–1120. doi: 10.1016/j.mehy.2005.12.043. PubMed DOI
Qu K., Yan Z., Wu Y., Chen Y., Qu P., Xu X., Yuan P., Huang X., Xing J., Zhang H., et al. Transarterial chemoembolization aggravated peritumoral fibrosis via hypoxia-inducible factor-1α dependent pathway in hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2015;30:925–932. doi: 10.1111/jgh.12873. PubMed DOI
Wang Y., Xiong B., Liang B., Zhao H., Li H., Qian J., Liang H.-M., Feng G.-S., Zheng C.-S. Hepatic Parenchymal Changes following Transcatheter Embolization and Chemoembolization in a Rabbit Tumor Model. PLoS ONE. 2013;8:e70757. doi: 10.1371/journal.pone.0070757. PubMed DOI PMC
Das D., Fayazzadeh E., Li X., Koirala N., Wadera A., Lang M., Zernic M., Panick C., Nesbitt P., McLennan G. Quiescent hepatic stellate cells induce toxicity and sensitivity to doxorubicin in cancer cells through a caspase-independent cell death pathway: Central role of apoptosis-inducing factor. J. Cell. Physiol. 2020;235:6167–6182. doi: 10.1002/jcp.29545. PubMed DOI
Sung Y.-C., Liu Y.-C., Chao P.-H., Chang C.-C., Jin P.-R., Lin T.-T., Lin J.-A., Cheng H.-T., Wang J., Lai C.P., et al. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics. 2018;8:894–905. doi: 10.7150/thno.21168. PubMed DOI PMC
Chen W., Wu J., Shi H., Wang Z., Zhang G., Cao Y., Jiang C., Ding Y. Hepatic Stellate Cell Coculture Enables Sorafenib Resistance in Huh7 Cells through HGF/c-Met/Akt and Jak2/Stat3 Pathways. BioMed Res. Int. 2014;2014:1–10. doi: 10.1155/2014/764981. PubMed DOI PMC
Barker H.E., Paget J.T.E., Khan A., Harrington K. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer. 2015;15:409–425. doi: 10.1038/nrc3958. PubMed DOI PMC
Sempoux C., Horsmans Y., Geubel A., Fraikin J., Van Beers B.E., Gigot J., Rahier J. Severe radiation-induced liver disease following localized radiation therapy for biliopancreatic carcinoma: Activation of hepatic stellate cells as an early event. Hepatology. 1997;26:128–134. doi: 10.1002/hep.510260117. PubMed DOI
Shen X., Zhao J., Wang Q., Chen P., Hong Y., He X., Chen D., Liu H., Wang Y., Cai X. The Invasive Potential of Hepatoma Cells Induced by Radiotherapy is Related to the Activation of Stellate Cells and Could be Inhibited by EGCG Through the TLR4 Signaling Pathway. Radiat. Res. 2022;197:365–375. doi: 10.1667/RADE-21-00129.1. PubMed DOI
Kang T.W., Lim H.K., Cha D.I. Aggressive tumor recurrence after radiofrequency ablation for hepatocellular carcinoma. Clin. Mol. Hepatol. 2017;23:95–101. doi: 10.3350/cmh.2017.0006. PubMed DOI PMC
Rozenblum N., Zeira E., Bulvik B., Gourevitch S., Yotvat H., Galun E., Goldberg S.N. Radiofrequency Ablation: Inflammatory Changes in the Periablative Zone Can Induce Global Organ Effects, including Liver Regeneration. Radiology. 2015;276:416–425. doi: 10.1148/radiol.15141918. PubMed DOI
Cheng R., Xu H., Hong Y. miR221 Regulates TGF-β1-induced HSC activation through Inhibiting Autophagy by directly targeting LAMP2. Mol Med Rep. 2021;24:5. doi: 10.3892/mmr.2021.12417. PubMed DOI PMC
Kelley R.K., Gane E., Assenat E., Siebler J., Galle P.R., Merle P., Hourmand I.O., Cleverly A., Zhao Y., Gueorguieva I., et al. A Phase 2 Study of Galunisertib (TGF-β1 Receptor Type I Inhibitor) and Sorafenib in Patients With Advanced Hepatocellular Carcinoma. Clin. Transl. Gastroenterol. 2019;10:e00056. doi: 10.14309/ctg.0000000000000056. PubMed DOI PMC
El-Mezayen N.S., El-Hadidy W.F., El-Refaie W.M., Shalaby T., Khattab M.M., El-Khatib A.S. Hepatic stellate cell-targeted imatinib nanomedicine versus conventional imatinib: A novel strategy with potent efficacy in experimental liver fibrosis. J. Control. Release. 2017;266:226–237. doi: 10.1016/j.jconrel.2017.09.035. PubMed DOI
Li Z., Wang F., Li Y., Wang X., Lu Q., Wang D., Qi C., Li C., Li Z., Lian B., et al. Combined anti-hepatocellular carcinoma therapy inhibit drug-resistance and metastasis via targeting “substance P-hepatic stellate cells-hepatocellular carcinoma” axis. Biomaterials. 2021;276:121003. doi: 10.1016/j.biomaterials.2021.121003. PubMed DOI
Sun L., Wang Y., Wang X., Navarro-Corcuera A., Ilyas S., Jalan-Sakrikar N., Gan C., Tu X., Shi Y., Tu K., et al. PD-L1 promotes myofibroblastic activation of hepatic stellate cells by distinct mechanisms selective for TGF-β receptor I versus II. Cell Rep. 2022;38:110349. doi: 10.1016/j.celrep.2022.110349. PubMed DOI PMC
Yau T., Hsu C., Kim T.-Y., Choo S.-P., Kang Y.-K., Hou M.-M., Numata K., Yeo W., Chopra A., Ikeda M., et al. Nivolumab in advanced hepatocellular carcinoma: Sorafenib-experienced Asian cohort analysis. J. Hepatol. 2019;71:543–552. doi: 10.1016/j.jhep.2019.05.014. PubMed DOI
Zisser A., Ipsen D., Tveden-Nyborg P. Hepatic Stellate Cell Activation and Inactivation in NASH-Fibrosis—Roles as Putative Treatment Targets? Biomedicines. 2021;9:365. doi: 10.3390/biomedicines9040365. PubMed DOI PMC
Filliol A., Saito Y., Nair A., Dapito D.H., Yu L.-X., Ravichandra A., Bhattacharjee S., Affo S., Fujiwara N., Su H., et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature. 2022;610:356–365. doi: 10.1038/s41586-022-05289-6. PubMed DOI PMC
Kisseleva T., Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021;18:151–166. doi: 10.1038/s41575-020-00372-7. PubMed DOI
Chen Z., Jain A., Liu H., Zhao Z., Cheng K. Targeted Drug Delivery to Hepatic Stellate Cells for the Treatment of Liver Fibrosis. J. Pharmacol. Exp. Ther. 2019;370:695–702. doi: 10.1124/jpet.118.256156. PubMed DOI PMC
Zabielska-Koczywąs K., Lechowski R. The Use of Liposomes and Nanoparticles as Drug Delivery Systems to Improve Cancer Treatment in Dogs and Cats. Molecules. 2017;22:2167. doi: 10.3390/molecules22122167. PubMed DOI PMC
Luo J., Zhang P., Zhao T., Jia M., Yin P., Li W., Zhang Z.-R., Fu Y., Gong T. Golgi Apparatus-Targeted Chondroitin-Modified Nanomicelles Suppress Hepatic Stellate Cell Activation for the Management of Liver Fibrosis. ACS Nano. 2019;13:3910–3923. doi: 10.1021/acsnano.8b06924. PubMed DOI