Clear cell mesotheliomas with inactivating VHL mutations and near-haploid genomic features
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu systematický přehled, časopisecké články
PubMed
36515470
DOI
10.1002/gcc.23119
Knihovny.cz E-zdroje
- Klíčová slova
- VHL, clear cell, genetics, genomic near haploidization, mesothelioma, near haploid,
- MeSH
- chromozomální aberace MeSH
- genomika MeSH
- haploidie MeSH
- lidé středního věku MeSH
- lidé MeSH
- maligní mezoteliom * MeSH
- mezoteliom * genetika MeSH
- mutace MeSH
- nádorový supresorový protein VHL genetika MeSH
- nádory plic * genetika MeSH
- senioři MeSH
- thiolesterasa ubikvitinu genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
- Názvy látek
- nádorový supresorový protein VHL MeSH
- thiolesterasa ubikvitinu MeSH
- VHL protein, human MeSH Prohlížeč
Clear cell mesothelioma is uncommon and shows predominance of clear cells with resemblance to clear cell carcinomas. Clinicopathologic and molecular descriptions of clear cell mesothelioma remained limited. In this study, we identified an index patient with clear cell mesothelioma, confirmed by immunohistochemical and ultrastructural studies. Targeted next-generation sequencing revealed the presence of an inactivating VHL mutation. We then systematically searched for VHL-mutant mesotheliomas in a comprehensive genomic profiling database of 1532 mesotheliomas. Collectively, we identified a cohort of four VHL-mutant clear cell mesotheliomas, including three peritoneal and one pleural tumors from three females and one male, with age range of 47-68 (median 63) years. Histologically, each tumor showed a microcystic to tubulopapillary architecture with prominent clear cells. By next-generation DNA sequencing, each of the four clear cell mesotheliomas harbored inactivating VHL mutations, while lacking other alterations typical of mesotheliomas such as BAP1, NF2, SETD2, CDKN2A, CDKN2B, TP53, and PTEN. By using low-pass whole genome sequencing on the index case and targeted next-generation sequencing on the remaining three cases, we identified extensive loss of heterozygosity throughout the genome but consistently sparing chromosomes 5, 7, and 20, characteristic of genomic near-haploidization. In summary, clear cell mesotheliomas were characterized by inactivating VHL mutations and genomic near-haploidization and appeared to represent a distinct clinicopathologic and molecular category of mesotheliomas. Our findings implicate VHL in the pathogenesis of a subset of mesotheliomas, particularly those with clear cell morphology.
Department of Pathology Bioptical Laboratory Ltd Plzen Czech Republic
Department of Pathology Faculty of Medicine in Plzen Charles University Plzen Czech Republic
Department of Pathology Foundation Medicine Inc Cambridge Massachusetts USA
Zobrazit více v PubMed
Sauter JL, Bueno R, Dacic S, et al. Diffuse pleural mesothelioma. In: WHO Classification of Tumours Editorial Board, ed. WHO Classification of Tumours Thoracic Tumours. IARC Press; 2021:204-219.
Roushdy-Hammady I, Siegel J, Emri S, Testa JR, Carbone M. Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet. 2001;357:444-445.
Testa JR, Cheung M, Pei J, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43:1022-1025.
Chirieac LR, Barletta JA, Yeap BY, et al. Clinicopathologic characteristics of malignant mesotheliomas arising in patients with a history of radiation for Hodgkin and non-Hodgkin lymphoma. J Clin Oncol. 2013;31:4544-4549.
Attanoos RL, Churg A, Galateau-Salle F, Gibbs AR, Roggli VL. Malignant mesothelioma and its non-asbestos causes. Arch Pathol Lab Med. 2018;142:753-760.
Bueno R, Stawiski EW, Goldstein LD, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48:407-416.
Hmeljak J, Sanchez-Vega F, Hoadley KA, et al. Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov. 2018;8:1548-1565.
Desmeules P, Joubert P, Zhang L, et al. A subset of malignant mesotheliomas in young adults are associated with recurrent EWSR1/FUS-ATF1 fusions. Am J Surg Pathol. 2017;41:980-988.
Hung YP, Dong F, Watkins JC, et al. Identification of ALK rearrangements in malignant peritoneal mesothelioma. JAMA Oncol. 2018;4:235-238.
Dermawan JK, Torrence D, Lee CH, et al. EWSR1::YY1 fusion positive peritoneal epithelioid mesothelioma harbors mesothelioma epigenetic signature: report of 3 cases in support of an emerging entity. Genes Chromosomes Cancer. 2022;61:592-602.
Kondo K, Kaelin WG Jr. The von Hippel-Lindau tumor suppressor gene. Exp Cell Res. 2001;264:117-125.
Skalova A, Baneckova M, Laco J, et al. Sclerosing polycystic adenoma of salivary glands: a novel neoplasm characterized by PI3K-AKT pathway alterations-new insights into a challenging entity. Am J Surg Pathol. 2022;46:268-280.
Scheinin I, Sie D, Bengtsson H, et al. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res. 2014;24:2022-2032.
Dagogo-Jack I, Madison RW, Lennerz JK, et al. Molecular characterization of mesothelioma: impact of histologic type and site of origin on molecular landscape. JCO Precis Oncol. 2022;6:e2100422.
Frampton GM, Fichtenholtz A, Otto GA, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023-1031.
Massoth LR, Hung YP, Nardi V, et al. Pan-sarcoma genomic analysis of KMT2A rearrangements reveals distinct subtypes defined by YAP1-KMT2A-YAP1 and VIM-KMT2A fusions. Mod Pathol. 2020;33:2307-2317.
Warhol MJ, Corson JM. An ultrastructural comparison of mesotheliomas with adenocarcinomas of the lung and breast. Hum Pathol. 1985;16:50-55.
Oury TD, Hammar SP, Roggli VL. Ultrastructural features of diffuse malignant mesotheliomas. Hum Pathol. 1998;29:1382-1392.
Ordonez NG, Myhre M, Mackay B. Clear cell mesothelioma. Ultrastruct Pathol. 1996;20:331-336.
Ordonez NG. Mesothelioma with clear cell features: an ultrastructural and immunohistochemical study of 20 cases. Hum Pathol. 2005;36:465-473.
Dessy E, Falleni M, Braidotti P, del Curto B, Panigalli T, Pietra GG. Unusual clear cell variant of epithelioid mesothelioma. Arch Pathol Lab Med. 2001;125:1588-1590.
Mishra A, Shet T. Clear cell mesothelioma of the testis with deciduoid areas-a case report. Indian J Pathol Microbiol. 2004;47:544-546.
Ordonez NG. Clear cell mesothelioma presenting as an incarcerated abdominal hernia. Virchows Arch. 2005;447:823-827.
Gkogkou C, Samitas K, Foteinou M. Primary pleural epithelioid mesothelioma of clear cell type: a case report and review of current literature. Ultrastruct Pathol. 2011;35:267-270.
Hayashi H, Kawata T, Shimokawa I. Malignant peritoneal mesothelioma, clear cell variant, in a female and its differentiation from clear cell carcinoma. Pathol Res Pract. 2017;213:580-584.
Smith-Hannah A, Naous R. Primary peritoneal epithelioid mesothelioma of clear cell type with a novel VHL gene mutation: a case report. Hum Pathol. 2019;83:199-203.
Saeed OAM, Armutlu A, Zhang X, Saxena R. Primary peritoneal mesothelioma with clear cell morphology presenting with multiple liver masses: report of a case with a unique VHL Y98fs*24 mutation and indolent clinical course. Am J Surg Pathol Rev Rep. 2020;25:295-297.
Du XM, Wei YP, Gao Y, et al. Clinicopathological characteristics of primary peritoneal epithelioid mesothelioma of clear cell type: a case report. Medicine. 2021;100:e25264.
Kwon TJ, Ro JY, Mackay B. Clear-cell carcinoma: an ultrastructural study of 57 tumors from various sites. Ultrastruct Pathol. 1996;20:519-527.
Lubensky IA, Pack S, Ault D, et al. Multiple neuroendocrine tumors of the pancreas in von Hippel-Lindau disease patients: histopathological and molecular genetic analysis. Am J Pathol. 1998;153:223-231.
Panou V, Gadiraju M, Wolin A, et al. Frequency of germline mutations in cancer susceptibility genes in malignant mesothelioma. J Clin Oncol. 2018;36:2863-2871.
Ramsey ML, Yuh BJ, Johnson MT, Yeldandi AV, Zynger DL. Carbonic anhydrase IX is expressed in mesothelioma and metastatic clear cell renal cell carcinoma of the lung. Virchows Arch. 2012;460:89-93.
Ordonez NG. Value of PAX8, PAX2, napsin A, carbonic anhydrase IX, and claudin-4 immunostaining in distinguishing pleural epithelioid mesothelioma from metastatic renal cell carcinoma. Mod Pathol. 2013;26:1132-1143.
Capkova L, Koubkova L, Kodet R. Expression of carbonic anhydrase IX (CAIX) in malignant mesothelioma. An immunohistochemical and immunocytochemical study. Neoplasma. 2014;61:161-169.
Chapel DB, Husain AN, Krausz T, McGregor SM. PAX8 expression in a subset of malignant peritoneal mesotheliomas and benign mesothelium has diagnostic implications in the differential diagnosis of ovarian serous carcinoma. Am J Surg Pathol. 2017;41:1675-1682.
Hung YP, Dong F, Torre M, Crum CP, Bueno R, Chirieac LR. Molecular characterization of diffuse malignant peritoneal mesothelioma. Mod Pathol. 2020;33:2269-2279.
Offin M, Yang SR, Egger J, et al. Molecular characterization of peritoneal mesotheliomas. J Thorac Oncol. 2022;17:455-460.
Mandahl N, Johansson B, Mertens F, Mitelman F. Disease-associated patterns of disomic chromosomes in hyperhaploid neoplasms. Genes Chromosomes Cancer. 2012;51:536-544.
Jonasch E, Donskov F, Iliopoulos O, et al. Belzutifan for renal cell carcinoma in von Hippel-Lindau disease. N Engl J Med. 2021;385:2036-2046.