Association between ustekinumab therapy and changes in specific anti-microbial response, serum biomarkers, and microbiota composition in patients with IBD: A pilot study
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36584073
PubMed Central
PMC9803183
DOI
10.1371/journal.pone.0277576
PII: PONE-D-22-19325
Knihovny.cz E-resources
- MeSH
- Biomarkers MeSH
- Crohn Disease * therapy MeSH
- Tumor Necrosis Factor Inhibitors MeSH
- Humans MeSH
- Microbiota * MeSH
- Pilot Projects MeSH
- Ustekinumab therapeutic use MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers MeSH
- Tumor Necrosis Factor Inhibitors MeSH
- Ustekinumab MeSH
BACKGROUND: Ustekinumab, is a new therapy for patients with IBD, especially for patients suffering from Crohn's disease (CD) who did not respond to anti-TNF treatment. To shed light on the longitudinal effect of ustekinumab on the immune system, we investigated the effect on skin and gut microbiota composition, specific immune response to commensals, and various serum biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: We recruited 11 patients with IBD who were monitored over 40 weeks of ustekinumab therapy and 39 healthy controls (HC). We found differences in the concentrations of serum levels of osteoprotegerin, TGF-β1, IL-33, and serum IgM antibodies against Lactobacillus plantarum between patients with IBD and HC. The levels of these biomarkers did not change in response to ustekinumab treatment or with disease improvement during the 40 weeks of observation. Additionally, we identified differences in stool abundance of uncultured Subdoligranulum, Faecalibacterium, and Bacteroides between patients with IBD and HC. CONCLUSION/SIGNIFICANCE: In this preliminary study, we provide a unique overview of the longitudinal monitoring of fecal and skin microbial profiles as well as various serum biomarkers and humoral and cellular response to gut commensals in a small cohort of patients with IBD on ustekinumab therapy.
Faculty of Science Department of Zoology Charles University Prague Czech Republic
ISCARE a s IBD Clinical and Research Centre Prague Czech Republic
See more in PubMed
Lee M, Chang EB. Inflammatory Bowel Diseases (IBD) and the Microbiome-Searching the Crime Scene for Clues. Gastroenterology. 2021;160(2):524–37. Epub 2020/12/01. doi: 10.1053/j.gastro.2020.09.056 ; PubMed Central PMCID: PMC8098834. PubMed DOI PMC
Underhill DM, Braun J. Fungal microbiome in inflammatory bowel disease: a critical assessment. J Clin Invest. 2022;132(5). Epub 2022/03/02. doi: 10.1172/JCI155786 ; PubMed Central PMCID: PMC8884899. PubMed DOI PMC
Atreya R, Neurath MF, Siegmund B. Personalizing Treatment in IBD: Hype or Reality in 2020? Can We Predict Response to Anti-TNF? Frontiers in Medicine. 2020;7(September):1–14. doi: 10.3389/fmed.2020.00517 PubMed DOI PMC
Bourchany A, Gilletta De Saint-Joseph C, Breton A, Barreau F, Mas E. Optimization of biologics to reduce treatment failure in inflammatory bowel diseases. Curr Opin Pharmacol. 2020;54:51–8. Epub 2020/09/19. doi: 10.1016/j.coph.2020.07.012 . PubMed DOI
Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S, et al.. A Randomized Trial of Ustekinumab, a Human Interleukin-12/23 Monoclonal Antibody, in Patients With Moderate-to-Severe Crohn’s Disease. Gastroenterology. 2008;135(4):1130–41. doi: 10.1053/j.gastro.2008.07.014 PubMed DOI
Rolston VS, Kimmel J, Popov V, Bosworth BP, Hudesman D, Malter LB, et al.. Ustekinumab Does Not Increase Risk of Adverse Events: A Meta-Analysis of Randomized Controlled Trials. Digestive Diseases and Sciences. 2021;66(5):1631–8. doi: 10.1007/s10620-020-06344-w PubMed DOI
Lambert JLW, De Schepper S, Speeckaert R. Cutaneous manifestations in biological-treated inflammatory bowel disease patients: A narrative review. Journal of Clinical Medicine. 2021;10(5):1–15. doi: 10.3390/jcm10051040 PubMed DOI PMC
Miyachi H, Nakamura Y, Wakabayashi S, Iwasawa MT, Oikawa A, Watanabe A, et al.. Case of recurrent severe cellulitis and cutaneous candidiasis during psoriasis treatment with ustekinumab. Journal of Dermatology. 2017;44(8):e206–e7. doi: 10.1111/1346-8138.13884 PubMed DOI
Welty M, Mesana L, Padhiar A, Naessens D, Diels J, van Sanden S, et al.. Efficacy of ustekinumab vs. advanced therapies for the treatment of moderately to severely active ulcerative colitis: a systematic review and network meta-analysis. Current Medical Research and Opinion. 2020;36(4):595–606. doi: 10.1080/03007995.2020.1716701 PubMed DOI
Harris RJ, McDonnell M, Young D, Bettey M, Downey L, Pigott L, et al.. Early real-world effectiveness of ustekinumab for Crohn’s disease. Frontline Gastroenterology. 2020;11(2):111–6. doi: 10.1136/flgastro-2019-101237 PubMed DOI PMC
Barré A, Colombel JF, Ungaro R. Review article: predictors of response to vedolizumab and ustekinumab in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics. 2018;47(7):896–905. doi: 10.1111/apt.14550 PubMed DOI
Gisbert JP, Chaparro M. Predictors of Primary Response to Biologic Treatment [Anti-TNF, Vedolizumab, and Ustekinumab] in Patients with Inflammatory Bowel Disease: From Basic Science to Clinical Practice 2020. 694–709 p. doi: 10.1093/ecco-jcc/jjz195 PubMed DOI
Clooney AG, Eckenberger J, Laserna-Mendieta E, Sexton KA, Bernstein MT, Vagianos K, et al.. Ranking microbiome variance in inflammatory bowel disease: A large longitudinal intercontinental study. Gut. 2021;70(3):499–510. doi: 10.1136/gutjnl-2020-321106 PubMed DOI PMC
Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al.. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–92. Epub 2014/03/19. doi: 10.1016/j.chom.2014.02.005 ; PubMed Central PMCID: PMC4059512. PubMed DOI PMC
Papa E, Docktor M, Smillie C, Weber S, Preheim SP, Gevers D, et al.. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS ONE. 2012;7(6). doi: 10.1371/journal.pone.0039242 PubMed DOI PMC
Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M, et al.. Gut Microbiota-Induced Immunoglobulin G Controls Systemic Infection by Symbiotic Bacteria and Pathogens. Immunity. 2016;44(3):647–58. doi: 10.1016/j.immuni.2016.02.006 PubMed DOI PMC
Adams RJ, Heazlewood SP, Gilshenan KS, O’Brien M, McGuckin MA, Florin THJ. IgG antibodies against common gut bacteria are more diagnostic for Crohn’s disease than IgG against mannan or flagellin. American Journal of Gastroenterology. 2008;103(2):386–96. doi: 10.1111/j.1572-0241.2007.01577.x PubMed DOI
Castro-Dopico T, Dennison TW, Ferdinand JR, Mathews RJ, Fleming A, Clift D, et al.. Anti-commensal IgG Drives Intestinal Inflammation and Type 17 Immunity in Ulcerative Colitis. Immunity. 2019;50(4):1099–114.e10. doi: 10.1016/j.immuni.2019.02.006 PubMed DOI PMC
Harmsen HJM, Pouwels SD, Funke A, Bos NA, Dijkstra G. Crohn’s disease patients have more IgG-binding fecal bacteria than controls. Clinical and Vaccine Immunology. 2012;19(4):515–21. doi: 10.1128/CVI.05517-11 PubMed DOI PMC
Alexander KL, Zhao Q, Reif M, Rosenberg AF, Mannon PJ, Duck LW, et al.. Human Microbiota Flagellins Drive Adaptive Immune Responses in Crohn’s Disease. Gastroenterology. 2021;161(2):522–35.e6. doi: 10.1053/j.gastro.2021.03.064 PubMed DOI PMC
Kappler K, Lasanajak Y, Smith DF, Opitz L, Hennet T. Increased Antibody Response to Fucosylated Oligosaccharides and Fucose-Carrying Bacteroides Species in Crohn’s Disease. Frontiers in Microbiology. 2020;11(July):1–15. doi: 10.3389/fmicb.2020.01553 PubMed DOI PMC
Lam S, Zuo T, Ho M, Chan FKL, Chan PKS, Ng SC. Review article: fungal alterations in inflammatory bowel diseases. Alimentary Pharmacology and Therapeutics. 2019;50(11–12):1159–71. doi: 10.1111/apt.15523 PubMed DOI
Chehoud C, Albenberg LG, Judge C, Hoffmann C, Grunberg S, Bittinger K, et al.. Fungal Signature in the Gut Microbiota of Pediatric Patients With Inflammatory Bowel Disease. Inflamm Bowel Dis. 2015;21(8):1948–56. Epub 2015/06/18. doi: 10.1097/MIB.0000000000000454 ; PubMed Central PMCID: PMC4509842. PubMed DOI PMC
Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, et al.. Fungal microbiota dysbiosis in IBD. Gut. 2017;66(6):1039–48. doi: 10.1136/gutjnl-2015-310746 PubMed DOI PMC
Hegazy AN, West NR, Stubbington MJT, Wendt E, Suijker KIM, Datsi A, et al.. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation. Gastroenterology. 2017;153(5):1320–37.e16. doi: 10.1053/j.gastro.2017.07.047 PubMed DOI PMC
Stehlikova Z, Kostovcik M, Kostovcikova K, Kverka M, Juzlova K, Rob F, et al.. Dysbiosis of skin microbiota in psoriatic patients: Co-occurrence of Fungal and Bacterial Communities. Frontiers in Microbiology. 2019;10(MAR):1–13. doi: 10.3389/fmicb.2019.00438 PubMed DOI PMC
Torres J, Bonovas S, Doherty G, Kucharzik T, Gisbert JP, Raine T, et al.. ECCO guidelines on therapeutics in Crohn’s disease: Medical treatment. Journal of Crohn’s and Colitis. 2020;14(1):4–22. doi: 10.1093/ecco-jcc/jjz180 PubMed DOI
Schierova D, Roubalova R, Kolar M, Stehlikova Z, Rob F, Jackova Z, et al.. Fecal microbiome changes and specific anti-bacterial response in patients with ibd during anti-tnf therapy. Cells. 2021;10(11). doi: 10.3390/cells10113188 PubMed DOI PMC
Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. Epub 2012/06/16. doi: 10.1038/nature11234 ; PubMed Central PMCID: PMC3564958. PubMed DOI PMC
Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J, et al.. Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS ONE. 2011;6(11). doi: 10.1371/journal.pone.0027961 PubMed DOI PMC
Stehlikova Z, Tlaskal V, Galanova N, Roubalova R, Kreisinger J, Dvorak J, et al.. Oral Microbiota Composition and Antimicrobial Antibody Response in Patients with Recurrent Aphthous Stomatitis. Microorganisms. 2019;7(12). Epub 2019/12/07. doi: 10.3390/microorganisms7120636 ; PubMed Central PMCID: PMC6955784. PubMed DOI PMC
Coufal S, Galanova N, Bajer L, Gajdarova Z, Schierova D, Zakostelska ZJ, et al.. Inflammatory bowel disease types differ in markers of inflammation, gut barrier and in specific anti-bacterial response. Cells. 2019;8(7). doi: 10.3390/cells8070719 PubMed DOI PMC
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al.. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology. 2019;37(8):852–7. doi: 10.1038/s41587-019-0209-9 PubMed DOI PMC
McArtor DB, Lubke GH, Bergeman CS. With an Effect Size Measure and the Asymptotic Null. 2017;82(4):1052–77. doi: 10.1007/s11336-016-9527-8.EXTENDING PubMed DOI PMC
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(16):9440–5. doi: 10.1073/pnas.1530509100 PubMed DOI PMC
Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microbial Ecology in Health & Disease. 2015;26(0). doi: 10.3402/mehd.v26.27663 PubMed DOI PMC
Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, et al.. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochemical and Biophysical Research Communications. 1998;247(3):610–5. doi: 10.1006/bbrc.1998.8697 PubMed DOI
Infante M, Fabi A, Cognetti F, Gorini S, Caprio M, Fabbri A. RANKL/RANK/OPG system beyond bone remodeling: Involvement in breast cancer and clinical perspectives. Journal of Experimental and Clinical Cancer Research. 2019;38(1):1–18. doi: 10.1186/s13046-018-1001-2 PubMed DOI PMC
Moschen AR, Kaser A, Enrich B, Ludwiczek O, Gabriel M, Obrist P, et al.. The RANKL/OPG system is activated in inflammatory bowel diseases and relates to the state or bone loss. Gut. 2005;54(4):479–87. doi: 10.1136/gut.2004.044370 PubMed DOI PMC
Franchimont N, Reenaers C, Lambert C, Belaiche J, Bours V, Malaise M, et al.. Increased expression of receptor activator of NF-κB ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin in the colon of Crohn’s disease patients. Clinical and Experimental Immunology. 2004;138(3):491–8. doi: 10.1111/j.1365-2249.2004.02643.x PubMed DOI PMC
Nahidi L, Leach ST, Lemberg DA, Day AS. Osteoprotegerin exerts its pro-inflammatory effects through nuclear factor-κb activation. Digestive Diseases and Sciences. 2013;58(11):3144–55. doi: 10.1007/s10620-013-2851-2 PubMed DOI
Ihara S, Hirata Y, Koike K. TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota. Journal of Gastroenterology. 2017;52(7):777–87. doi: 10.1007/s00535-017-1350-1 PubMed DOI
Di Sabatino A, Jackson CL, Pickard KM, Buckley M, Rovedatti L, Leakey NAB, et al.. Transforming growth factor β signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut. 2009;58(6):777–89. doi: 10.1136/gut.2008.149096 PubMed DOI
Del Zotto B, Mumolo G, Pronio AM, Montesani C, Tersigni R, Boirivant M. TGF-β1 production in inflammatory bowel disease: Differing production patterns in Crohn’s disease and ulcerative colitis. Clinical and Experimental Immunology. 2003;134(1):120–6. doi: 10.1046/j.1365-2249.2003.02250.x PubMed DOI PMC
Sambuelli A, Diez RA, Sugai E, Boerr L, Negreira S, Gil A, et al.. Serum transforming growth factor-β1 levels increase in response to successful anti-inflammatory therapy in ulcerative colitis. Alimentary Pharmacology and Therapeutics. 2000;14(11):1443–9. doi: 10.1046/j.1365-2036.2000.00861.x PubMed DOI
Seo DH, Che X, Kwak MS, Kim S, Kim JH, Ma HW, et al.. Interleukin-33 regulates intestinal inflammation by modulating macrophages in inflammatory bowel disease. Scientific Reports. 2017;7(1):1–13. doi: 10.1038/s41598-017-00840-2 PubMed DOI PMC
Sedhom MAK, Pichery M, Murdoch JR, Foligné B, Ortega N, Normand S, et al.. Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing In mice. Gut. 2013;62(12):1714–23. doi: 10.1136/gutjnl-2011-301785 PubMed DOI PMC
Beltrán CJ, Núñez LE, Díaz-Jiménez D, Farfan N, Candia E, Heine C, et al.. Characterization of the novel ST2/IL-33 system in patients with inflammatory bowel disease. Inflammatory Bowel Diseases. 2010;16(7):1097–107. doi: 10.1002/ibd.21175 PubMed DOI
Wang W, Chen L, Zhou R, Wang X, Song L, Huang S, et al.. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol. 2014;52(2):398–406. Epub 2014/01/31. doi: 10.1128/JCM.01500-13 ; PubMed Central PMCID: PMC3911339. PubMed DOI PMC
Furrie E, Macfarlane S, Cummings JH, Macfarlane GT. Systemic antibodies towards mucosal bacteria in ulcerative colitis and Crohn’s disease differentially activate the innate immune response. Gut. 2004;53(1):91–8. Epub 2003/12/20. doi: 10.1136/gut.53.1.91 ; PubMed Central PMCID: PMC1773925. PubMed DOI PMC
Targan SR, Landers CJ, Yang H, Lodes MJ, Cong Y, Papadakis KA, et al.. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology. 2005;128(7):2020–8. doi: 10.1053/j.gastro.2005.03.046 PubMed DOI
Magri G, Comerma L, Pybus M, Sintes J, Lligé D, Segura-Garzón D, et al.. Human Secretory IgM Emerges from Plasma Cells Clonally Related to Gut Memory B Cells and Targets Highly Diverse Commensals. Immunity. 2017;47(1):118–34.e8. doi: 10.1016/j.immuni.2017.06.013 PubMed DOI PMC
Becker C, Wirtz S, Blessing M, Pirhonen J, Strand D, Bechthold O, et al.. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. Journal of Clinical Investigation. 2003;112(5):693–706. doi: 10.1172/JCI17464 PubMed DOI PMC
Alam MT, Amos GCA, Murphy ARJ, Murch S, Wellington EMH, Arasaradnam RP. Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels. Gut Pathogens. 2020;12(1):1–8. doi: 10.1186/s13099-019-0341-6 PubMed DOI PMC
Kowalska-Duplaga K, Gosiewski T, Kapusta P, Sroka-Oleksiak A, Wędrychowicz A, Pieczarkowski S, et al.. Differences in the intestinal microbiome of healthy children and patients with newly diagnosed Crohn’s disease. Scientific Reports. 2019;9(1):31–4. doi: 10.1038/s41598-019-55290-9 PubMed DOI PMC
Aguirre de Cárcer D. The human gut pan-microbiome presents a compositional core formed by discrete phylogenetic units. Scientific Reports. 2018;8(1):1–8. doi: 10.1038/s41598-018-32221-8 PubMed DOI PMC
Risely A. Applying the core microbiome to understand host–microbe systems. Journal of Animal Ecology. 2020;89(7):1549–58. doi: 10.1111/1365-2656.13229 PubMed DOI
González-Morelo KJ, Vega-Sagardía M, Garrido D. Molecular Insights Into O-Linked Glycan Utilization by Gut Microbes. Frontiers in Microbiology. 2020;11(November). doi: 10.3389/fmicb.2020.591568 PubMed DOI PMC
Becker HEF, Jamin C, Bervoets L, Boleij A, Xu P, Pierik MJ, et al.. Higher Prevalence of Bacteroides fragilis in Crohn’s Disease Exacerbations and Strain-Dependent Increase of Epithelial Resistance. Frontiers in Microbiology. 2021;12(June):1–13. doi: 10.3389/fmicb.2021.598232 PubMed DOI PMC
Li S, Wang C, Zhang C, Luo Y, Cheng Q, Yu L, et al.. Evaluation of the Effects of Different Bacteroides vulgatus Strains against DSS-Induced Colitis. Journal of Immunology Research. 2021;2021. doi: 10.1155/2021/9117805 PubMed DOI PMC
Lacroix V, Cassard A, Mas E, Barreau F. Multi-Omics Analysis of Gut Microbiota in Inflammatory Bowel Diseases: What Benefits for Diagnostic, Prognostic and Therapeutic Tools? Int J Mol Sci. 2021;22(20). Epub 2021/10/24. doi: 10.3390/ijms222011255 ; PubMed Central PMCID: PMC8537481. PubMed DOI PMC
Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M. Faecalibacterium prausnitzii: From microbiology to diagnostics and prognostics. ISME Journal. 2017;11(4):841–52. doi: 10.1038/ismej.2016.176 PubMed DOI PMC
Qiu Z, Yang H, Rong L, Ding W, Chen J, Zhong L. Targeted Metagenome Based Analyses Show Gut Microbial Diversity of Inflammatory Bowel Disease patients. Indian Journal of Microbiology. 2017;57(3):307–15. doi: 10.1007/s12088-017-0652-6 PubMed DOI PMC
Chang TE, Luo JC, Yang UC, Huang YH, Hou MC, Lee FY. Fecal microbiota profile in patients with inflammatory bowel disease in Taiwan. Journal of the Chinese Medical Association. 2021;84(6):580–7. doi: 10.1097/JCMA.0000000000000532 PubMed DOI
Xia Y, Wang J, Fang X, Dou T, Han L, Yang C. Combined analysis of metagenomic data revealed consistent changes of gut microbiome structure and function in inflammatory bowel disease. J Appl Microbiol. 2021;131(6):3018–31. Epub 2021/05/20. doi: 10.1111/jam.15154 . PubMed DOI
Auchtung TA, Fofanova TY, Stewart CJ, Nash AK, Wong MC, Gesell JR, et al.. Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi. mSphere. 2018;3(2). doi: 10.1128/mSphere.00092-18 PubMed DOI PMC
Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, et al.. Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents. PLoS ONE. 2013;8(6). doi: 10.1371/journal.pone.0066019 PubMed DOI PMC
Huseyin CE, O’Toole PW, Cotter PD, Scanlan PD. Forgotten fungi—the gut mycobiome in human health and disease. FEMS Microbiology Reviews. 2017;41(4):479–511. doi: 10.1093/femsre/fuw047 PubMed DOI
Di Paola M, Rizzetto L, Stefanini I, Vitali F, Massi-Benedetti C, Tocci N, et al.. Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn’s disease patients and their interactions with the gut microbiome. Journal of Translational Autoimmunity. 2020;3(January):100036–. doi: 10.1016/j.jtauto.2020.100036 PubMed DOI PMC
Doherty MK, Ding T, Koumpouras C, Telesco SE, Monast C, Das A, et al.. Fecal Microbiota Signatures Are Associated with Response to Ustekinumab Therapy among Crohn’s Disease Patients. mBio. 2018;9(2). Epub 2018/03/15. doi: 10.1128/mBio.02120-17 ; PubMed Central PMCID: PMC5850325. PubMed DOI PMC
de Vos WM, Tilg H, Van Hul M, Cani PD. Gut microbiome and health: mechanistic insights. Gut. 2022;71(5):1020–32. Epub 2022/02/03. doi: 10.1136/gutjnl-2021-326789 ; PubMed Central PMCID: PMC8995832. PubMed DOI PMC
Ruszkowski J, Daca A, Szewczyk A, Debska-Slizien A, Witkowski JM. The influence of biologics on the microbiome in immune-mediated inflammatory diseases: A systematic review. Biomed Pharmacother. 2021;141:111904. Epub 2021/07/31. doi: 10.1016/j.biopha.2021.111904 . PubMed DOI
Dovrolis N, Michalopoulos G, Theodoropoulos GE, Arvanitidis K, Kolios G, Sechi LA, et al.. The Interplay between Mucosal Microbiota Composition and Host Gene-Expression is Linked with Infliximab Response in Inflammatory Bowel Diseases. Microorganisms. 2020;8(3). Epub 2020/04/05. doi: 10.3390/microorganisms8030438 ; PubMed Central PMCID: PMC7143962. PubMed DOI PMC
Radhakrishnan ST, Alexander JL, Mullish BH, Gallagher KI, Powell N, Hicks LC, et al.. Systematic review: the association between the gut microbiota and medical therapies in inflammatory bowel disease. Aliment Pharmacol Ther. 2022;55(1):26–48. Epub 2021/11/10. doi: 10.1111/apt.16656 . PubMed DOI
Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al.. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. Epub 2015/11/07. doi: 10.1126/science.aad1329 ; PubMed Central PMCID: PMC4721659. PubMed DOI PMC
Tillack C, Ehmann LM, Friedrich M, Laubender RP, Papay P, Vogelsang H, et al.. Anti-TNF antibody-induced psoriasiform skin lesions in patients with inflammatory bowel disease are characterised by interferon-γ-expressing Th1 cells and IL-17A/IL-22-expressing Th17 cells and respond to anti-IL-12/IL-23 antibody treatment. Gut. 2014;63(4):567–77. doi: 10.1136/gutjnl-2012-302853 PubMed DOI
Moschen AR, Tilg H, Raine T. IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nature Reviews Gastroenterology and Hepatology. 2019;16(3):185–96. doi: 10.1038/s41575-018-0084-8 PubMed DOI
Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, et al.. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. Journal of Experimental Medicine. 2005;202(1):135–43. doi: 10.1084/jem.20050500 PubMed DOI PMC
Sola-Tapias N, Vergnolle N, Denadai-Souza A, Barreau F. The Interplay Between Genetic Risk Factors and Proteolytic Dysregulation in the Pathophysiology of Inflammatory Bowel Disease. J Crohns Colitis. 2020;14(8):1149–61. Epub 2020/02/25. doi: 10.1093/ecco-jcc/jjaa033 . PubMed DOI
Gálvez J. Role of Th17 Cells in the Pathogenesis of Human IBD. ISRN Inflammation. 2014;2014:1–14. doi: 10.1155/2014/928461 PubMed DOI PMC
Dubé PE, Punit S, Brent Polk D. Redeeming an old foe: Protective as well as pathophysiological roles for tumor necrosis factor in inflammatory bowel disease. American Journal of Physiology—Gastrointestinal and Liver Physiology. 2015;308(3):G161–G70. doi: 10.1152/ajpgi.00142.2014 PubMed DOI PMC
Tanabe S, Kinuta Y, Saito Y. Bifidobacterium infantis suppresses proinflammatory interleukin-17 production in murine splenocytes and dextran sodium sulfate-induced intestinal inflammation. Int J Mol Med. 2008;22(2):181–5. Epub 2008/07/19. PubMed . PubMed
Fan L, Qi Y, Qu S, Chen X, Li A, Hendi M, et al.. B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling. Gut Microbes. 2021;13(1):1–17. doi: 10.1080/19490976.2020.1826746 PubMed DOI PMC
Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et al.. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105(43):16731–6. Epub 2008/10/22. doi: 10.1073/pnas.0804812105 ; PubMed Central PMCID: PMC2575488. PubMed DOI PMC
Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al.. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15(8):1183–9. Epub 2009/02/25. doi: 10.1002/ibd.20903 . PubMed DOI
Varela E, Manichanh C, Gallart M, Torrejon A, Borruel N, Casellas F, et al.. Colonisation by Faecalibacterium prausnitzii and maintenance of clinical remission in patients with ulcerative colitis. Aliment Pharmacol Ther. 2013;38(2):151–61. Epub 2013/06/04. doi: 10.1111/apt.12365 . PubMed DOI